A new comprehensive subclass of analytic bi-close-to-convex functions

Serap BULUT*
Faculty of Aviation and Space Sciences, Kocaeli University, Kocaeli, Turkey

Received: 05.02.2019 • Accepted/Published Online: 26.03.2019 • Final Version: 29.05.2019

Abstract: In a very recent work, Şeker and Sümer Eker [On subclasses of bi-close-to-convex functions related to the odd-starlike functions. Palestine Journal of Mathematics 2017; 6: 215-221] defined two subclasses of analytic bi-close-to-convex functions related to the odd-starlike functions in the open unit disk U. The main purpose of this paper is to generalize and improve the results of Şeker and Sümer Eker (in the aforementioned study) defining a comprehensive subclass of bi-close-to-convex functions. Also, we investigate the Fekete-Szegö type coefficient bounds for functions belonging to this new class.

Key words: Analytic and univalent functions, bi-univalent functions, close-to-convex functions, starlike functions, subordination principle, Fekete-Szegö problem

1. Introduction

Let A denote the family of analytic functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1.1)$$

in the open unit disk $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Also let $S := \{f \in A : f \text{ is univalent in } U\}$.

The family of starlike functions of order β $(0 \leq \beta < 1)$ shall be denoted by $S^*(\beta)$ and is defined by the conditions that $f \in A$ and

$$\Re \left(\frac{zf'(z)}{f(z)} \right) > \beta \quad (z \in U).$$

It is well known that

$$S^*(\beta) \subset S^*(0) = S^* \subset S.$$

A function $f \in A$ is said to be close-to-convex if there exists a function $g \in S^*$ such that the inequality

$$\Re \left(\frac{zf'(z)}{g(z)} \right) > 0 \quad (z \in U)$$

holds. We will denote the class which consists of all functions $f \in A$ that are close-to-convex by K.

*Correspondence: serap.bulut@kocaeli.edu.tr

2010 AMS Mathematics Subject Classification: Primary 30C45, 30C50; Secondary 30C80

This work is licensed under a Creative Commons Attribution 4.0 International License.
We have well-known inclusion relations:

\[S^* \subset \mathcal{K} \subset S. \]

Gao and Zhou [2] introduced the subclass \(\mathcal{K}_s \) of close-to-convex analytic functions as follows:

Definition 1 [2] Let the function \(f \) be analytic in \(U \) and normalized by the condition (1.1). We say that \(f \in \mathcal{K}_s \) if there exists a function \(g \in S^* (1/2) \) such that

\[
\Re \left(\frac{z^2 f'(z)}{-g(z)g(-z)} \right) > 0 \quad (z \in U).
\]

In recent years, the subclasses of close-to-convex functions are studied by several authors (see, for example, [3, 5, 11, 13–15]). Motivated by this works, Goyal and Singh [4] defined the general subclass of close-to-convex functions by using the principle of subordination (see [8]) as follows:

Definition 2 [4] For a function \(\varphi \) with positive real part, a function \(f \in \mathcal{A} \) is said to be in the class \(\mathcal{K}_s (\lambda, \mu, \varphi) \) if it satisfies the following subordination condition:

\[
\frac{z^2 f'(z) + (\lambda - \mu + 2\lambda \mu) z^3 f''(z) + \lambda \mu z^4 f'''(z)}{-g(z)g(-z)} \prec \varphi(z) \quad (z \in U),
\]

where \(0 \leq \mu \leq \lambda \leq 1 \) and \(g \in S^* (1/2) \).

Remark 1 (i) For \(\mu = 0 \) and \(\varphi(z) = \frac{1 + A z}{1 + B z} \) \((-1 < B < A < 1)\), we get the class \(\mathcal{K}_s (\lambda, A, B) \) studied by Wang and Chen [13].

