Multiplication modules with prime spectrum

Ortaç ÖNEŞ*, Mustafa ALKAN
Department of Mathematics, Faculty of Science, Akdeniz University, Antalya, Turkey

Received: 09.03.2018 • Accepted/Published Online: 19.06.2019 • Final Version: 31.07.2019

Abstract: The subject of this paper is the Zariski topology on a multiplication module M over a commutative ring R. We find a characterization for the radical submodule $\text{rad}_M(0)$ and also show that there are proper ideals I_1, \ldots, I_n of R such that $\text{rad}_M(0) = \text{rad}_M((I_1 \cdots I_n)M)$. Finally, we prove that the spectrum $\text{Spec}(M)$ is irreducible if and only if M is the finite sum of its submodules, whose T-radicals are prime in M.

Key words: Multiplication module, prime submodule, spectrum of module

1. Introduction
Throughout this study, R and M denote a commutative ring with identity and a unitary R-module, respectively. We also use $\text{Spec}(M)$ for the spectrum of prime submodules. In [4], the author investigated some properties of Zariski topology of multiplication modules. Motivated by this study, we generalize some important results in [4] and also give a characterization for the intersection of all prime submodules of M. Then M is said to be a multiplication R-module if for each submodule N of M, there exists an ideal I of R such that $N = IM$. For example, invertible ideals and projective ideals of R are multiplication R-modules. Since every cyclic module is a multiplication module and every finitely generated Artinian multiplication module is cyclic, there is a close relationship between multiplication modules and cyclic modules and so there are many studies related to these important concepts in module theory ([1, 4, 6, 8]).

A proper submodule P of an R-module M is said to be prime if for $a \in R$ and $m \in M$, $am \in P$ implies that $m \in P$ or $aM \subseteq P$. The radical of a submodule N in M denoted by $\text{rad}_M(N)$ is defined as the intersection of all prime submodules of M containing N.

In [11], $V(N)$ was defined as the set $\{P \in \text{Spec}(M) : N \subseteq P\}$ for any submodule N of an R-module M. Note that $V(M) = \emptyset$, $V(0) = \text{Spec}(M)$ and $\bigcap_{i \in A} V(N_i)$ is equivalent to $V\left(\sum_{i \in A} N_i\right)$ for any family of submodules N_i of M.

Let $\Gamma(M) = \{V(N) : N$ is a submodule of $M\}$. If $\Gamma(M)$ is closed under finite union, $\Gamma(M)$ satisfies the axioms of closed subsets of a topological space. Then it is said that M is a module with a Zariski topology.

A topological space X is said to be Noetherian if the closed subsets of X satisfy the descending chain condition. X is said to be irreducible if $X \neq \emptyset$ and for every decomposition $X = X_1 \cup X_2$ with closed subsets $X_1, X_2 \subseteq X$, we have $X = X_1$ or $X = X_2$. $D \subseteq X$ is said to be dense in X if for every nonempty open

*Correspondence: ortacns@gmail.com

2010 AMS Mathematics Subject Classification: 13C13, 16D99
set \(U \subseteq X \), \(U \cap D \neq \emptyset \) holds. \(X \) is said to be quasi-compact if every open cover of \(X \) has a finite subcover ([7, 10]).

The aim of this paper is to study Zariski topology of multiplication modules over commutative ring with identity.

Section 2 is devoted to the study of a subspace associated with a submodule. We begin by giving a base for complement Zariski topology of a submodule \(N \) in a module \(M \). We show that \(\text{rad}_M(N) = \text{rad}_M(Rm_1 + \ldots + Rm_n) \), where \(m_i \in M \) if \(\mathcal{X}_N \) is quasicompact (Theorem 2.4). We also prove that \(N_N(0) \) is a prime submodule of \(M \) if and only if \(\mathcal{X}_N \) is irreducible (Theorem 2.8). Moreover, we give equivalent conditions for \(\text{Spec}(M) \) (Theorem 2.10).

