Inverse problem for Sturm–Liouville differential operators with two constant delays

Mohammad SHAHRIARI∗
Department of Mathematics, Faculty of Science, University of Maragheh, Maragheh, Iran

Received: 26.11.2018 • Accepted/Published Online: 18.02.2019 • Final Version: 27.03.2019

Abstract: In this manuscript, we study nonself-adjoint second-order differential operators with two constant delays. We investigate the properties of the spectral characteristics and the inverse problem of recovering operators from their spectra. An inverse spectral problem is studied of recovering the potential from spectra of two boundary value problems with one common boundary condition. The uniqueness theorem is proved for this inverse problem.

Key words: Sturm–Liouville problems, inverse problems, constant delay, asymptotic form of solution

1. Introduction
The method of separation of variables for solving PDEs with two constant delays naturally led to ODEs with two constant delays inside of the interval, which often appear in mathematics, physics, mechanics, geophysics, electronics, meteorology, etc. The inverse spectral problem consists of recovering operators from their spectral characteristics. The inverse spectral Sturm–Liouville problem can be regarded as three aspects: existence, uniqueness, and reconstruction of the coefficients of given specific properties of eigenvalues and eigenfunctions (see [2, 6, 9, 11, 17] and the references therein).

The interest in differential equations with delay started intensively growing in the twentieth century, stimulated by the appearance of various applications in natural sciences and engineering, including the theory of automatic control, the theory of self-oscillating systems, long-term forecasting in the economy, biophysics, etc. For general background on functional differential equations, we refer to the monographs [8, 12, 16] and the references therein.

There exist a number of results revealing spectral properties of differential operators with delay (see, e.g., [13] and the references therein). At the same time, concerning the inverse spectral theory, its classical methods do not work for such operators as well as for other classes of nonlocal operators, and therefore there are only a few separate results in this direction, which do not form a comprehensive scheme. However, some aspects of inverse problems for differential operators with a constant delay were studied in [3, 7, 10, 14, 15, 18, 19].

Recently, Freiling and Yurko in [7] proved that if the spectra of the problems \(L_j(q), \ j = 0, 1 \), coincide with the spectra of \(L_j(0), \ j = 0, 1 \), respectively, then \(q(x) = 0 \) a.e. on \((0, \pi) \). Pikula et al. in [15] and Vladicic and Pikula in [18] studied the reconstruction of the potential function \(q(x) \) and the delay point \(a \) from the two spectra if \(a \in (\pi/2, \pi) \). Buterin and Yurko in [4] and Buterin et al. in [3] studied the inverse Sturm–Liouville

∗Correspondence: shahriari@maragheh.ac.ir
2010 AMS Mathematics Subject Classification: 34B24, 34B27
differential operator with constant delay. Also, the necessary and sufficient conditions for the solvability of the inverse problem in terms of asymptotics have been proved. More recently, Shahriari et al.* studied the inverse delay Sturm–Liouville problems with transmission conditions inside the interval.

In the present paper, we study an inverse problem of Sturm–Liouville differential operators. In inverse spectral problems, the task is to find a coefficient in the equation using the spectral data. In this note, we discuss the uniqueness of the spectral problem by developing the result of [7] for the inverse Sturm–Liouville problem with two delay constants inside the interval. For this purpose, we study the asymptotic form of solutions, eigenvalues, and eigenfunctions of the problems. We investigate the inverse spectral problem of recovering operators from their two spectra in the Dirichlet–Dirichlet and Dirichlet–Neumann boundary conditions with two constant delays inside the interval.

2. Asymptotic form of solutions and eigenvalues

We consider the boundary value problem

\[L_j := L_j(q_1(x); q_2(x); a_1; a_2), j = 0, 1, \]

of the form

\[\ell y := -y''(x) + q_1(x) y(x - a_1) + q_2(x) y(x - a_2) = \lambda y(x), \quad x \in (0, \pi), \]

(2.1)

with the boundary conditions

\[y(0) = y^{(j)}(\pi) = 0, \]

(2.2)

where \(q_1(x) \in L(a_1, \pi), q_2(x) \in L(a_2, \pi), q_1(x) = 0 \) for \(x < a_1 \), and \(q_2(x) = 0 \) for \(x < a_2 \) are complex-valued functions. The coefficients \(a_1, a_2 \in [0, \pi] \) are real and assumed to be known a priori and fixed and \(a_1 < a_2 \).

