On λ-pseudo q-bi-starlike functions

Prakash KAMBLE1, Mallikarjun SHRIGAN2,*, Şahsene ALTINKAYA3*

1Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra State, India
2Department of Mathematics, Dr. D. Y. Patil School of Engineering and Technology, Pune, Maharashtra State, India
3Department of Mathematics, Faculty of Science, Uludağ University, Bursa, Turkey

Received: 18.10.2018 • Accepted/Published Online: 28.01.2019 • Final Version: 27.03.2019

Abstract: Making use of the λ-pseudo-q-differential operator, we aim to investigate a new, interesting class of bi-starlike functions in the conic domain. Furthermore, we obtain certain sharp bounds of the Fekete–Szegö functional for functions belonging to this class.

Key words: Fekete–Szegö inequality, bi-starlike functions, q-differential operator

1. Introduction

Let \mathcal{A} denote the family of functions analytic in the open unit disk

$$\mathcal{U} = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}$$

and given by the following Taylor–Maclaurin series:

$$f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$$

(1.1)

We denote by \mathcal{S} the class of starlike functions $f \in \mathcal{A}$, which are univalent in \mathcal{U} (e.g., see [1, 4, 5, 9, 11]).

Let $\mathcal{S}^*(\beta)$ be the usual subclass of starlike functions \mathcal{S} of order β, $0 \leq \beta < 1$, so that $f \in \mathcal{S}^*(\beta)$ if and only if, for $z \in \mathcal{U}$,

$$\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \beta.$$

For $\alpha > 0$, let $\mathcal{B}(\alpha)$ denote the class of Bazilevič functions defined in the open unit disk \mathcal{U}, normalized by the condition $f(0) = f'(0) - 1 = 0$, and such that, for $z \in \mathcal{U}$,

$$\text{Re} \left(f'(z) \left(\frac{zf(z)}{z} \right)^{\alpha-1} \right) > 0.$$
The class $B(\alpha)$ reduces to the starlike function and bounded turning function whenever $\alpha = 0$ and $\alpha = 1$, respectively. This class is extended to $B(\alpha, \beta)$, which satisfies the geometric condition
\[
\operatorname{Re} \left(\frac{f(z)^{\alpha-1}f'(z)}{z^{\alpha-1}} \right) > \beta,
\]
where α is a nonnegative real number and $0 \leq \beta < 1$. This class of functions was intensively studied by Singh [18] and considered subsequently by London and Thomas [14]. Recently, Babalola [3] introduced a new subclass $L(\alpha)$ of λ-pseudo-starlike functions of order β satisfying the geometric condition
\[
\operatorname{Re} \left(\frac{z(f'(z))^\lambda}{f(z)} \right) > \beta, \quad (z \in \mathbb{U}, 0 \leq \beta < 1, \lambda \geq 1).
\]
We note that, if $\lambda = 1$, we have the class of starlike functions of order β, which in this context is 1-pseudo-starlike functions of order β. If $\beta = 0$, we simply write L_λ instead of $L_\lambda(0)$. For $\lambda = 2$, we note that functions in $L_2(\beta)$ are defined by
\[
\operatorname{Re} \left(f'(z) \frac{zf'(z)}{f(z)} \right) > \beta, \quad (z \in \mathbb{U}),
\]
which is a product combination of geometric expression for bounded turning and starlike functions, an interesting analytic presentation on univalent functions in the open unit disk \mathbb{U}. Joshi et al. [8] defined the subclasses $S^\lambda(k, \alpha)$ and $S^\lambda(k, \beta)$ of bi-univalent functions associated with λ-bi-pseudo-starlike functions in the unit disk \mathbb{U}. Recently, Altinkaya and Özkan [2] introduced the subclasses $L_\lambda(\beta)$ and $L_\lambda(\beta, \phi)$ of Sălăgean type λ-pseudo-starlike functions. For these function classes, they found upper bounds for the initial coefficients as well as Fekete–Szegö inequalities.