(ii) For \(\mu = \lambda = 0 \) and \(\varphi(z) = \frac{1 + \beta z}{1 - \alpha z} \) \((0 \leq \alpha \leq 1, 0 < \beta \leq 1)\), we get the class \(\mathcal{K}_s (\alpha, \beta) \) studied by Wang et al. [15].

(iii) For \(\mu = \lambda = 0 \) and \(\varphi(z) = \frac{1 + (1 - 2\beta) z}{1 - z} \) \((0 \leq \beta < 1)\), we get the class \(\mathcal{K}_s (\beta) \) studied by Kowalczyk and Leś-Bomba [5].

(iv) For \(\mu = \lambda = 0 \) and \(\varphi(z) = \frac{1 + z}{1 - z} \), we get the class \(\mathcal{K}_s \) defined in the Definition 1.

Theorem 1.1 [1] (Koebe One-Quarter Theorem) The range of every function of class \(\mathcal{S} \) contains the disk of radius \(\{ w : |w| < \frac{1}{4} \} \).

Thus, by Theorem 1.1, every function \(f \in \mathcal{A} \) has an inverse \(f^{-1} \) defined by

\[
f^{-1} (f(z)) = z \quad (z \in U) \quad \text{and} \quad f \left(f^{-1} (w) \right) = w \quad \left(|w| < r_0 (f) ; \; r_0 (f) \geq \frac{1}{4} \right).
\]

For the inverse function \(F = f^{-1} \), we have:

\[
F(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_3^2 - 5a_2 a_3 + a_4) w^4 + \cdots \quad (1.3)
\]

Definition 3 [7] If both the function \(f \) and its inverse function \(f^{-1} \) are univalent in \(U \), then the function \(f \) is called bi-univalent. We will denote the class which consists of functions \(f \) that are bi-univalent by \(\Sigma \).
In a recent paper, Şeker and Sümer Eker [12] defined new subclasses of the bi-univalent function class \(\Sigma \) given in Definitions 4 and 5 as follows:

Definition 4 (see [12]) A function \(f \in A \) given by (1.1) is said to be in the class \(K^+_\Sigma(\alpha) \) if there exists a function

\[
g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in S^*(1/2), \quad G(w) = w + \sum_{n=2}^{\infty} c_n w^n \in S^*(1/2)
\]

and the following conditions are satisfied:

\[
f \in \Sigma \quad \text{and} \quad \left| \arg \left(\frac{-z^2 f'(z)}{g(z) g(-z)} \right) \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \leq 1, \ z \in \mathbb{U})
\]

and

\[
\left| \arg \left(\frac{-w^2 F'(w)}{G(w) G(-w)} \right) \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \leq 1, \ w \in \mathbb{U}),
\]

where the function \(F = f^{-1} \) is defined by (1.3).

Theorem 1.2 (see [12]) Let the function \(f(z) \) given by (1.1) be in the class \(K^+_\Sigma(\alpha) \) \((0 < \alpha \leq 1)\), then

\[
|a_2| \leq \sqrt{\frac{\alpha (1 + 2\alpha)}{2 + \alpha}} \quad \text{and} \quad |a_3| \leq \frac{\alpha (3\alpha + 2) + 1}{3}
\]

Definition 5 (see [12]) A function \(f \in A \) given by (1.1) is said to be in the class \(K^+_\Sigma(\beta) \) if there exists a function

\[
g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in S^*(1/2), \quad G(w) = w + \sum_{n=2}^{\infty} c_n w^n \in S^*(1/2)
\]

and the following conditions are satisfied:

\[
f \in \Sigma \quad \text{and} \quad \Re \left(\frac{-z^2 f'(z)}{g(z) g(-z)} \right) > \beta \quad (0 \leq \beta < 1, \ z \in \mathbb{U})
\]

and

\[
\Re \left(\frac{-w^2 F'(w)}{G(w) G(-w)} \right) > \beta \quad (0 \leq \beta < 1, \ w \in \mathbb{U}),
\]

where the function \(F = f^{-1} \) is defined by (1.3).