Let \(\varphi(x, \lambda) \) be the solution of Eq. (2.1) with \(a_1N < \pi \leq a_1(N + 1) \) and \(a_2M < \pi \leq a_2(M + 1) \) under the initial conditions \(\varphi(0, \lambda) = 0, \varphi'(0, \lambda) = 1 \). For each fixed \(x \), and \(j = 0, 1 \), the functions \(\varphi^j(x, \lambda) \) are entire in \(\lambda \) of order \(1/2 \). The function \(\varphi(x, \lambda) \) is the unique solution of the integral equation

\[\varphi(x, \lambda) = \sin \frac{\rho x}{\rho} + \int_0^x \frac{\sin \rho(x-t)}{\rho} (q_1(t)\varphi(t-a_1, \lambda) + q_2(t)\varphi(t-a_2, \lambda)) \, dt, \]

(2.3)

with \(\rho^2 = \lambda \) and \(\rho = \sigma + i\tau \). Solving (2.3) by the method of successive approximations, we get

\[\varphi(x, \lambda) = \varphi_0(x, \lambda) + \varphi_1(x, \lambda) + \cdots + \varphi_N(x, \lambda). \]

(2.4)

Thus, we have

\[\varphi_0(x, \lambda) = \sin \frac{\rho x}{\rho}, \]

(2.5)

\[\varphi_k(x, \lambda) = \begin{cases}
0, & x \leq k a_1, \\
\int_{k a_1}^x \frac{\sin \rho(x-t)}{\rho} q_1(t)\varphi_{k-1}(t-a_1, \lambda) \, dt, & ka_1 \leq x \leq k a_2, \\
\int_{k a_1}^x \frac{\sin \rho(x-t)}{\rho} q_1(t)\varphi_{k-1}(t-a_1, \lambda) \, dt + \int_{k a_1}^{k a_2} \frac{\rho \sin \rho(x-t)}{\rho^2} q_2(t)\varphi_{k-1}(t-a_2, \lambda) \, dt, & x \geq k a_2,
\end{cases} \]

(2.6)

*Shahriari M, Nemati Saray B, Manafian J. Reconstruction of the Sturm–Liouville differential operators with discontinuity conditions and a constant delay, unpublished.
\[\varphi'_k(x, \lambda) = \begin{cases} 0, & x \leq k_1, \\ \int_{k_1}^x \cos \rho(x-t)q_1(t)\varphi_{k-1}(t-a_1, \lambda)dt, & k_1 \leq x \leq k_2, \\ \int_{k_1}^x \cos \rho(x-t)q_1(t)\varphi_{k-1}(t-a_1, \lambda)dt + \int_{k_2}^x \cos \rho(x-t)q_2(t)\varphi_{k-1}(t-a_2, \lambda)dt, & x \geq k_2, \end{cases} \tag{2.7} \]

for \(k = 1, 2, \ldots, M \) and

\[\varphi_k(x, \lambda) = \begin{cases} 0, & x \leq k_1, \\ \int_{k_1}^x \frac{\sin \rho(x-t)}{\rho}q_1(t)\varphi_{k-1}(t-a_1, \lambda)dt, & x \geq k_1, \end{cases} \tag{2.8} \]

\[\varphi'_k(x, \lambda) = \begin{cases} 0, & x \leq k_1, \\ \int_{k_1}^x \cos \rho(x-t)q_1(t)\varphi_{k-1}(t-a_1, \lambda)dt, & x \geq k_1, \end{cases} \tag{2.9} \]

for \(k = M + 1, M + 2, \ldots, N \). Then for \(k \geq 1 \), by using the formulas (2.5)–(2.7), we calculate

\[\varphi_1(x, \lambda) = \begin{cases} 0, & x \leq a_1, \\ \int_{a_1}^x \frac{\sin \rho(x-t)}{\rho}q_1(t)\varphi_0(t-a_1, \lambda)dt, & a_1 \leq x \leq a_2, \\ \int_{a_1}^x \frac{\sin \rho(x-t)}{\rho}q_1(t)\varphi_0(t-a_1, \lambda)dt + \int_{a_2}^x \frac{\sin \rho(x-t)}{\rho}q_2(t)\varphi_0(t-a_2, \lambda)dt, & x \geq a_2, \end{cases} \]

\[\varphi'_1(x, \lambda) = \begin{cases} 0, & x \leq a_1, \\ \int_{a_1}^x \frac{\sin \rho(x-t)}{\rho}q_1(t)\varphi_0(t-a_1, \lambda)dt, & a_1 \leq x \leq a_2, \\ \int_{a_1}^x \frac{\sin \rho(x-t)}{\rho}q_1(t)\varphi_0(t-a_1, \lambda)dt + \int_{a_2}^x \frac{\sin \rho(x-t)}{\rho}q_2(t)\varphi_0(t-a_2, \lambda)dt, & x \geq a_2, \end{cases} \tag{2.10} \]

and

\[\varphi'_1(x, \lambda) = \begin{cases} 0, & x \leq a_1, \\ \int_{a_1}^x \frac{\sin \rho(x-t)}{\rho}q_1(t)dt + \int_{a_1}^x \frac{\sin \rho(x-t)}{\rho}q_1(t)dt, & a_1 \leq x \leq a_2, \\ \int_{a_1}^x \frac{\sin \rho(x-t)}{\rho}q_1(t)dt + \int_{a_1}^x \frac{\sin \rho(x-t)}{\rho}q_1(t)dt, & x \geq a_2, \end{cases} \tag{2.11} \]
For $k = 2$ from (2.7)–(2.11), we get