Definition 1.1. Let P be analytic and normalized Carathéodory functions with positive real part in \mathbb{U}. Let $P(p_k)(0 \leq k < \infty)$ denote the family of functions p, such that $p \in P$ and $p \prec P$ in \mathbb{U}, where p_k maps the unit disk conformally onto the domain Ω_k such that $1 \in \Omega_k$ and $\partial \Omega_k$ is defined by
\[
\partial \Omega_k = \{ u + iv : u^2 = k^2(u-1)^2 + k^2v^2 \}.
\]
Moreover, Ω_k is elliptic for $k > 1$, hyperbolic when $0 < k < 1$, and parabolic for $k = 1$ and it covers the right half plane when $k = 0$. The extremal functions of class $P(p_k)(0 \leq k < \infty)$ were presented and investigated by Kanas et al. in [12] and [13]. Obviously,
for $k = 0$, we have
\[
p_0(z) = \frac{1+z}{1-z} = 1 + 2z + 2z^2 + 2z^3 + 2z^4 + ...,
\]
for $k = 1$, we have
\[
p_1(z) = 1 + \frac{2}{\pi^2} \log^2 \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right),
\]
and for $0 < k < 1$ and $A = A(k) = (2/\pi)\arccos k$, we have
\[
p_k(z) = 1 + \frac{2}{1 - k^2} \sinh^2 \left(A(k) \arctanh \sqrt{z} \right).
\]

By virtue of
\[p(z) = \frac{zf'(z)}{f(z)} \prec p_k(z) \]
or
\[p(z) = 1 + \frac{zf''(z)}{f'(z)} \prec p_k(z), \]
and the properties of domains, we have
\[\text{Re}(p(z)) > \text{Re}(p_k(z)) > \frac{k}{k+1}. \]

The \(q \)-differential operator plays a vital role in the theory of geometric function theory. The various subclasses of the normalized analytic function class \(A \) have been studied from different viewpoints. Both \(q \)-calculus and fractional calculus provide important tools that have been used in order to investigate various subclasses of \(A \). Historically speaking, the firm footing of the usage of \(q \)-calculus in the context of geometric function theory was provided and \(q \)-hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava (see, for details, [19, p. 347 et seq.]). Ismail et al. [6] introduced the class of generalized complex functions via \(q \)-calculus on some subclasses of analytic functions. Recently, Purohit and Raina [16] investigated applications of the fractional \(q \)-calculus operator to define new classes of functions that are analytic in unit disk \(U \) (see, for details, [7], [10], and [20]–[23]).

For \(0 < q < 1 \), the \(q \)-derivative of a function \(f \in A \) given by (1.1) is defined as follows:
\[D_q f(z) = \frac{f(qz) - f(z)}{(q - 1)z} \quad (z \neq 0), \]
and \(D_q f(0) = f'(0), D_q^2 f(z) = D_q(D_q f(z)) \). From (1.1), we deduce that
\[D_q f(z) = 1 + \sum_{k=2}^{\infty} [k]_q a_k z^{k-1}, \]
where
\[[k]_q = \frac{1 - q^k}{1 - q}. \]

As \(q \to 1^- \), \([k]_q \to k\). For a function \(g(z) = z^k \), we observe that
\[D_q(g(z)) = D_q(z^k) = \frac{1 - q^k}{1 - q} z^{k-1} = k z^{k-1}, \]
\[\lim_{q \to 1^-} (D_q(g(z))) = k z^{k-1} = g'(z), \]
where \(g' \) is the ordinary derivative.
We define the Sălăgean q-differential operator (also refer to [10]) using the q-differential operator as follows:

\[
\begin{align*}
D_0^q f(z) &= f(z), \\
D_1^q f(z) &= z D_q f(z), \\
D_n^q f(z) &= z D_q (D_{n-1}^q f(z)), \\
D_n^q f(z) &= z + \sum_{k=2}^{\infty} [k]_q^n a_k z^k \quad (n \in \mathbb{N}_0, z \in \mathbb{U}).
\end{align*}
\]

(1.5)

We note that $\lim_{q \to 1^{-}}$

\[
D_n^q f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k \quad (n \in \mathbb{N}_0, z \in \mathbb{U}).
\]

(1.6)

Definition 1.2 Let $0 \leq k < 1, \lambda \geq 1, n \in \mathbb{N}_0, 0 < q < 1$. For $p_k(z)$ as defined in Definition 1.1, the function f given by (1.1) belongs to $S_{\lambda,k}^q(p_k)$ if

\[
\left(\frac{z[|D_q^n f(z)|^\lambda]}{(D_q^n f)^z} \right) \prec p_k(z) \quad (z \in \mathbb{U}).
\]

(1.7)

Let $\phi(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \ldots (c_1 > 0)$ be an analytic function with positive real part on \mathbb{U}.