In Section 3, we are interested in the relationships between the complement Zariski topologies and submodules of a module \(M \) to find some algebraic and topological tools for submodules and find some characterizations for the modules. We show that there are proper ideals \(I_1, \ldots, I_n \) of \(R \) such that \(\text{rad}_M(0) = \text{rad}_M((I_1 \ldots I_n) M) \), where \(M \) is a finitely generated multiplication \(R \)-module satisfying the \(T \)-condition for every submodule (Theorem 3.9). Consequently, we prove that \(\mathcal{X} = \bigcup_{i=1}^{n} \mathcal{X}_{I,M} \), where \(\mathcal{X}_{I,M} \) is irreducible if and only if \(M = \left(\sum_{i=1}^{n} I_i \right) M \) and \(N_{I,M}(0) \) is a prime submodule of \(M \) (Theorem 3.10).

2. The subspace associated with a submodule

Let \(M \) be a multiplication \(R \)-module and let \(N = IM \) be a submodule of \(M \), where \(I \) is an ideal of \(R \). Let \(\mathcal{X}_N = \text{Spec}(M) \setminus V(IM) \) and \(\tilde{V}(JM) = V(JM) \setminus V(IM) \), where \(J \) is an ideal of \(R \). Then

\[
\Gamma_N = \left\{ \tilde{V}(JM) : J \text{ is an ideal of } R \right\}
\]

satisfies the axioms for closed sets of a topological space on \(\mathcal{X}_N \). We name this topology as the complement Zariski topology of \(N \) in \(M \).

Example 2.1 Let \(R = \mathbb{Z} \), \(M = 6\mathbb{Z} \) and \(N = 30\mathbb{Z} \). Then \(M \) is a multiplication \(\mathbb{Z} \)-module. It is clear that \(\text{Spec}(M) = \{ 6a : a \in \mathbb{P} \} \), \(V(30\mathbb{Z}) = \{ 30\mathbb{Z} \} \), \(V(36\mathbb{Z}) = \{ 12\mathbb{Z}, 18\mathbb{Z} \} \) and \(V(90\mathbb{Z}) = \{ 18\mathbb{Z}, 30\mathbb{Z} \} \), where \(\mathbb{P} \) is the set of prime numbers. Thus we have

\[
\mathcal{X}_N = \text{Spec}(M) \setminus V(30\mathbb{Z}) = \{ 6a : a \in \mathbb{P} \setminus \{ 5 \} \},
\]

\[
\tilde{V}(36\mathbb{Z}) = V(36\mathbb{Z}) \setminus V(30\mathbb{Z}) = \{ 12\mathbb{Z}, 18\mathbb{Z} \} \setminus \{ 30\mathbb{Z} \} = \{ 12\mathbb{Z}, 18\mathbb{Z} \},
\]

\[
\tilde{V}(90\mathbb{Z}) = V(90\mathbb{Z}) \setminus V(30\mathbb{Z}) = \{ 18\mathbb{Z}, 30\mathbb{Z} \} \setminus \{ 30\mathbb{Z} \} = \{ 18\mathbb{Z} \}.
\]

We fix the submodule \(N \) as \(N = IM \), where \(I \) is an ideal of \(R \), and the module \(M \) as a multiplication module in this section.

Lemma 2.2 Let \(N = IM \) be a submodule of a multiplication \(R \)-module \(M \), where \(I \) is an ideal of \(R \). For any ideal \(J \) of \(R \), the set \((\mathcal{X}_N)^J = \mathcal{X}_N \setminus \tilde{V}(JM) \) forms a base for the complement Zariski topology of \(N \) in \(M \) on \(\mathcal{X}_N \).

2001
The following statements hold:

Proposition 2.3

Let \(N = IM \) be a submodule of a multiplication \(R \)-module \(M \), where \(I \) is an ideal of \(R \). The following statements hold:

1. \((X_N)^{JM} = X_N \setminus \hat{V}(JM) = \text{Spec}(M) \setminus V(IJM) \) for \(J \) is an ideal of \(R \).
2. \((X_N)^{J_1M} \cap (X_N)^{J_2M} = (X_N)^{(J_1J_2)M} \) for every ideal \(J_1, J_2 \) of \(R \).
3. \((X_N)^{JM} = \emptyset \) if and only if \(\text{rad}_M(IJM) \subseteq \text{rad}_M(0) \) for every ideal \(J \) of \(R \).
4. \((X_N)^{J_1M} = (X_N)^{J_2M} \) if and only if \(\text{rad}_M(IJ_1M) = \text{rad}_M(IJ_2M) \) for every ideal \(J_1, J_2 \) of \(R \).
5. If \((X_N)^{JM} = X_N \), then we have \(\text{rad}_M(IJM) = \text{rad}_M(IM) \) for every ideal \(J \) of \(R \).