\[
\varphi_2(x, \lambda) = \begin{cases}
0, & x \leq 2a_1, \\
\int_{2a_1}^{x} \frac{\sin \rho(x-t)}{\rho} q_1(t) \varphi_1(t-a_1, \lambda) dt, & 2a_1 \leq x \leq 2a_2,
\end{cases}
\]

\[
+ 2 \int_{2a_1}^{x} \frac{\sin \rho(x-t)}{\rho} q_2(t) \varphi_1(t-a_2, \lambda) dt, & x \geq 2a_2,
\end{cases}
\]

(2.12)

and

\[
\varphi'_2(x, \lambda) = \begin{cases}
0, & x \leq 2a_1, \\
\int_{2a_1}^{x} \cos \rho(x-t) q_1(t) \varphi_1(t-a_1, \lambda) dt, & 2a_1 \leq x \leq 2a_2,
\end{cases}
\]

\[
+ \int_{2a_1}^{x} \cos \rho(x-t) q_2(t) \varphi_1(t-a_2, \lambda) dt, & x \geq 2a_2.
\end{cases}
\]

(2.13)

From Eqs. (2.10)–(2.13) with a simple calculation, we obtain

\[
\varphi_2^{(j)}(x, \lambda) = \begin{cases}
0, & x \leq 2a_1, \\
O(\rho^{-3} \exp(|\tau|(x-2a_1))), & x \geq 2a_1,
\end{cases}
\]

where $\tau = \text{Im} \rho$. Using Eqs.(2.5)–(2.11) by induction, it is easy to show that

\[
\varphi_k^{(j)}(x, \lambda) = \begin{cases}
0, & x \leq ka_1, \\
O(\rho^{-k} \exp(|\tau|(x-ka_1))), & x \geq ka_1,
\end{cases}
\]

(2.15)

Denote $\Delta_j(\lambda) := \varphi^{(j)}(\pi, \lambda)$, $j = 0, 1$. The functions $\Delta_j(\lambda)$ are entire functions in λ of order $\frac{1}{2}$ and the zeros of $\Delta_j(\lambda)$ coincide with the eigenvalues λ_{n_j} of $L_j(q)$. Thus, the function $\Delta_j(\lambda)$ is called the characteristic function for $L_j(q)$. From Eqs. (2.4)–(2.5), (2.10)–(2.11), and (2.13), we obtain the following asymptotic formula for $|\rho| \to \infty$:

\[
\Delta_0(\lambda) = \varphi(\pi, \lambda)
\]

\[
= \frac{\sin \rho \pi}{\rho} + \frac{1}{2\rho^2} \left[- \cos \rho(\pi - a_1)w_1 - \cos \rho(\pi - a_2)w_2 \\
+ \int_{a_1}^{\pi} \cos \rho(2t - \pi - a_1)q_1(t) dt + \int_{a_2}^{\pi} \cos \rho(2t - \pi - a_2)q_2(t) dt \right]
\]

\[
+ O \left(\frac{\exp(|\tau|(\pi - a_1))}{\rho^3} \right)
\]

(2.16)
and
\[
\Delta_1(\lambda) = \varphi'(\pi, \lambda) = \cos \rho \pi + \frac{1}{2 \rho} \left[\sin \rho (\pi - a_1) w_1 + \sin \rho (\pi - a_2) w_2
+ \int_{a_1}^{\pi} \sin \rho (2t - \pi - a_1) q_1(t) dt + \int_{a_2}^{\pi} \sin \rho (2t - \pi - a_2) q_2(t) dt \right]
+ O \left(\frac{\exp(|\rho(\pi - a_1)|)}{\rho^2} \right),
\]
where \(w_1 := \int_{a_1}^{\pi} q_1(t) dt\) and \(w_2 := \int_{a_2}^{\pi} q_2(t) dt\). Using (2.16) and (2.17), by the well-known method used in [6], we get the asymptotic formula for the eigenvalues \(\lambda_n = \rho_n^2\) as \(n \to \infty\):
\[
\rho_{n0} = n + \frac{1}{2 \pi n} [w_1 \cos n a_1 + w_2 \cos n a_2] + o \left(\frac{1}{n} \right),
\]
\[
\rho_{n1} = n - \frac{1}{2} + \frac{1}{2 \pi n} [w_1 \cos (n - \frac{1}{2}) a_1 + w_2 \cos (n - \frac{1}{2}) a_2] + o \left(\frac{1}{n} \right).
\]