Theorem 1.3 (see [12]) Let the function \(f(z) \) given by (1.1) be in the class \(K^+_\Sigma(\beta) \) \((0 \leq \beta < 1)\), then

\[
|a_2| \leq \sqrt{\frac{3 - 2\beta}{3}} \quad \text{and} \quad |a_3| \leq \frac{1 - \beta (5 - 3\beta) + 1}{3}
\]

Now we introduce the a new comprehensive subclass of \(A \) which includes Definitions 4 and 5.
Definition 6 For \(0 \leq \mu \leq \lambda \leq 1\) and a function \(\varphi\) with positive real part, a function \(f \in \Sigma\) given by (1.1) is said to be in the class \(\mathcal{K}_{\Sigma_{\mu}}(\lambda, \mu, \varphi)\) if there exist the functions
\[
g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in S^*(1/2), \quad G(w) = w + \sum_{n=2}^{\infty} c_n w^n \in S^*(1/2)
\]
and the following conditions are satisfied:
\[
z^2 f'(z) + (\lambda - \mu + 2\lambda \mu) z^3 f''(z) + \lambda \mu z^4 f'''(z) \prec \varphi(z) \quad (z \in \mathbb{U}) \quad (1.4)
\]
and
\[
w^2 F'(w) + (\lambda - \mu + 2\lambda \mu) w^3 F''(w) + \lambda \mu w^4 F'''(w) \prec \varphi(w) \quad (w \in \mathbb{U}), \quad (1.5)
\]
where the function \(F = f^{-1}\) is defined by (1.3).

Remark 2 (i) For \(\mu = 0\), we have a new class \(\mathcal{K}_{\Sigma_{\mu}}(\lambda, \varphi)\) of bi-close-to-convex functions satisfying the conditions
\[
z^2 f'(z) + \lambda z^3 f''(z) \prec \varphi(z) \quad (z \in \mathbb{U})
\]
and
\[
w^2 F'(w) + \lambda w^3 F''(w) \prec \varphi(w) \quad (w \in \mathbb{U}).
\]
(ii) For \(\mu = \lambda = 0\), we have a new class \(\mathcal{K}_{\Sigma_{\mu}}(\varphi)\) of bi-close-to-convex functions satisfying the conditions
\[
z^2 f'(z) \prec \varphi(z) \quad (z \in \mathbb{U})
\]
and
\[
w^2 F'(w) \prec \varphi(w) \quad (w \in \mathbb{U}).
\]
(iii) In addition to the conditions given in (ii), if we set
\[
\varphi(z) = \left(\frac{1 + z}{1 - z}\right)^\alpha \quad (0 < \alpha \leq 1)
\]
or
\[
\varphi(z) = \left(\frac{1 + (1 - 2\beta) z}{1 - z}\right)^\beta \quad (0 \leq \beta < 1),
\]
then we have the classes \(\mathcal{K}_{\Sigma_{\mu}}^\alpha\) and \(\mathcal{K}_{\Sigma_{\mu}}^\beta\) defined in Definitions 4 and 5, respectively.

In the light of the work of Şeker and Sümer Eker [12], we obtain initial coefficient estimates for functions \(f \in A\) given by (1.1) belonging to the bi-close-to-convex function class \(\mathcal{K}_{\Sigma_{\mu}}(\lambda, \mu, \varphi)\) introduced in Definition 6 above. We obtain the improvements of results of Şeker and Sümer Eker [12] given in Theorems 1.2 and 1.3 as a result of our main theorem (Theorem 2.1.1). Also, we find Fekete-Szegö type coefficient bounds for the bi-close-to-convex functions \(f \in \mathcal{K}_{\Sigma_{\mu}}(\lambda, \mu, \varphi)\). The following lemmas will be required for proving our main results.
Lemma 1.4 [2] If \(g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in S^* (1/2) \), then

\[
\psi(z) = \frac{-g(z)g(-z)}{z} = z + \sum_{n=2}^{\infty} B_{2n-1} z^{2n-1} \in S^* \subset S,
\]

where the coefficients of the odd-starlike function \(\psi \) satisfy the condition

\[
|B_{2n-1}| = \left| 2b_{2n-1} - 2b_2 b_{2n-2} + \cdots + 2(-1)^n b_{n-1} b_{n+1} + (-1)^{n+1} b_n^2 \right| \leq 1 \quad (n \geq 2).
\]

