An inequality on diagonal F-thresholds over standard-graded complete intersection rings

Jinjia LI
Department of Mathematics, University of Louisville, Louisville, KY, USA

Received: 17.12.2018 • Accepted/Published Online: 25.03.2019 • Final Version: 29.05.2019

Abstract: In a recent paper, De Stefani and Núñez-Betancourt proved that for a standard-graded F-pure k-algebra R, its diagonal F-threshold $c(R)$ is always at least $-a(R)$, where $a(R)$ is the a-invariant. In this paper, we establish a refinement of this result in the setting of complete intersection rings.

Key words: Frobenius power, socle, F-threshold, F-pure threshold, a-invariant

1. Introduction and notations
Let R be a commutative Noetherian ring in prime characteristic $p > 0$. Let q be a power of p. For an ideal I in R, let $I^{[q]}$ be the qth bracket power of I, that is, $I^{[q]} := \{a^q : a \in I\}$. For a pair of ideals a and J in R such that $a \subseteq \sqrt{J}$, define $\nu_2^J(q) = \max\{r \in \mathbb{N} | a^r \not\subseteq J^{[q]}\}$. Recently, De Stefani, Núñez-Betancourt, and Pérez [5] proved that the limit of $\{\nu_2^J(q)/q\}$ as $q \to \infty$ always exists. Such a limit, denoted by $c'(a)$, is called the F-threshold of the pair (a, J). We mention [1–8, 12] for details of some work done regarding this invariant. In the case of a local ring (R, m) with an m-primary ideal J, the F-threshold $c'(m)$ is also called the diagonal F-threshold (for simplicity, the diagonal F-threshold $c^m(m)$ of R is denoted by $c(R)$). For an ideal a in a regular local ring (R, m), the F-threshold $c^m(a)$ coincides with the F-pure threshold of a (see [12, Remark 1.5]), that is,

$$c^m(a) = \sup\{s \in R_{\geq 0} | \text{the pair } (R, a^s) \text{ is } F\text{-pure}\}$$

In particular, for an element $f \in m$ in a regular local ring (R, m), the F-threshold $c^m((f))$ coincides with the F-pure threshold of f. We use $\text{fpt}(f)$ to denote this invariant. The theories on F-threshold and F-pure threshold are motivated by the relations between $\text{fpt}(f)$ and $\text{lct}(f)$, where $\text{lct}(f)$ is the log canonical threshold, a notion developed in birational geometry. More precisely, if R is a local ring in characteristic 0 and $R_p = R \otimes \mathbb{Z}/p\mathbb{Z}$, then

$$\text{fpt}(f_p) \leq \text{lct}(f), \text{ for all } p,$$

and

$$\lim_{p \to \infty} \text{fpt}(f_p) = \text{lct}(f).$$
Suppose R is also a standard-graded algebra over a field k in prime characteristic p, then the diagonal F-threshold of an m-primary ideal J is easily seen to be

$$c^J(m) = \lim_{q \to \infty} \frac{t.s.d(R/J^{[q]})}{q}$$

where $t.s.d(R/J^{[q]})$ is the top socle degree of the Artinian algebra $R/J^{[q]}$.

Let $a(R)$ be the a-invariant of R. It was proved in [11] that when R is a complete intersection ring or a Gorenstein F-pure ring, the inequality

$$c^J(m) \geq t.s.d(R/J) - a(R)$$

holds. In particular, by taking $J = m$, we have

$$c(R) \geq -a(R).$$

Hirose, Watanabe, and Yoshida conjectured that this latter inequality holds for any F-pure ring [9], and this was recently settled in [4, Theorem 4.9].

2. Main result

The following is the main result which improves the inequality $c(R) \geq -a(R)$ for the case of standard-graded complete intersection rings.