Lemma 2.1 The specification of the spectrum \(\{\lambda_n\}, n \geq 1\) and \(j = 0, 1\), uniquely determines the characteristic function \(\Delta_j(\lambda)\) by the formulas
\[
\Delta_0(\lambda) = \pi \prod_{n=1}^{\infty} \frac{\lambda_n - \lambda}{n^2} \text{ and } \Delta_1(\lambda) = \prod_{n=1}^{\infty} \frac{\lambda_{n1} - \lambda}{(n - \frac{1}{2})^2}.
\]

Proof By Hadamard's factorization theorem [5, p. 289], \(\Delta_0(\lambda)\) is uniquely determined up to a multiplicative constant by its zeros:
\[
\Delta_0(\lambda) = C \prod_{n=1}^{\infty} \left(1 - \frac{\lambda}{\lambda_{n0}} \right)
\]
(the case when \(\Delta_0(0) = 0\) requires minor modifications). Consider the function
\[
\tilde{\Delta}_0(\lambda) := \frac{\sin \rho \pi}{\rho} = \pi \prod_{n=1}^{\infty} \left(1 - \frac{\lambda}{n^2} \right);
\]
then
\[
\frac{\Delta_0(\lambda)}{\tilde{\Delta}_0(\lambda)} = C \prod_{n=1}^{\infty} \frac{n^2}{\lambda_{n0}} \prod_{n=1}^{\infty} \left(1 + \frac{\lambda_{n0} - n^2}{n^2 - \lambda} \right).
\]
Taking (2.16) and (2.18) into account, we calculate
\[
\lim_{\lambda \to -\infty} \frac{\Delta_0(\lambda)}{\tilde{\Delta}_0(\lambda)} = 1, \quad \lim_{\lambda \to -\infty} \left(1 + \frac{\lambda_{n0} - n^2}{n^2 - \lambda} \right) = 1
\]
and hence
\[
C = \pi \prod_{n=1}^{\infty} \frac{\lambda_{n0}}{n^2}.
\]
Substituting this into (2.20), we arrive at (2.19). The proof of $\Delta_1(\lambda)$ is the same as that of $\Delta_0(\lambda)$.

Denote

$$\mathcal{L}(\rho) := \Delta_1(\lambda) + i\rho\Delta_0(\lambda).$$

The function $\mathcal{L}(\rho)$ is entire in ρ, and $\mathcal{L}(\rho)$ is the characteristic function for the Regge-type boundary value problem (2.1) with the boundary conditions $y(0) = y'(\pi) + i\rho y(\pi) = 0$. It follows from (2.4) that

$$\mathcal{L}(\rho) = \mathcal{L}_0(\rho) + \mathcal{L}_1(\rho) + \mathcal{L}_2(\rho) + \cdots + \mathcal{L}_N(\rho),$$

(2.21)

where $\mathcal{L}_k(\rho) = \varphi_k(\pi, \lambda) + i\rho\varphi_k(\pi, \lambda)$. In particular, $\mathcal{L}_0(\rho) = \exp(i\rho \pi)$. Using (2.6) and (2.7), we get

$$\mathcal{L}_k(\rho) = \begin{cases} \int_{k\alpha_1}^{\pi} \exp(i\rho(\pi - t))q_1(t)\varphi_{k-1}(t - a_1, \lambda)dt + \int_{k\alpha_1}^{\pi} \exp(i\rho(\pi - t))q_2(t)\varphi_{k-1}(t - a_2, \lambda)dt, & \text{for } k = 1, 2, \ldots, M, \\ \int_{k\alpha_1}^{\pi} \exp(i\rho(\pi - t))q_1(t)\varphi_{k-1}(t - a_1, \lambda)dt, & \text{for } k = M + 1, M + 2, \ldots, N. \end{cases}$$

(2.22)

Moreover, it follows from (2.10) and (2.11) that

$$\mathcal{L}_1(\rho) = \frac{\exp(i\rho(\pi - a_1))}{2i\rho}w_1 + \frac{\exp(i\rho(\pi - a_2))}{2i\rho}w_2 - \frac{\exp(i\rho(\pi + a_1))}{2i\rho} \int_{a_1}^{\pi} \exp(-2i\rho t)q_1(t)dt - \frac{\exp(i\rho(\pi + a_2))}{2i\rho} \int_{a_2}^{\pi} \exp(-2i\rho t)q_2(t)dt.$$

(2.23)

Taking (2.15) and (2.22) into account, we get

$$\mathcal{L}_k(\rho) = O\left(\frac{\exp i\rho(\pi + (k - 1)\alpha_1)}{\rho^k} \left[\int_{k\alpha_1}^{\pi} \exp(-i\rho(2t - a_1))q_1(t)dt \\ + \int_{k\alpha_2}^{\pi} \exp(-i\rho(2t - a_2))q_2(t)dt \right] \right),$$

(2.24)

for $\text{Im}\rho > 0$, $|\rho| \to \infty$, and $k \geq 1$.