Lemma 1.5 [9] Let the function \(h \) given by

\[
h(z) = 1 + \sum_{k=1}^{\infty} h_k z^k \quad (z \in \mathbb{U})
\]

be holomorphic in \(\mathbb{U} \) and the function \(q \) given by

\[
q(z) = 1 + \sum_{k=1}^{\infty} q_k z^k \quad (z \in \mathbb{U})
\]

be convex in \(\mathbb{U} \). If

\[
h(z) \prec q(z) \quad (z \in \mathbb{U}),
\]

then

\[
|h_k| \leq |q_1| \quad (k = 1, 2, \ldots).
\]

Lemma 1.6 [17] Let \(k, l \in \mathbb{R} \) and \(z_1, z_2 \in \mathbb{C} \). If \(|z_1| < R \) and \(|z_2| < R \), then

\[
|(k + l) z_1 + (k - l) z_2| \leq \begin{cases}
2R |k|, & |k| \geq |l| \\
2R |l|, & |k| < |l|
\end{cases}
\]

2. Initial coefficient estimates

Throughout this paper, we assume that \(0 \leq \mu \leq \lambda \leq 1 \) and \(\varphi \) be a function with positive real part.

Theorem 2.1 If the function \(f(z) \) given by (1.1) be in the function class \(K_{\Sigma_x}(\lambda, \mu, \varphi) \), then

\[
|a_2| \leq \min \left\{ \frac{1 + |\varphi'(0)|}{2(1 + \lambda - \mu + 2\lambda\mu)}, \sqrt[3]{\frac{1 + |\varphi'(0)|}{3[1 + 2(\lambda - \mu) + 6\lambda\mu]}} \right\}
\]

and

\[
|a_3| \leq \frac{1 + |\varphi'(0)|}{3[1 + 2(\lambda - \mu) + 6\lambda\mu]}.
\]
Proof Firstly, we will re-arrange the relations in (1.4) and (1.5) as follows:

\[
\begin{align*}
 h(z) &= \frac{z^2 f'(z) + (\lambda - \mu + 2\lambda \mu) z^3 f''(z) + \lambda \mu z^4 f'''(z)}{-g(z)g(-z)} \\
 &= \frac{z f'(z) + (\lambda - \mu + 2\lambda \mu) z^2 f''(z) + \lambda \mu z^3 f'''(z)}{-g(z)g(-z)} \\
 &= \frac{z f'(z) + (\lambda - \mu + 2\lambda \mu) z^2 f''(z) + \lambda \mu z^3 f'''(z)}{\psi(z)} \\
 &< \varphi(z) \quad (z \in \mathbb{U}) \quad (2.3)
\end{align*}
\]

and

\[
\begin{align*}
 p(w) &= \frac{w^2 F'(w) + (\lambda - \mu + 2\lambda \mu) w^3 F''(w) + \lambda \mu w^4 F'''(w)}{-G(w)G(-w)} \\
 &= \frac{w F'(w) + (\lambda - \mu + 2\lambda \mu) w^2 F''(w) + \lambda \mu w^3 F'''(w)}{-G(w)G(-w)} \\
 &= \frac{w F'(w) + (\lambda - \mu + 2\lambda \mu) w^2 F''(w) + \lambda \mu w^3 F'''(w)}{\Omega(w)} \\
 &< \varphi(w) \quad (w \in \mathbb{U}), \quad (2.4)
\end{align*}
\]

respectively, where

\[
\begin{align*}
 \psi(z) := \frac{-g(z)g(-z)}{z} \quad \text{and} \quad \Omega(w) := \frac{-G(w)G(-w)}{w}.
\end{align*}
\]