Let \(M \) be an \(R \)-module and let \(N \) be a proper submodule of \(M \). Then we will say that \(N \) satisfies the condition (*) if there is a finite subset \(\Delta \) of \(\Lambda \) such that \(\text{rad}_M(\{m_i \in M : i \in \Lambda\}) = \text{rad}_M(\{m_j : j \in \Delta\}) \), whenever \(\text{rad}_M(N) \subseteq \text{rad}_M(\{m_i \in M : i \in \Lambda\}) \). It is clear that if \(M/\text{rad}_M(N) \) is a Noetherian module, \(N \) satisfies the condition (*).

In the following theorem, we give an algebraic property belonging to a submodule \(N \) and a topological property belonging to \(X_N \).

Theorem 2.4

Let \(N = IM \) be a proper submodule of a multiplication \(R \)-module \(M \), where \(I \) is an ideal of \(R \). Let \((X_N)^{JM} = X_N \setminus \hat{V}(JM) = \text{Spec}(M) \setminus V(IJM) \) for any ideal \(J \) of \(R \). Then the following statements are true.

1. \((X_N)^{JM} \) is quasicompact for every ideal \(J \) of \(R \).
2. If \(X_N \) is quasicompact, then \(\text{rad}_M(N) = \text{rad}_M(Rm_1 + \ldots + Rm_n) \), where \(m_i \in M \).
3. If \(N \) satisfies the condition (*), then \(X_N \) is quasicompact.

Proof

1. Obvious.

2. Let \(X_N \) be quasicompact.
Let \(N = \langle m_i : i \in \Lambda \rangle \). Then \(V(\{ m_i : i \in \Lambda \}) = V(N) \) and so \(\tilde{V} \left(\sum_{i \in \Lambda} Rm_i \right) = \emptyset \). Thus,

\[
\mathcal{X}_N = \mathcal{X}_N \setminus \emptyset = \mathcal{X}_N \setminus \tilde{V} \left(\sum_{i \in \Lambda} Rm_i \right) = \mathcal{X}_N \setminus \left(\bigcap_{i \in \Lambda} \tilde{V}(Rm_i) \right)
\]

\[
= \bigcup_{i \in \Lambda} \left(\mathcal{X}_N \setminus \tilde{V}(Rm_i) \right) = \bigcup_{i \in \Lambda} (\mathcal{X}_N)^{Rm_i}.
\]

Since \(\mathcal{X}_N \) is quasicompact, there is a finite set \(\Delta = \{1, 2, ..., n\} \subseteq \Lambda \) such that \(\mathcal{X}_N = \bigcup_{i \in \Delta} (\mathcal{X}_N)^{Rm_i} = \mathcal{X}_N \setminus \tilde{V}((m_1, m_2, ..., m_n)) \). Then \(V((m_1, m_2, ..., m_n)) \subseteq V(N) \) and so \(rad_M(N) \subseteq rad_M((m_1, m_2, ..., m_n)) \). On the other hand, we have \(rad_M((m_1, m_2, ..., m_n)) \subseteq rad_M(N) \), which means \(rad_M(N) = rad_M(Rm_1 + ... + Rm_n) \).

iii) Let \(N \) satisfy the condition (\(* \)).