3. The uniqueness theorem

Let $\{\hat{\lambda}_n\}_{n \geq 1}$, $j = 0, 1$, be the eigenvalues of the boundary value problems $\hat{L}_j := L_j(\hat{q}_1; \hat{q}_2; a_1; a_2)$ with $\hat{q}_1(x) = 0$ and $\hat{q}_2(x) = 0$. Then $\hat{\lambda}_{n0} = n^2$ and $\hat{\lambda}_{n1} = \rho_n^2 = (n - \frac{1}{2})^2$. Denote by $\hat{\mathcal{L}}(\rho)$ the characteristic function of $\hat{L} := L(\hat{q}_1; \hat{q}_2; a_1; a_2)$. Clearly, $\hat{\mathcal{L}}(\rho) = \exp(i\rho \pi)$.

Theorem 3.1 (Main theorem) If $\hat{\lambda}_{nj} = \lambda_{nj}$ for all $n \geq 1$ and $j = 0, 1$, then $q_1(x) = 0$ a.e. on (a_1, π) and $q_2(x) = 0$ a.e. on (a_2, π).

Proof (1) By virtue of Lemma 2.1, one has

$$\Delta_0(\lambda) = \frac{\sin \rho \pi}{\rho}, \quad \Delta_1(\lambda) = \cos \rho \pi$$

and consequently $\mathcal{L}(\rho) = \exp(i\rho \pi)$. Using (2.21), we get

$$\mathcal{L}_1(\rho) = -\mathcal{L}^+(\rho),$$

(3.1)
where

$$L^+ (\rho) = \sum_{k=2}^{N} L_k (\rho), \quad \text{for } k \geq 2 \quad \text{and } L^+ (\rho) = 0, \quad \text{for } k = 1.$$

It follows from (2.18) that \(w_1 \cos na_1 + w_2 \cos na_2 = 0 \). The functions \(\cos na_1 \) and \(\cos na_2 \), \(a_1 > a_2 \) are linear independent. We get \(w_1 = 0 \) and \(w_2 = 0 \). Together with (2.23) this yields

$$L_1 (\rho) = - \exp (i \rho \pi) \int_{a_1}^{\pi} \exp (-i \rho (2t - a_1)) q_1 (t) dt$$

or

$$- \exp (i \rho \pi) \int_{a_2}^{\pi} \exp (-i \rho (2t - a_2)) q_2 (t) dt.$$

(2) Let \(N = 1 \), i.e. \(a_1 \in (\frac{\pi}{2}, \pi) \), and then \(L^+ (\rho) = 0 \). From (3.1), we see that \(L_1 (\rho) = 0 \). Using (3.2), we get

$$\exp (i \rho \pi) \left[\int_{a_1}^{\pi} \exp (-i \rho (2t - a_1)) q_1 (t) dt + \int_{a_2}^{\pi} \exp (-i \rho (2t - a_2)) q_2 (t) dt \right] = 0.$$

By rewriting Eq. (3.2) and with the assumption of \(q_2 (x) \), we obtain

$$\exp (i \rho \pi) \left[\int_{a_1}^{\pi} \exp (-2i \rho t) \exp (i \rho a_1) q_1 (t) dt + \int_{a_1}^{\pi} \exp (-2i \rho t) \exp (i \rho a_2) q_2 (t) dt \right] = 0$$

or

$$\int_{a_1}^{\pi} \exp (-2i \rho t) (\exp (i \rho a_1) q_1 (t) + \exp (i \rho a_2) q_2 (t)) dt = 0.$$

From the completeness of \(\exp (-2i \rho t) \) on \((a_1, \pi) \), we obtain

$$\exp (i \rho a_1) q_1 (t) + \exp (i \rho a_2) q_2 (t) = 0 \quad \text{a.e. on } (a_1, \pi).$$

The functions \(\exp (i \rho a_1) \) and \(\exp (i \rho a_2) \) are linear independent in \(\rho \), so we get \(q_1 (x) = 0 \) and \(q_2 (x) = 0 \) a.e. on \((a_1, \pi) \). Thus, Theorem 3.1 is proved for \(N = 1 \).

Below, we will assume that \(N \geq 2 \).

Lemma 3.2 If \(q_1 (x) = 0 \) and \(q_2 (x) = 0 \) a.e. on \((2a_1, \pi) \), then \(q_1 (x) = 0 \) and \(q_2 (x) = 0 \) a.e. on \((a_1, \pi) \).

Proof For the proof, we consider two cases:

- \(2a_1 \leq a_2 \). The proof is similar to [7, Lemma 2].
- \(2a_1 > a_2 \). By virtue of (2.24), for \(q_1 (x) = 0 \) and \(q_2 (x) = 0 \) a.e. on \((2a_1, \pi) \), we get \(L_k (\rho) = 0 \) for \(k \geq 2 \) and hence \(L^+ (\rho) = 0 \). From Eq. (3.1), we get \(L_1 (\rho) = 0 \); consequently, \(q_1 (x) = 0 \) and \(q_2 (x) = 0 \) a.e. on \((a_1, \pi) \).