Here \(h \) and \(p \) are two functions with positive real part defined by

\[
\begin{align*}
 h(z) := 1 + h_1 z + h_2 z^2 + \cdots
\end{align*}
\]

and

\[
\begin{align*}
 p(w) := 1 + p_1 w + p_2 w^2 + \cdots,
\end{align*}
\]

respectively. The relations (2.4) and (2.6) imply by Lemma 1.5 that for all \(k = 1, 2, \ldots \),

\[
|h_k| \leq |\varphi'(0)| \quad (2.7)
\]

and

\[
|p_k| \leq |\varphi'(0)|. \quad (2.8)
\]

Furthermore, by Lemma 1.4, we have following equations:

\[
\begin{align*}
 \psi(z) &= \frac{-g(z)g(-z)}{z} = z + \sum_{n=2}^{\infty} B_{2n-1} z^{2n-1} \in S^* \quad \text{and} \quad |B_{2n-1}| \leq 1, \quad (2.9)
\end{align*}
\]

\[
\begin{align*}
 \Omega(w) &= \frac{-G(w)G(-w)}{w} = w + \sum_{n=2}^{\infty} C_{2n-1} w^{2n-1} \in S^* \quad \text{and} \quad |C_{2n-1}| \leq 1. \quad (2.10)
\end{align*}
\]
Now, upon equating the coefficients in (2.3) and (2.5), we obtain

\[
2 (1 + \lambda - \mu + 2\lambda \mu) a_2 = h_1 \tag{2.11}
\]
\[
3 [1 + 2 (\lambda - \mu) + 6\lambda \mu] a_3 - B_3 = h_2 \tag{2.12}
\]
\[
-2 (1 + \lambda - \mu + 2\lambda \mu) a_2 = p_1 \tag{2.13}
\]
\[
3 [1 + 2 (\lambda - \mu) + 6\lambda \mu] (2a_2^2 - a_3) - C_3 = p_2. \tag{2.14}
\]

From (2.11) and (2.13), we get

\[h_1 = -p_1 \]

and

\[
8 (1 + \lambda - \mu + 2\lambda \mu)^2 a_2^2 = h_1^2 + p_1^2. \tag{2.15}
\]

We thus find (by (2.7) – (2.10)) that

\[
|a_2| \leq \frac{|\varphi'(0)|}{2 (1 + \lambda - \mu + 2\lambda \mu)}. \tag{2.16}
\]

Furthermore, from the equalities (2.12) and (2.14), we find

\[
6 [1 + 2 (\lambda - \mu) + 6\lambda \mu] a_2^2 - B_3 - C_3 = h_2 + p_2. \tag{2.17}
\]

Consequently (by (2.7) – (2.10)), we have

\[
|a_2| \leq \sqrt{\frac{1 + |\varphi'(0)|}{3 [1 + 2 (\lambda - \mu) + 6\lambda \mu]}}. \tag{2.18}
\]

Hence, we get the desired result on the coefficient \(a_2\) as asserted in (2.1) from the inequalities (2.16) and (2.18).