Let \(\{ A_i : i \in \Lambda \} \) be an open cover of \(\mathcal{X}_N \). Since \(A_i \) can be expressed as a union of the sets of \((\mathcal{X}_N)^{Rm_i} \), we may assume that \(A_i = (\mathcal{X}_N)^{Rm_i} \) for every \(i \in \Lambda \). Then

\[
\mathcal{X}_N = \bigcup_{i \in \Delta} (\mathcal{X}_N)^{Rm_i} = \bigcup_{i \in \Delta} \left(\mathcal{X}_N \setminus \tilde{V}(Rm_i) \right)
\]

\[
= \mathcal{X}_N \setminus \bigcap_{i \in \Delta} \tilde{V}(Rm_i)
\]

\[
= \mathcal{X}_N \setminus \tilde{V} \left(\sum_{i \in \Delta} Rm_i \right).
\]

Thus, \(\tilde{V} \left(\sum_{i \in \Lambda} Rm_i \right) = \emptyset \) and so \(\tilde{V} \left(\sum_{i \in \Lambda} Rm_i \right) \subseteq V(N) \).

In this case, \(rad_M(N) \subseteq rad_M \left(\sum_{i \in \Lambda} Rm_i \right) \). By the condition (\(* \)), there is a finite subset \(\Delta \subseteq \Lambda \) such that \(rad_M \left(\sum_{i \in \Delta} Rm_i \right) = rad_M \left(\sum_{i \in \Delta} Rm_i \right) \). Then \(V \left(\sum_{i \in \Delta} Rm_i \right) \subseteq V(N) \) and so \(\tilde{V} \left(\sum_{i \in \Delta} Rm_i \right) = \emptyset \). Then

\[
\mathcal{X}_N = \mathcal{X}_N \setminus \tilde{V} \left(\sum_{i \in \Delta} Rm_i \right) = \mathcal{X}_N \setminus \bigcap_{i \in \Delta} \tilde{V}(Rm_i)
\]

\[
= \bigcup_{i \in \Delta} \left(\mathcal{X}_N \setminus \tilde{V}(Rm_i) \right) = \bigcup_{i \in \Delta} (\mathcal{X}_N)^{Rm_i}.
\]

Since \(\mathcal{X}_N \) is covered by a finite number \((\mathcal{X}_N)^{Rm_i} \), \(\mathcal{X}_N \) is quasicompact. \(\square \)

Theorem 2.4 also generalizes Theorem 3.7 in [4].

We now introduce the new submodule class which is a generalization of radical submodule of a module.

Definition 2.5 Let \(N \) be a submodule of an \(R \)-module \(M \). The set \(\mathcal{N}_N(T) \) is defined as the intersection of all prime submodules containing submodule \(T \) which does not contain \(N \).
It is clear that $N_N(T)$ is equivalent to the radical of a submodule T when $M = N$. Then $N_N(T)$ is a generalization of radical submodule.

Example 2.6 Let $M = \mathbb{Z}$ be an \mathbb{Z}-module. Let $N = 12\mathbb{Z}$ and $T = 20\mathbb{Z}$ be submodules of M. Then $N_{12\mathbb{Z}}(20\mathbb{Z}) = 5\mathbb{Z}$ but $rad_{\mathbb{Z}}(20\mathbb{Z}) = 10\mathbb{Z}$. Thus $N_{12\mathbb{Z}}(20\mathbb{Z})$ is different from $rad_{\mathbb{Z}}(20\mathbb{Z})$.

The following lemma deals with algebraic properties of submodule $N_N(T)$.

Lemma 2.7 Let $N = IM$ be a proper submodule of a multiplication R-module M, where I is an ideal of R. The following statements are true:

i) $N_N(T)$ is a submodule of M.

ii) $N_N/K(T/K) = N_N(T)/K$, where $K \subseteq T$ is a submodule of M.

iii) $N_N(0) = N_{rad_M(N)}(0)$.

Proof The proof is straightforward.

The following theorem gives a connection between topological property of the complement Zariski topology \mathcal{X}_N and algebraic property of submodule $N_N(0)$.

Theorem 2.8 Let $N = IM$ be a proper submodule of a multiplication R-module M and $rad_M(IM) \neq rad_M(0)$. Then $N_N(0)$ is a prime submodule of M if and only if \mathcal{X}_N is irreducible.