(3) For definiteness, we assume that \(N = 2S + 1 \), \(S \geq 1 \), i.e. \(N \) is odd. (The case when \(N \) is even requires minor technical modifications.)

971
Lemma 3.3 Fix \(\nu = 0, 2S - 1 \). If \(q_1(x) + q_2(x) = 0 \) a.e. on the interval \((\pi - \nu a_1/2, \pi) \), then \(q_1(x) + q_2(x) = 0 \) a.e. on the interval \((\pi - (\nu + 1)a_1/2, \pi) \).

Proof Since \(\pi - \nu a_1/2 > 2a_1 \), from (2.24) we have

\[
L_2(\rho) = \begin{cases}
O \left(\frac{\exp(i(x + a_1))}{\rho^2} \right) & \int_{a_1}^{\pi - \nu a_1/2} \exp(-2i\rho t)q_1(t)dt, \quad \pi - \nu a_1/2 < 2a_2; \\
O \left(\frac{\exp(i(x + a_1))}{\rho^2} \right) & \int_{2a_1}^{\pi - \nu a_1/2} \exp(-2i\rho t)q_1(t)dt + \int_{2a_2}^{\pi - \nu a_1/2} \exp(-2i\rho t)q_2(t)dt, \quad \pi - \nu a_1/2 > 2a_2.
\end{cases}
\]

(3.3)

In the integrals \(2t - \pi - 2a_1 \in (2a_1 - \pi, \pi - (\nu + 2)a_1) \), where \(\pi - (\nu + 2)a_1 \geq \pi - Na_1 > 0 \). This yields

\[
L_2(\rho) = O \left(\frac{1}{\rho^2} \exp(-i\rho(\pi - (\nu + 2)a_1)) \right), \quad \text{Im} \rho \geq 0, \ |\rho| \to \infty.
\]

(3.4)

For \(k \geq 2 \), the functions \(L_k(\rho) \) have less growth than the right-hand side in (3.4). This means that

\[
L^+(\rho) = O \left(\frac{1}{\rho^2} \exp(-i\rho(\pi - (\nu + 2)a_1)) \right), \quad \text{Im} \rho \geq 0, \ |\rho| \to \infty.
\]

(3.5)

It follows from (3.1), (3.2), and (3.5) that

\[
L_1(\rho) = -\frac{\exp(i\rho(\pi + a_1))}{2\rho} \int_{a_1}^{\pi - \nu a_1/2} \exp(-2i\rho t)q_1(t)dt \\
-\frac{\exp(i\rho(\pi + a_2))}{2\rho} \int_{a_2}^{\pi - \nu a_1/2} \exp(-2i\rho t)q_2(t)dt \\
= O \left(\frac{1}{\rho} \exp(-i\rho(\pi -(\nu + 2)a_1)) \right), \quad \text{Im} \rho \geq 0, \ |\rho| \to \infty.
\]

It follows from the above equation that

\[
\exp(i\rho(2\pi -(\nu + 1)a_1)) \int_{a_1}^{\pi - \nu a_1/2} \exp(-2i\rho t)\exp(i\rho a_1)q_1(t)dt \\
+ \exp(i\rho(2\pi -(\nu + 1)a_1)) \int_{a_2}^{\pi - \nu a_1/2} \exp(-2i\rho t)\exp(i\rho a_2)q_2(t)dt \\
= O \left(\frac{1}{\rho} \right), \quad \text{Im} \rho \geq 0, \ |\rho| \to \infty.
\]

We have

\[
\int_{a_1}^{\pi - \nu a_1/2} \exp(-2i\rho t)\exp(i\rho a_1)q_1(t)dt + \int_{a_2}^{\pi - \nu a_1/2} \exp(-2i\rho t)\exp(i\rho a_2)q_2(t)dt \\
= O \left(\exp(i\rho(-2\pi +(\nu + 1)a_1)) \right), \quad \text{Im} \rho \geq 0, \ |\rho| \to \infty.
\]

(3.6)

Let us define the function

\[
F(\rho) := \exp(i\rho(2\pi -(\nu + 2)a_1)) \int_{-\nu + 1}^{\pi - \nu a_1/2} \exp(-2i\rho t)\left[\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t) \right]dt.
\]