Now, in order to obtain the bound on the coefficient \(a_3\), we subtract (2.14) from (2.12). We thus get

\[
3 [1 + 2 (\lambda - \mu) + 6\lambda \mu] (2a_3 - 2a_2^2) - B_3 + C_3 = h_2 - p_2
\]

or

\[
a_3 = a_2^2 + \frac{h_2 - p_2 + B_3 - C_3}{6 [1 + 2 (\lambda - \mu) + 6\lambda \mu]}. \tag{2.19}
\]

Upon substituting the value of \(a_2^2\) from (2.15) into (2.19), it follows that

\[
a_3 = \frac{h_1^2 + p_1^2}{8 (1 + \lambda - \mu + 2\lambda \mu)^2} + \frac{h_2 - p_2 + B_3 - C_3}{6 [1 + 2 (\lambda - \mu) + 6\lambda \mu]}.
\]

We thus find (by (2.7) – (2.10)) that

\[
|a_3| \leq \frac{|\varphi'(0)|^2}{4 (1 + \lambda - \mu + 2\lambda \mu)^2} + \frac{1 + |\varphi'(0)|}{3 [1 + 2 (\lambda - \mu) + 6\lambda \mu]}. \tag{2.20}
\]
On the other hand, upon substituting the value of a_2 from (2.17) into (2.19), it follows that

$$a_3 = \frac{h_2 + p_2 + B_3 + C_3}{6[1 + 2(\lambda - \mu) + 6\lambda\mu]} + \frac{h_2 - p_2 + B_3 - C_3}{6[1 + 2(\lambda - \mu) + 6\lambda\mu]} = \frac{h_2 + B_3}{3[1 + 2(\lambda - \mu) + 6\lambda\mu]}.$$

Consequently (by (2.7), (2.8), (2.9) and (2.10)), we have

$$|a_3| \leq \frac{1 + |\varphi'(0)|}{3[1 + 2(\lambda - \mu) + 6\lambda\mu]}.$$

(2.21)

Combining (2.20) and (2.21), we get the desired result on the coefficient a_3 as asserted in (2.2).

Letting $\mu = 0$ in Theorem 2.1, we have the following consequence.

Corollary 2.2 If the function $f(z)$ given by (1.1) be in the function class $K_{\Sigma}(\lambda, \varphi)$, then

$$|a_2| \leq \min \left\{ \frac{|\varphi'(0)|}{2(1 + \lambda)}, \sqrt{\frac{1 + |\varphi'(0)|}{3(1 + 2\lambda)}} \right\}$$

and

$$|a_3| \leq \frac{1 + |\varphi'(0)|}{3(1 + 2\lambda)}.$$

Letting $\lambda = 0$ in Corollary 2.2, we have the following consequence.

Corollary 2.3 If the function $f(z)$ given by (1.1) be in the function class $K_{\Sigma}(\varphi)$, then

$$|a_2| \leq \min \left\{ \frac{|\varphi'(0)|}{2}, \sqrt{\frac{1 + |\varphi'(0)|}{3}} \right\}$$

and

$$|a_3| \leq \frac{1 + |\varphi'(0)|}{3}.$$

Setting

$$\varphi(z) = \left(\frac{1 + z}{1 - z}\right)^{\alpha} \quad (0 < \alpha \leq 1)$$

in Corollary 2.3, we have the following result.

Corollary 2.4 If the function $f(z)$ given by (1.1) be in the function class $K_{\Sigma}^{\varphi}(\alpha)$, then

$$|a_2| \leq \alpha \quad \text{and} \quad |a_3| \leq \frac{1 + 2\alpha}{3}.$$

Remark 3 Note that Corollary 2.4 is an improvement of the Theorem 1.2.

Setting

$$\varphi(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \quad (0 \leq \beta < 1)$$

in Corollary 2.3, we have the following result.
Corollary 2.5 If the function $f(z)$ given by (1.1) be in the function class $K^s_2(\beta)$, then

$$|a_2| \leq 1 - \beta \quad \text{and} \quad |a_3| \leq \frac{3 - 2\beta}{3}.$$

Remark 4 Note that Corollary 2.5 is an improvement of the Theorem 1.3.