Proof Let $N_N(0)$ be a prime submodule of M and K be a nonempty open subset of \mathcal{X}_M. Then $K = \mathcal{X}_N \setminus \tilde{V}(JM) = \text{Spec}(M) \setminus (V(IM) \cup V(JM))$, where JM is a submodule of M. Take $P \in K$. Then we have $P \notin V(IM) \cup V(JM)$, which means that $IM \not\subseteq P$ and $JM \not\subseteq P$. Thus, $N_N(0) \not\subseteq P$, so $JM \not\subseteq N_N(0) \subseteq P$. This implies that $N_N(0) \notin V(JM)$ and by the definition of $N_N(0)$, we get $N_N(0) \notin V(IM)$. Thus, $N_N(0) \subseteq K$.

Therefore, any nonempty open subset of \mathcal{X}_N contains $N_N(0)$. This means that \mathcal{X}_N is irreducible.

Let \mathcal{X}_N be irreducible. Suppose that $N_N(0)$ is not a prime submodule of M. Then there exists elements $a \in R$ and $m \in M$ such that $am \in N_N(0)$, $m \notin N_N(0)$ and $aM \subseteq N_N(0)$.

Since $rad_M(N) = rad_M(IM) \neq rad_M(0)$ and $m \in M \setminus N_N(0)$, it follows that $\tilde{V}(Rm) \neq \emptyset$ and $\tilde{V}(Rm) \neq \mathcal{X}_N$, which implies $(\mathcal{X}_N)^{Rm} \neq \emptyset$. This can also be used to prove that $(\mathcal{X}_N)^{aM}$ is a nonempty open subset. Therefore, we get

$$(\mathcal{X}_N)^{aM} \cap (\mathcal{X}_N)^{Rm} = (\mathcal{X}_N)^{Rm \cap aM} \subseteq \mathcal{X}_N \setminus \tilde{V}(am) \subseteq \mathcal{X}_N \setminus \tilde{V}(N_N(0)) \subseteq \text{Spec}(M) \setminus (V(N_N(0)) \cup V(N)) = \emptyset.$$

This contradicts the hypothesis. Thus, $N_N(0)$ is a prime submodule of M.

We now need a condition on the submodules N_N, which helps us out with going further in finding more connections between topological space and module.

A module M is said to satisfy \mathcal{T}-condition for a submodule N, if for any chain $N_N(U_1M) \subseteq N_N(U_2M) \subseteq N_N(U_3M) \subseteq \ldots$, where U_i is an ideal of R, there is an integer m such that $N_N(U_mM) = N_N(U_{m+i}M)$ for all positive integers i.

2004
Theorem 2.9 Let $N = IM$ be a proper submodule of a multiplication R-module M, where I is an ideal of R. Then the following statements are equivalent:

i) M satisfies the T-condition.

ii) \mathcal{X}_N is a Noetherian topological space.

Proof (i) \Rightarrow (ii) Assume that M satisfies the T-condition. Take the sequence $\tilde{V}(U_1M) \supseteq \tilde{V}(U_2M) \supseteq \tilde{V}(U_3M) \supseteq \ldots$, where U_iM is a submodule of M. Then we have the sequence $\mathcal{N}_N(U_1M) \subseteq \mathcal{N}_N(U_2M) \subseteq \mathcal{N}_N(U_3M) \subseteq \ldots$ and there exists an integer m such that $\mathcal{N}_N(U_mM) = \mathcal{N}_N(U_{m+i}M)$ for all positive integers i since M satisfies the T-condition. Therefore, we have $\tilde{V}(U_mM) = \tilde{V}(U_{m+i}M)$ for all positive integers i. Thus, \mathcal{X}_N is Noetherian.

(ii) \Rightarrow (i) Let \mathcal{X}_N be a Noetherian topological space. Take the sequence $\mathcal{N}_N(U_1M) \subseteq \mathcal{N}_N(U_2M) \subseteq \mathcal{N}_N(U_3M)\ldots$, where U_iM is a submodule of M. Then this yields the sequence $\tilde{V}(U_1M) \supseteq \tilde{V}(U_2M) \supseteq \tilde{V}(U_3M) \supseteq \ldots$. Since \mathcal{X}_N is Noetherian, there exists an integer m such that $\tilde{V}(U_mM) = \tilde{V}(U_{m+i}M)$ for all positive integers i. This implies $\mathcal{N}_N(U_mM) = \mathcal{N}_N(U_{m+i}M)$ for all positive integers i. Therefore M satisfies the T-condition. \hfill \blacksquare

We close this section with the following theorem, which reveals the connections between algebraic and topological properties.