Theorem 2.1 Let $a = (f_1, \cdots, f_t)$ be a homogeneous ideal of the standard-graded polynomial ring $S = k[x_1, \cdots, x_n]$, where f_1, \cdots, f_t form a homogeneous S-sequence. Let $|f_i|$ be the degree of f_i, $i = 1, \cdots, t$. Let $m = (x_1, \cdots, x_n)$ be the maximal ideal of S. Let R be the complete intersection ring $k[x_1, \cdots, x_n]/(f_1, \cdots, f_t)$. Let $fpt(f)$ denote the F-pure threshold for a polynomial $f \in S$. Then the following inequality holds

$$c(R) \geq -a(R) + \sum_{i} |f_i| \left(1 - fpt(f_i)\right)$$

In particular, if $c(R) = -a(R)$, then $fpt(f_i) = 1$ for all $i = 1, \cdots, t$.

Before we prove this theorem, we recall the following observation

Lemma 2.2 (see [10], Observation 1.4) Let R be an Artinian Gorenstein graded k-algebra with socle degree δ, and J a homogeneous ideal of R. If the socle degree of R/J are d_1, then the degrees of the minimal generators of $(0 : J)$ are $\delta - d_1$.

Proof [Proof of Theorem 2.1] Let I be an m-primary reducible ideal of R. Let J be the pre-image of I in S, so that J contains a. Applying Lemma 2.2 to the Gorenstein algebra $S/J^{[q]}$, and use socdeg to denote the (unique) socle degree of a Gorenstein Artinian algebra, one has that $socdeg(S/J^{[q]}) = t.s.d(S/(J^{[q]} + a)) + M$ where M is the smallest degree of the minimal generators of $(J^{[q]} : a)/J^{[q]}$.

1373
Since \(J \) has finite projective dimension, \(\text{socdeg}(S/J^{\alpha}) - a(S) = q(\text{socdeg}(S/J) - a(S)) \). Therefore,

\[
\text{t. s. } d(R/I^{\alpha}) = \text{t. s. } d(S/(J^{\alpha} + \mathfrak{a})) = \text{socdeg}(S/J^{\alpha}) - M = q(\text{socdeg}(S/J)) - (q - 1)a(S) - M
\]

We need to estimate an upper bound for \(M \). Let \(h \) denote \(\nu_R^J(q) := \max \{ r \in \mathbb{N} : a^r \not\subseteq J^{\alpha} \} \). Since \(a^{h+1} \subseteq J^{\alpha} \), \(a^h \) contains an element of the form \(f_1^{\alpha_1} \cdots f_t^{\alpha_t} \) with \(\alpha_1 + \cdots + \alpha_t = h \), whose image in \((J^{\alpha})/J^{\alpha} \) is nonzero. Hence,

\[
M \leq \sum_{i=1}^t |f_i| \alpha_i
\]

On the other hand, let \(\beta_i(q) \) denote \(\nu_{f_i}^J(q) := \max \{ t \in \mathbb{N} : f_i^t \not\subseteq J^{\alpha} \} \). It is obvious that \(\alpha_i \leq \beta_i(q) \), \(\forall i \).

It follows that

\[
M \leq \sum_{i=1}^t |f_i| \beta_i(q)
\]

On the other hand, the \(a \)-invariant \(a(R) = \sum_{i=1}^t |f_i| - n \) since \(R \) is a complete intersection ring, so

\[
\text{t. s. } d(R/I^{\alpha}) = q(\text{socdeg}(S/J)) - (q - 1)(-n) - M \geq q(\text{socdeg}(S/J)) - (q - 1)(-n) - \sum_{i=1}^t |f_i| \beta_i(q)
\]

\[
= q(\text{socdeg}(S/J)) - (q - 1)(-n) - q \sum_{i=1}^t |f_i| \beta_i(q)/q
\]

\[
= q(\text{socdeg}(S/J)) - n + qn - q(\sum_{i=1}^t |f_i|) + q(\sum_{i=1}^t |f_i|) - q \sum_{i=1}^t |f_i| \beta_i(q)/q
\]

\[
= q(\text{socdeg}(S/J)) - n + qn - q(\sum_{i=1}^t |f_i|) + q \sum_{i=1}^t |f_i| (1 - \beta_i(q)/q)
\]

\[
= q(\text{socdeg}(S/J)) - n + q(-a(R)) + q \sum_{i=1}^t |f_i| (1 - \beta_i(q)/q)
\]

Dividing both sides by \(q \) and taking the limit, we have

\[
c^m(I) \geq \text{socdeg}(R/I)) - a(R) + \sum_{i=1}^t |f_i| \left(1 - c^t(f_i)\right)
\]

The desired inequality is then obtained by taking \(I \) to be the maximal ideal of \(R \), and \(J = \mathfrak{m} \).

\[\square\]
Remark 2.3 It is easy to see from the proof above that the condition \(c(R) = -a(R) \) also forces \(c^m(a) = t = \sum_{i=1}^t \text{fpt}(f_i) \). However, we do not know what else can be derived from this.