Definition 1.3 For $\lambda \geq 1, 0 < q < 1$, we say a function f given by (1.1) belongs to the class $S_{\lambda,q}^q(\phi)$ if it satisfies the quasi-subordination condition

\[
\left(\frac{z[|D_q^n f(z)|^\lambda]}{(D_q^n f)^z} \right) \prec_q \phi(z) - 1 \quad (z \in \mathbb{U}).
\]

(1.8)

In order to derive our main results, we use the following lemma.

Lemma 1.4 [15] Let $w(z) = w_1 z + w_2 z^2 + w_3 z^3 + \ldots \in \mathbb{U}$ such that $|w(z)| < 1$ in \mathbb{U}. If t is a complex number, then

\[
|w_2 + tw_1^2| \leq \max\{1, |t|\}.
\]

The inequality is sharp for the function $w(z) = z$ or $w(z) = z^2$.

In this paper, motivated by the earlier work of Babalola [3] and Altinkaya and Özkan [2], we introduce a new approach for studying a subclass of λ-pseudo bi-starlike functions using the q-differential operator and estimate the Fekete–Szegö body of the coefficient using subordination [17].
2. Main results

We investigate \(|a_3 - \sigma a_2^2|\) for the function \(f \in A\) for the class \(S_{\lambda,k}^q(p_k)\) associated with conical domains.

Theorem 2.1 Let \(0 \leq k < 1, \lambda \geq 1, 0 < q < 1\) and \(p_k(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \ldots\) defined in Definition 1.1. If the function \(f\) given by (1.1) belongs to \(S_{\lambda,k}^q(p_k)\), then for any complex \(\sigma\) we have

\[
|a_3 - \sigma a_2^2| \leq \frac{p_1}{(3\lambda - 1)[3]_q} \max \left\{ 1, \frac{p_2}{p_1} + \frac{p_1(4\lambda - 1 - 2\lambda^2)[2]_q^{2n} - \sigma p_1(3\lambda - 1)[3]_q^n}{(2\lambda - 1)[2]_q^n} \right\}.
\] (2.1)

Proof By (1.7), we have

\[
\frac{z[(D_q^n f)z]^{\lambda}}{(D_q^n f)z} = p_k(z) \quad (z \in \mathbb{U}).
\] (2.2)

We note that

\[
z[(D_q^n f)z]^{\lambda} = z + 2\lambda [2]_q^n a_2 z^2 + (3\lambda[3]_q^n a_3 + 2\lambda(\lambda - 1)a_2^2[2]_q^{2n}) z^3 + \ldots
\] (2.3)

and

\[
p_k(w(z))(D_q^n f)(z) = z + (p_1 w_1 + [2]_q^n a_2) z^2 + (p_1 w_2 + p_2 w_1^2 + [2]_q^n a_2 p_1 w_1 + [3]_q^n a_3) z^3 + \ldots.
\] (2.4)

Comparing coefficients of (2.2), (2.3), and (2.4), we obtain

\[
a_2 = \frac{p_1 w_1}{(2\lambda - 1)[2]_q^n}
\] (2.5)

and

\[
a_3 = \frac{p_1 w_2}{(3\lambda - 1)[3]_q^n} + \frac{p_2 w_1^2}{(3\lambda - 1)[3]_q^n} + \frac{(4\lambda - 1 - 2\lambda^2) p_1 w_1^2}{(3\lambda - 1)(2\lambda - 1)^2[3]_q^n}.
\] (2.6)

Hence, by (2.5) and (2.6), we get the following:

\[
a_3 - \sigma a_2^2 = \frac{p_1}{(3\lambda - 1)[3]_q^n} \left((w_2 + \vartheta w_1^2) ,
\right.
\]

where

\[
\vartheta = \left(\frac{p_2}{p_1} + \frac{p_1(4\lambda - 1 - 2\lambda^2)[2]_q^{2n} - \sigma p_1(3\lambda - 1)[3]_q^n}{(2\lambda - 1)[2]_q^n} \right).
\] (2.7)

Using Lemma 1.4 and equation (2.7), we yield (2.1). This completes the proof. \(\square\)