Theorem 2.10 Let $N = IM$ be a submodule of a multiplication R-module M, where I is an ideal of R. Then the following are equivalent:

i) \mathcal{X} is a Noetherian topological space.

ii) \mathcal{X}_N is a Noetherian topological space for every submodule N of M.

iii) M satisfies the T-condition.

iv) M satisfies ascending chain condition on the radical submodules of M.

Proof (i) \Rightarrow (ii), (ii) \Leftrightarrow (iii) and (iv) \Leftrightarrow (i) are clear.

(ii) \Rightarrow (i) Take the sequence $V(U_1M) \supseteq V(U_2M) \supseteq V(U_3M) \supseteq \ldots$, where U_i is an ideal of R. Let $I = \cap U_i$ be an ideal of R. Consider the complement Zariski topology \mathcal{X}_{IM}. Then we have the sequence $\tilde{V}(U_1M) \supseteq \tilde{V}(U_2M) \supseteq \tilde{V}(U_3M) \supseteq \ldots$. Since \mathcal{X}_N is Noetherian, there exists an integer m such that $\tilde{V}(U_mM) = \tilde{V}(U_{m+i}M)$ for all positive integers i. Thus, we have $V(U_mM) = V(U_{m+i}M)$ for all positive integers i. Thus, \mathcal{X} is Noetherian. \hfill \blacksquare

3. The connections between subspaces and submodules

This section deals with the relationships between the complement Zariski topologies and submodules of a module to find some algebraic and topological tools for submodules and find some characterizations for modules.

Theorem 3.1 Let M be a multiplication R-module and let I, J, and K be proper ideals of R. Then we have the following.

i) Any open set of \mathcal{X} is of the form \mathcal{X}_{IM}.

ii) $\mathcal{X}_{IM} = \mathcal{X}_{JM}$ if and only if $\text{rad}_M(IM) = \text{rad}_M(JM)$.

iii) $\mathcal{X}_{IM} \cap \mathcal{X}_{JM} = \mathcal{X}_{KM}$ if and only if $\text{rad}_M(IJM) = \text{rad}_M(KM)$.
iv) \(\mathcal{X}_{iM} \subseteq \mathcal{X}_{JM} \) if and only if \(\text{rad}_M(IM) \subseteq \text{rad}_M(JM) \).

Proof It is straightforward. \(\Box \)

Corollary 3.2 Let \(M \) be a multiplication \(R \)-module and let \(I, J \) be proper ideals of \(R \). Then \(\mathcal{X}_{iM} \cap \mathcal{X}_{JM} = \emptyset \) if and only if \(\text{rad}_M(IJM) = \text{rad}_M(0) \).

Theorem 3.3 Let \(M \) be a multiplication \(R \)-module and let \(I \) be a proper ideal of \(R \). Then \(\mathcal{X}_{iM} \) is dense in \(\mathcal{X} \) if and only if \(\text{rad}_M(IJM) \neq \text{rad}_M(0) \) for every proper ideal \(J \) such that \(JM \) is not contained in \(\text{rad}_M(0) \).

Proof Let \(\mathcal{X}_{iM} \) be dense in \(\mathcal{X} \) and let \(J \) be any proper ideal of \(R \), where \(JM \) is not in \(\text{rad}_M(0) \). Then \(\mathcal{X}_{iM} = \text{Spec}(M) \setminus V(JM) \) is a nonempty open set in the Zariski topology and by the hypothesis, the intersection of \(\mathcal{X}_{iM} \) and \(\mathcal{X}_{JM} \) is nonempty. Thus, \(\text{rad}_M(IJM) \neq \text{rad}_M(0) \) by Corollary 3.2.