Let \(k \) be a field in characteristic 0. Let \(R = k[x_1, \cdots, x_n]/(f_1, \cdots, f_t) \) where \(f_1, \cdots, f_t \) form a homogeneous regular sequence in \(k[x_1, \cdots, x_n] \). For a prime number \(p \), let \(R_p = R \otimes \mathbb{Z} (\mathbb{Z}/p\mathbb{Z}) \).

Corollary 2.4 If \(\lim_{p \to \infty} c(R_p) = -a(R) \), then the log canonical thresholds \(\text{lct}(f_i) = 1 \) for all \(i = 1, \cdots, t \).

Proof This follows from Theorem 2.1 and (2) immediately.

3. An example on diagonal hypersurface rings

We use the following computation of Vraciu [13] to study an example of the diagonal hypersurface case.

Theorem 3.1 [13, Theorem 4.2] Let \(R = k[x_1, \cdots, x_{n+1}]/(x_1^a + \cdots + x_{n+1}^a) \) where \(k \) is a field of characteristic \(p \) and \(a \) is a positive integer not divisible by \(p \). Then

\[
c(R) = n + 1 - aM
\]

where \(M \) is equal to

\[
\min \left\{ \left[\frac{(n+1)\kappa - n + 1}{2} \right] \cdot \frac{1}{p^{e_0}} + \frac{(n+1)s}{ap^{e_0}}, \left[\frac{(n+1)\kappa - n + 2}{2} \right] \cdot \frac{1}{p^{e_0}} + \frac{ns}{ap^{e_0}}, \right. \\
\left. \left[\frac{(n+1)\kappa + 1}{2} \right] \cdot \frac{1}{p^{e_0}} + \frac{s}{ap^{e_0}}, \left[\frac{(n+1)\kappa + 2}{2} \right] \cdot \frac{1}{p^{e_0}}, \frac{1}{p^{e_0-1}} \right\}
\]

where \(e_0 \) is the smallest exponent such that \(p^{e_0} \geq a \), \(\kappa = \left\lfloor \frac{p^{e_0}}{a} \right\rfloor \), and \(s = p^{e_0} - \kappa a \) is the remainder of \(p^{e_0} \) modulo \(a \).

The following example then follows from the above theorem immediately by taking \(p \to \infty \).

Example 3.2 Let \(R = k[x_1, \cdots, x_{n+1}]/(x_1^a + \cdots + x_{n+1}^a) \), where \(k \) is a field in characteristic 0. Let \(R_p = R \otimes \mathbb{Z} (\mathbb{Z}/p\mathbb{Z}) \). Then the limit diagonal \(F \)-threshold

\[
\lim_{p \to \infty} c(R_p) = \begin{cases}
\left\lfloor \frac{n+1}{2} \right\rfloor, & \text{if } \frac{n+1}{2} \leq a \\
\frac{n+1}{2} - a, & \text{if } 2a \leq n
\end{cases}
\]

Notice that the \(a \)-invariant \(a(R) = -(n+1-a) \), which is characteristic-free, we obtain by Corollary 2.4 that

\[
\text{lct}(x_1^a + \cdots + x_{n+1}^a) = 1,
\]

provided \(n \geq 2a \).
References

[13] Vraciu A. On the degrees of relations on $x_1^{d_1}, \ldots, x_n^{d_n}, (x_1+\cdots+x_n)^{d_{n+1}}$ in positive characteristic. Journal of Algebra 2015; 423 (1): 916-949. doi: 10.1016/j.jalgebra.2014.11.004