(3.7)
The function $F(\rho)$ is entire in ρ. Clearly, $F(\rho) = O(1)$ for $\text{Im}\rho \leq 0$. From (3.6) and (3.7), we obtain $F(\rho) = O(1)$ for $\text{Im}\rho \geq 0$. Using Liouville’s theorem (see [5, p. 77]), $F(\rho) = C$-const. Since $F(\rho) = o(1)$ for real ρ, $|\rho| \to \infty$. We get $F(\rho) = 0$. From (3.7), we obtain
\[
\int_{\pi-(\nu+1)a_1/2}^{\pi-\nu a_1/2} \exp(-2i\rho t) \left[\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t) \right] dt = 0.
\]
The completeness of $\exp(-2i\rho t)$ in the interval $(\pi - (\nu + 1)a_1/2, \pi - \nu a_1/2)$ concludes that $\exp(i\rho a_1)q_1(x) + \exp(i\rho a_2)q_2(x) = 0$ a.e. on the interval. Thus, we get $q_1(x) = 0$ and $q_2(x) = 0$ a.e. in $(\pi - (\nu + 1)a_1/2, \pi - \nu a_1/2)$.

(4) Applying Lemma 3.3 successively for $\nu = 0, 1, \ldots, 2S - 1$, we obtain $q_1(x) = 0$ and $q_2(x) = 0$ a.e. on the interval $(\pi - Sa_1, \pi)$. We note that it is not possible to use Lemma 3.3 for $\nu = 2S$, and we need the following lemma for this fact.

Lemma 3.4 If $q_1(x) = 0$ and $q_2(x) = 0$ a.e. on the interval $(\pi - Sa_1, \pi)$, then $q_1(x) = 0$ and $q_2(x) = 0$ a.e. on the interval $((S + 2)a_1/2, \pi)$.

Proof For $k = S + 2$, we have $\pi - Sa_1 - ka_1 \leq \pi - (N + 1)a_1 \leq 0$. Consequently, $L_k(\rho) = 0$ for $k \geq S + 2$. According to (2.24), for $k = \frac{S}{2} + \frac{1}{2}$, we get
\[
L_k(\rho) = O \left(\rho^k \exp(i\rho(\pi - (k - 1)a_1)) \int_{ka_1}^{\pi - Sa_1} \exp(-i\rho(2t - a_1))q_1(t) dt \right) + O \left(\rho^k \exp(-i\rho(2t - a_2))q_2(t) dt \right),
\]
and we note that $2t - \pi - ka_1 \leq 0$. It follows that
\[
L_k(\rho) = O \left(\frac{1}{\rho^k} \exp(i\rho(\pi - ka_1)) \right), \quad \text{Im} \rho \geq 0, \, |\rho| \to \infty, \quad k = \frac{S}{2} + \frac{1}{2},
\]
and hence
\[
L^+(\rho) = O \left(\frac{1}{\rho^2} \exp(i\rho(\pi - (S + 1)a_1)) \right), \quad \text{Im} \rho \geq 0, \, |\rho| \to \infty.
\]
Applying (3.1), (3.2), and (3.10), we have
\[
\exp(i\rho(\pi + a_1) \int_{ka_1}^{\pi - Sa_1} \exp(-i\rho(2t - a_1))q_1(t) dt + \int_{ka_2}^{\pi} \exp(-i\rho(2t - a_2))q_2(t) dt
\]
\[
= O \left(\frac{1}{\rho} \exp(i\rho(\pi - (S + 1)a_1)) \right), \quad \text{Im} \rho \geq 0, \, |\rho| \to \infty.
\]
Rewrite the equation as follows:
\[
\exp(i\rho((S + 1)a_1) \int_{a_1}^{\pi - Sa_1} \exp(-2i\rho t) \left[\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t) \right] dt
\]
\[
= O \left(\frac{1}{\rho} \right), \quad \text{Im} \rho \geq 0, \, |\rho| \to \infty.
\]
We thus get the equation
\[
\int_{x_{\mathcal{S}+1}}^{x_{-a_1}} \exp(-2i\rho t) \left[\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t) \right] dt = O \left(\frac{\exp(-i\rho((S+1)a_1)}{\rho} \right), \quad \text{Im}\rho \geq 0, \ |\rho| \to \infty. \quad (3.12)
\]

Denote
\[
F_1(\rho) := \exp(i\rho((S+1)a_1) \int_{(S+2)a_1/2}^{x_{-a_1}} \exp(-2i\rho t) \left[\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t) \right] dt.
\]

The function \(F_1(\rho) \) is entire in \(\rho \), and \(F_1(\rho) = O(1) \) for \(\text{Im}\rho \leq 0 \). By referring to and reviewing (3.11) and (3.12), we get \(F_1(\rho) = O(1) \) for \(\text{Im}\rho \geq 0 \). Therefore, \(F_1(\rho) = C \). Since \(F_1(\rho) = o(1) \) for real \(\rho \), as \(|\rho| \to \infty \), it follows that \(F_1(\rho) = 0 \), i.e.
\[
\int_{(S+2)a_1/2}^{x_{-a_1}} \exp(-2i\rho t)(\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t)) \, dt = 0.
\]

From the completeness of \(\exp(-2i\rho t) \) on \((S+2)a_1/2, \pi - S\alpha)\), we get \(\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t) = 0 \) a.e. on the interval. Then \(q_1(x) = 0 \) and \(q_2(x) = 0 \) a.e. on \((a_1, \pi)\).