Let \(\text{rad}_M(IJM) \neq \text{rad}_M(0) \) for every proper ideal \(J \) of \(R \), where \(JM \) is not in \(\text{rad}_M(0) \). By Corollary 3.2, since \(\mathcal{X}_{iM} \cap \mathcal{X}_{JM} \neq \emptyset \), it follows that \(\mathcal{X}_{iM} \) is dense in \(\mathcal{X} \). \(\Box \)

The following theorem gives a characterization for the module \(M/\text{rad}_M(0) \) by using topological properties.

Theorem 3.4 Let \(M \) be a faithful multiplication \(R \)-module. The following statements are equivalent:

i) \(\text{rad}_M(0) \) is a prime submodule of \(M \).

ii) \(\text{Spec}(M) \) is irreducible.

iii) Every submodule of \(M/\text{rad}_M(0) \) is essential.

iv) Every open subset of \(\text{Spec}(M) \) is dense.

Proof (i) \(\Leftrightarrow \) (ii) By [5], it can be easily proved.

(iii) \(\Rightarrow \) (iv) Let \(\mathcal{X}_{iM} \) and \(\mathcal{X}_{JM} \) be open subsets for any ideals \(I, J \) of \(R \). Then \((JM + \text{rad}_M(0))/\text{rad}_M(0) \) and \((IM + \text{rad}_M(0))/\text{rad}_M(0) \) are submodules of \(M/\text{rad}_M(0) \). Since \(\bigcap_{i \in A} (I_iM) = \left(\bigcap_{i \in A} I_i \right)M \), we observe that

\[
\text{rad}_M\left(\bigcap_{i \in A} (I_iM) \right) = \text{rad}_M\left(\left(\bigcap_{i \in A} I_i \right)M \right) = \left(\text{rad}_R\left(\bigcap_{i \in A} I_i \right) \right)M,
\]

and

\[
\text{rad}_M(0) \neq \text{rad}_M\left((JM + \text{rad}_M(0)) \cap (IM + \text{rad}_M(0)) \right)
\]

\[
= \text{rad}_M\left((J + \text{rad}_R(0))M \cap (I + \text{rad}_R(0))M \right)
\]

\[
= \text{rad}_M\left((J + \text{rad}_R(0)) \cap (I + \text{rad}_R(0)) \right)M
\]

\[
= \text{rad}_R\left(J + \text{rad}_R(0) \right)M
\]

\[
= \text{rad}_M\left(IJM + \text{rad}_M(0) \right)
\]

and so \(\text{rad}_M(IJM) \neq \text{rad}_M(0) \), which means that \(\mathcal{X}_{iM} \) is dense.

(iv) \(\Rightarrow \) (ii) \(\Rightarrow \) (iii) One can prove it by the above method. \(\Box \)

Theorem 3.5 Let \(M \) be a finitely generated multiplication \(R \)-module and let \(I_i \) be a proper ideal of \(R \) for all \(i \in A \). Then \(\bigcup_{i \in A} \mathcal{X}_{iM} = \mathcal{X}_{DM} \) for any ideal \(D \) of \(R \) if and only if \(\text{rad}_M(\text{DM}) = \text{rad}_M\left(\left(\sum_{i \in A} I_i \right)M \right) \).

2006
Corollary 3.7 Let M be a finitely generated multiplication R-module and let I_i be a proper ideal of R for all $i \in \Lambda$. Then the following statements are equivalent:

(i) $\bigcup_{i \in \Lambda} X_{I_i} = X_{DM}$.

(ii) There is a finite subset Δ of Λ such that $\bigcup_{i \in \Delta} X_{I_i} = X_{DM}$.

(iii) There is a finite subset Δ of Λ such that $\text{rad}_M\left(\left(\sum_{i \in \Delta} I_i \right) M \right) = \text{rad}_M(DM)$.