Corollary 2.2 Let \(f \in S_{\lambda,k}^q(p_k)\), then

\[
|a_2| = \frac{p_1}{(2\lambda - 1)[2]_q^n}
\] (2.8)

and

\[
|a_3| \leq \frac{p_1}{(3\lambda - 1)[3]_q^n} \max \left\{ 1, \frac{p_2}{p_1} + \frac{p_1(4\lambda - 1 - 2\lambda^2)}{(2\lambda - 1)^2[2]_q^n} \right\},
\] (2.9)

where \(0 \leq k < 1, \lambda \geq 1, 0 < q < 1\).
For the class of functions $f \in S^q_{\lambda, \varphi}(\phi)$, we can prove the following:

Theorem 2.3 Let $\lambda \geq 1, 0 < q < 1$. If the function f given by (1.1) belongs to $S^q_{\lambda, \varphi}(\phi)$, then for any complex σ we have

$$|a_3 - \sigma a_2^2| \leq \frac{1}{3\lambda[3]^n_q} \left(c_1 + \max \left\{ c_1, \frac{2\lambda(2 - \lambda)[2]_{q}^{2n} - 3\sigma \lambda[3]_{q}^{n}}{4\lambda^2[2]_{q}^{2n}} \right\} |c_1| + |c_2| \right). \quad (2.10)$$

Proof If $f \in S^q_{\lambda, \varphi}(\phi)$, then

$$\frac{z[(D^n_q f)z]'}{(D^n_q f)z} = \varphi(z)(\phi(z) - 1) \quad (z \in U). \quad (2.11)$$

We have

$$z[(D^n_q f)z]'^\lambda = z + 2\lambda[2]_{q}^{n}a_2z^2 + (3\lambda[3]_{q}^{n}a_3 + 2\lambda(\lambda - 1)[2]_{q}^{2n}a_2^2)z^3 + \cdots$$

and

$$\varphi(z)(\phi(z) - 1)(D^n_q f)(z) = c_1A_0w_1z^2 + (c_1A_1w_1 + A_0(c_1w_2 + c_2w_1^2 + [2]_{q}^{n}c_1A_0w_1a_2))z^3 + \cdots. \quad (2.12)$$

From (2.11) and (2.12), it is easily seen that

$$a_2 = \frac{c_1A_0w_1}{2\lambda[2]_{q}^{n}}, \quad \text{(2.13)}$$

$$a_3 = \frac{c_1A_1w_1}{3\lambda[3]_{q}^{n}} + \frac{c_1A_0w_2}{3\lambda[3]_{q}^{n}} + \frac{A_0}{3\lambda[3]_{q}^{n}} \left(c_2 - \frac{(2 - \lambda)c_1^2A_0}{2\lambda} \right) w_1^2, \quad \text{(2.14)}$$

and

$$|a_3 - \sigma a_2^2| \leq \frac{1}{3\lambda[3]^n_q} \left\{ |c_1A_1w_1| + |c_1A_0\Psi| \right\}, \quad \text{(2.15)}$$

where

$$\Psi = \left\{ w_2 - \left(\frac{(2 - \lambda)c_1A_0}{2\lambda} + \frac{3\lambda c_1A_0w_1^2\sigma[3]_{q}^{n}}{4\lambda^2[2]_{q}^{2n}} - \frac{c_2}{c_1} \right) w_1^2 \right\}. \quad \text{(2.16)}$$

Since φ is analytic in U, using the inequalities $|A_n| \leq 1$ and $|w_1| \leq 1$, we get

$$|a_3 - \sigma a_2^2| \leq \frac{c_1}{3\lambda[3]_{q}^{n}} \left[1 + |\Phi| \right], \quad \text{(2.17)}$$

where

$$\Phi = \left| w_2 - \left(- \frac{c_2}{c_1} - \left(\frac{(2 - \lambda)c_1}{2\lambda} + \frac{3\sigma \lambda[3]_{q}^{n}c_1}{4\lambda^2[2]_{q}^{2n}} \right) c_1 \right) w_1^2 \right|. \quad \text{(2.18)}$$

Applying Lemma 1.4 and equation (2.18) yields result (2.10). \qed
Corollary 2.4 Let \(f \in S^q_{\lambda p}(\phi) \), then

\[
|a_2| \leq \frac{c_1 A_0}{2\lambda |2|^n q} \tag{2.19}
\]

and

\[
|a_3| \leq \frac{1}{3\lambda |3|^n q} \left((c_1 + \max \left(c_1, \frac{(2 - \lambda)c_1^2}{2\lambda} + |c_2| \right) \right), \tag{2.20}
\]

where \(\lambda \geq 1, 0 < q < 1 \).

References