(5) If \(S = 1 \) or \(S = 2 \), then from Lemmas 3.3 and 3.4, we have proved that \(q_1(x) = 0 \) and \(q_2(x) = 0 \) a.e. on \((a_1, \pi)\) a.e. on \((2a_1, \pi)\). According to Lemma 3.2, we conclude that \(q_1(x) = 0 \) and \(q_2(x) = 0 \) a.e. on \((a_1, \pi)\). Thus, Theorem 3.1 is proved for \(S = 1 \) and \(S = 2 \).

Let \(S \geq 3 \). Fix \(\nu = 5, S + 2 \). Denote \(u := (\nu + 1)/2 \). Clearly, \(u < \nu \).

Lemma 3.5 If \(q_1(x) = 0 \) and \(q_2(x) = 0 \) a.e. on \((a_1, \pi)\) on the interval \((u a_1/2, \pi)\), then \(q_1(x) = 0 \) and \(q_2(x) = 0 \) a.e. on \((a_1, \pi)\) on the interval \((u a_1/2, \pi)\).

Proof Since \(\nu/2 - k \leq \nu/2 - u \leq 0 \) for \(k > u \), it follows that \(\mathcal{L}_k(\rho) = 0 \) for \(k > u \). From Eq. (2.24) and assumption of this lemma,
\[
\mathcal{L}_k(\rho) = O \left(\frac{1}{\rho^k} \int_{ka_1}^{ua_1/2} \exp(-i\rho(2t - \pi - (k-1)a_1)) \left[\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t) \right] dt \right),
\]
\[
\text{Im}\rho \geq 0, \ |\rho| \to \infty.
\]

Since \(2t - \pi - ka_1 \leq 0 \), we get
\[
\mathcal{L}_k(\rho) = O \left(\frac{1}{\rho^k} \exp(i\rho(\pi - ka_1)) \right), \quad \text{Im}\rho \geq 0, \ |\rho| \to \infty, \ k = \frac{2}{u}u - T,
\]

and hence
\[
\mathcal{L}^+(\rho) = O \left(\frac{1}{\rho^2} \exp(i\rho(\pi - (u-1)a_1)) \right), \quad \text{Im}\rho \geq 0, \ |\rho| \to \infty. \quad (3.13)
\]
From Eqs. (3.1), (3.2), and (3.13), we obtain
\[
\exp(i(u_1-a_1)) \int_{a_1}^{\nu a_1/2} \exp(-2i\rho t)(\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t))dt = O\left(\frac{1}{\rho}\right), \quad \text{Im} \rho \geq 0, \quad |\rho| \to \infty. \tag{3.14}
\]
Moreover,
\[
\exp(i(u_1-a_1)) \int_{a_1}^{ua_1/2} \exp(-2i\rho t)(\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t))dt = O\left(\exp(-i\rho u_{a_1})\right) \quad \text{Im} \rho \geq 0, \quad |\rho| \to \infty. \tag{3.15}
\]
If \(ua_1/2 < a_2\), then \(q_1(t) + q_2(t) = q_1(t)\). Denote
\[
F_2(\rho) := \exp(i(u_1-a_1)) \int_{ua_1/2}^{\nu a_1/2} \exp(-2i\rho t)(\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t))dt.
\]
The function \(F_2(\rho)\) is entire in \(\rho\), and \(F_2(\rho) = O(1)\) for \(\text{Im} \rho \leq 0\). By referring to and reviewing (3.14) and (3.15), we get \(F_2(\rho) = O(1)\) for \(\text{Im} \rho \geq 0\). Therefore, \(F_2(\rho) = C\). Since \(F_2(\rho) = o(1)\) for real \(\rho\), as \(|\rho| \to \infty\), it follows that \(F_2(\rho) = 0\), i.e. consequently \(\exp(i\rho a_1)q_1(t) + \exp(i\rho a_2)q_2(t) = 0\) a.e. on the interval \((ua_1/2, \nu a_1/2)\). Thus, we get \(q_1(x) = 0\) and \(q_2(x) = 0\) a.e. on the interval.

Applying Lemma 3.5 several times successively starting from \(\nu = S + 2\), we obtain the relation \(q_1(x) = 0\) and \(q_2(x) = 0\) a.e. on \((2a_1, \pi)\). Then, by virtue of Lemma 3.2, \(q_1(x) = 0\) and \(q_2(x) = 0\) a.e. on the interval \((a_1, \pi)\).

Acknowledgment

The author would like to express sincere thanks to Asghar Rahimi for his valuable comments and anonymous reading of the original manuscript.

References