Proof (i) \Rightarrow (iii) Let $\text{rad}_M(DM) = \text{rad}_M\left(\left(\sum_{i \in \Delta} I_i \right) M \right)$ and let D be an ideal finitely generated by the set $\{d_1, \ldots, d_t\}$. For each d_iM, there is a positive number n_i such that $d_i^{n_i}M \subseteq \left(\sum_{i \in \Delta} I_i \right) M$ and so there is a finite subset Δ_i of Λ such that $d_i^{n_i}M \subseteq \left(\sum_{i \in \Delta_i} I_i \right) M$. If $n = \max\{n_1, \ldots, n_t\}$ and $\Delta = \bigcup_{i=1}^t \Delta_i$ then $\text{rad}_M\left(\left(\sum_{i \in \Delta_i} I_i \right) M \right) = \text{rad}_M(DM)$.

(iii) \Rightarrow (ii) By Theorem 3.5.

(ii) \Rightarrow (i) It is clear. \Box

The following corollary is a special case of Theorem 3.6.

Theorem 3.6 Let M be a finitely generated multiplication R-module, I_i proper ideals of R for all $i \in \Lambda$ and D a finitely generated ideal of R. Then the following statements are equivalent:

(i) $\bigcup_{i \in \Lambda} X_{I_i} = X_{DM}$.

(ii) There is a finite subset Δ of Λ such that $\bigcup_{i \in \Delta} X_{I_i} = X_{DM}$.

(iii) There is a finite subset Δ of Λ such that $\text{rad}_M\left(\left(\sum_{i \in \Delta} I_i \right) M \right) = \text{rad}_M(DM)$.

Proof (i) \Rightarrow (iii) Let $\text{rad}_M(DM) = \text{rad}_M\left(\left(\sum_{i \in \Delta} I_i \right) M \right)$ and let D be an ideal finitely generated by the set $\{d_1, \ldots, d_t\}$. For each d_iM, there is a positive number n_i such that $d_i^{n_i}M \subseteq \left(\sum_{i \in \Delta} I_i \right) M$ and so there is a finite subset Δ_i of Λ such that $d_i^{n_i}M \subseteq \left(\sum_{i \in \Delta_i} I_i \right) M$. If $n = \max\{n_1, \ldots, n_t\}$ and $\Delta = \bigcup_{i=1}^t \Delta_i$ then $\text{rad}_M\left(\left(\sum_{i \in \Delta_i} I_i \right) M \right) = \text{rad}_M(DM)$.

(iii) \Rightarrow (ii) By Theorem 3.5.

(ii) \Rightarrow (i) It is clear. \Box
Corollary 3.8 Let M be a finitely generated multiplication R-module and let D be a finitely generated ideal of R. Then X_{DM} is quasicompact.

Using topological properties, we are now ready to prove the following characterization for $\operatorname{rad}_M(0)$.

Theorem 3.9 Let M be a finitely generated multiplication R-module satisfying the T-condition for every submodule. Then there are proper ideals I_1, \ldots, I_n of R such that $\operatorname{rad}_M(0) = \operatorname{rad}_M((I_1 \ldots I_n)M)$.

Proof Let $X = \operatorname{Spec}(M)$ be Noetherian topological space. By [9], X has only a finite number of distinct irreducible components U_i such that $\bigcup_{i=1}^n U_i = X$. It is well known that any irreducible component in a topological space is closed and so for each i, there is an ideal I_i such that $U_i = V(I_iM)$. Then

$$\emptyset = X \setminus \bigcup_{i=1}^n V(I_iM) = \bigcap_{i=1}^n (X \setminus V(I_iM)) = \bigcap_{i=1}^n X_{I_iM}.$$

Thus, by Theorem 3.1, $\operatorname{rad}_M(0) = \bigcap_{i=1}^n \operatorname{rad}_M(I_iM) = \operatorname{rad}_M((I_1 \ldots I_n)M)$. \hfill \Box

By using Theorems 2.8 and 3.5, we close the paper with the following result.

Theorem 3.10 Let M be a finitely generated multiplication R-module and let I_i be an ideal of R. Then $X = \bigcup_{i=1}^n X_{I_iM}$, where X_{I_iM} is irreducible, if and only if $M = \left(\sum_{i=1}^n I_i\right)M$ and $X_{I_iM}(0)$ is a prime submodule of M.

Acknowledgments

The authors would like to thank the referee for the valuable comments and suggestions on this paper.

References

2008