3. Fekete-Szegő problem

Theorem 3.1 If the function $f(z)$ given by (1.1) be in the function class $K^s_2(\lambda, \mu, \varphi)$, then, for $\delta \in \mathbb{R}$,

$$|a_3 - \delta a_2^2| \leq \frac{1 + |\varphi'(0)|}{3[1 + 2(\lambda - \mu) + 6\lambda\mu]} \left\{ \begin{array}{ll} |1 - \delta| & , \delta \in (-\infty, 0] \cup [2, \infty) \\
1 & , \delta \in [0, 2] \end{array} \right.$$

Proof By using the equality (2.19) in the proof of Theorem 2.1, we obtain

$$a_3 - \delta a_2^2 = a_2^2 + \frac{h_2 - p_2 + B_3 - C_3}{6[1 + 2(\lambda - \mu) + 6\lambda\mu]} - \delta a_2^2$$

$$= (1 - \delta) a_2^2 + \frac{h_2 - p_2 + B_3 - C_3}{6[1 + 2(\lambda - \mu) + 6\lambda\mu]}.$$

Upon substituting the value of a_2^2 from (2.17) into the above equality, it follows that

$$a_3 - \delta a_2^2 = (1 - \delta) \frac{h_2 + p_2 + B_3 + C_3}{6[1 + 2(\lambda - \mu) + 6\lambda\mu]} + \frac{h_2 - p_2 + B_3 - C_3}{6[1 + 2(\lambda - \mu) + 6\lambda\mu]}$$

$$= \frac{1}{6[1 + 2(\lambda - \mu) + 6\lambda\mu]} [(2 - \delta) (h_2 + B_3) - \delta (p_2 + C_3)].$$

Thus, by Lemma 1.6, we get desired estimate. \qed

Letting $\mu = 0$ in Theorem 3.1, we have the following consequence.

Corollary 3.2 If the function $f(z)$ given by (1.1) be in the function class $K^s_2(\lambda, \varphi)$, then, for $\delta \in \mathbb{R}$,

$$|a_3 - \delta a_2^2| \leq \frac{1 + |\varphi'(0)|}{3(1 + 2\lambda)} \left\{ \begin{array}{ll} |1 - \delta| & , \delta \in (-\infty, 0] \cup [2, \infty) \\
1 & , \delta \in [0, 2] \end{array} \right.$$

Letting $\lambda = 0$ in Corollary 3.2, we have the following consequence.

Corollary 3.3 If the function $f(z)$ given by (1.1) be in the function class $K^s_2(\varphi)$, then, for $\delta \in \mathbb{R}$,

$$|a_3 - \delta a_2^2| \leq \frac{1 + |\varphi'(0)|}{3} \left\{ \begin{array}{ll} |1 - \delta| & , \delta \in (-\infty, 0] \cup [2, \infty) \\
1 & , \delta \in [0, 2] \end{array} \right.$$

Setting

$$\varphi(z) = \left(\frac{1 + z}{1 - z}\right)\alpha \quad (0 < \alpha \leq 1)$$

in Corollary 3.3, we have the following result.

1422
Corollary 3.4 If the function $f(z)$ given by (1.1) be in the function class $K^3_s(\alpha)$, then, for $\delta \in \mathbb{R}$,

$$|a_3 - \delta a_2^2| \leq \frac{1 + 2\alpha}{3} \begin{cases} |1 - \delta|, & \delta \in (-\infty, 0] \cup [2, \infty) \\ 1, & \delta \in [0, 2] \end{cases}.$$

Setting

$$\varphi(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \quad (0 \leq \beta < 1)$$

in Corollary 3.3, we have the following result.

Corollary 3.5 If the function $f(z)$ given by (1.1) be in the function class $K^3_s(\beta)$, then, for $\delta \in \mathbb{R}$,

$$|a_3 - \delta a_2^2| \leq \frac{3 - 2\beta}{3} \begin{cases} |1 - \delta|, & \delta \in (-\infty, 0] \cup [2, \infty) \\ 1, & \delta \in [0, 2] \end{cases}.$$

References

