Curves over Finite Fields and Permutations of the Form $x^k - \gamma \text{Tr}(x)$

Nurdagül ANBAR

Department of Mathematics, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey

Received: 06.11.2018 • Accepted/Published Online: 03.01.2019 • Final Version: 18.01.2019

Abstract: We consider the polynomials of the form $P(x) = x^k - \gamma \text{Tr}(x)$ over \mathbb{F}_{q^n} for $n \geq 2$. We show that $P(x)$ is not a permutation of \mathbb{F}_{q^n} in the case $\gcd(k, q^n - 1) > 1$. Our proof uses an absolutely irreducible curve over \mathbb{F}_{q^n} and the number of rational points on it.

Key words: Function fields, permutation polynomials, rational places

1. Introduction

Let q be a power of a prime p, and let \mathbb{F}_q be the finite field with q elements. A polynomial $P(x) \in \mathbb{F}_q[x]$ is called a permutation of \mathbb{F}_q if the associated map from \mathbb{F}_q to \mathbb{F}_q defined by $x \mapsto P(x)$ is a bijection, i.e. it permutes the elements of \mathbb{F}_q. Permutation polynomials over finite fields have been studied widely in the last decades, especially due to their applications in combinatorics, coding theory, and symmetric cryptography, see [6, 8] and references therein.

One of the main approaches to show that $P(x)$ is not a permutation uses the theory of curves and their number of rational points, for instance see [1, 2]. The approach can be summarized as follows. For a given polynomial $P(x)$, one can consider the bivariate polynomial

$$
\frac{P(X) - P(Y)}{X - Y}
$$

(1.1)

over \mathbb{F}_q. Suppose that the polynomial in Equation (1.1) has an absolutely irreducible factor over \mathbb{F}_q. Then the corresponding curve \mathcal{X} has a point $(x, y) \in \mathbb{F}_q^2$ with $x \neq y$ for all sufficiently large q. This proves that $P(x) = P(y)$ for $x, y \in \mathbb{F}_q$ with $x \neq y$, i.e. P is not a permutation of \mathbb{F}_q for all sufficiently large q.

Let $n \geq 2$ be an integer and \mathbb{F}_{q^n} be the extension of \mathbb{F}_q of degree n. The topic of this paper is polynomials of the form $x^k - \gamma \text{Tr}(x)$ over \mathbb{F}_{q^n}, where $\text{Tr} : \mathbb{F}_{q^n} \rightarrow \mathbb{F}_q$ is the Trace function defined by

$$
\text{Tr}(x) = x + x^q + \cdots + x^{q^{n-1}}.
$$

This is an interesting class of permutation polynomials that has been investigated intensively as it combines the multiplicative and the additive structure of \mathbb{F}_{q^n}, see [3–5, 7].

*Correspondence: nurdagulanbar2@gmail.com

2010 AMS Mathematics Subject Classification: 11T06, 14H05

This work is licensed under a Creative Commons Attribution 4.0 International License.
In this paper, we show that $P(x)$ is not a permutation of \mathbb{F}_{q^n} in the case $\gcd(k, q^n - 1) > 1$ for all q and integer $n \geq 2$. Our main approach also uses absolutely irreducible curves over \mathbb{F}_{q^n}, but in a different way. More precisely, we relate the multiplicative and the additive structure of \mathbb{F}_{q^n} via an absolutely irreducible curve. The paper is organized as follows. In Section 2, we investigate some rational function field extensions and their compositum, which we use in Section 3 to prove our main result.

2. Function field extensions

In this section, we study some rational function field extensions and their compositum. For the notations and well-known facts about function fields, as a general reference, we refer to [10].

Let E be a function field over \mathbb{F}_q and F/E be a finite separable extension of function fields of degree $[F : E] = r$. We write $Q|P$ for a place Q of F lying over a place P of E, and denote by $e(Q|P)$ the ramification index of $Q|P$. Recall that when the ramification index $e(Q|P) > 1$, it is said that $Q|P$ is ramified. Moreover, if the characteristic p of \mathbb{F}_q does not divide $e(Q|P)$, then $Q|P$ is called tame; otherwise, it is called wild. A place P of E splits completely in F if there are r distinct places Q_1, \ldots, Q_r of F lying over P. Then by the Fundamental Equality [10, Theorem 3.1.11], we have $e(Q_i|P) = 1$ and $\deg(Q_i) = \deg(P)$ for all $i = 1, \ldots, r$.

In particular, if P is a rational place of E splitting completely in F, then there are r rational places of F lying over P.

Let t and s be positive integers such that t is a divisor of $q^n - 1$ and s is relatively prime to $q^n - 1$. We consider the rational function field extensions $\mathbb{F}_{q^n}(w)/\mathbb{F}_{q^n}(z)$, $\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)$ and $\mathbb{F}_{q^n}(y)/\mathbb{F}_{q^n}(z)$ defined by the equations $z = (1/\gamma)w^s$, $w = x^t$ and $z = \text{Tr}(y) + c$, respectively, and their compositum, where $\gamma, c \in \mathbb{F}_{q^n}$ with $\gamma \neq 0$, see Figure. For a rational function field $\mathbb{F}_{q^n}(z)$ and $\alpha \in \mathbb{F}_{q^n}$, we denote by $(z = \alpha)$ and $(z = \infty)$ the places corresponding the zero and the pole of $z - \alpha$, respectively.

\[F = \mathbb{F}_{q^n}(x, y) \]

\[\mathbb{F}_{q^n}(x) \quad E = \mathbb{F}_{q^n}(w, y) \]

\[w = x^t \]

\[\mathbb{F}_{q^n}(w) \quad \mathbb{F}_{q^n}(y) \]

\[z = \frac{1}{\gamma}w^s \quad z = \text{Tr}(y) + c \]

\[\mathbb{F}_{q^n}(z) \]

Figure. Compositum over rational function fields
Lemma 2.1 (Abhyankar’s Lemma)

(i) The extension $\mathbb{F}_{q^n}(w)/\mathbb{F}_{q^n}(z)$ defined by $z = (1/\gamma)w^s$:

Note that $(z = 0)$ and $(z = \infty)$ are the only ramified places, which are totally ramified. In particular, $(w = 0)$ and $(w = \infty)$ are the unique places lying over $(z = 0)$ and $(z = \infty)$, respectively. Moreover, the fact that w^s permutes \mathbb{F}_{q^n} implies that for any rational place of $\mathbb{F}_{q^n}(z)$, there exits a unique rational place of $\mathbb{F}_{q^n}(w)$ lying over it. In other words, $(w = \alpha)$ is the unique place of $\mathbb{F}_{q^n}(w)$ lying over $(z = (1/\gamma)\alpha^s)$.

(ii) The extension $\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)$ defined by $w = x^t$:

Note that $\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)$ is a Kummer extension as t is a divisor of $q^n - 1$, see [10, Proposition 3.7.3]. The only ramified places are $(w = 0)$ and $(w = \infty)$, which are totally ramified. In particular, $(x = 0)$ and $(x = \infty)$ are the unique places lying over $(w = 0)$ and $(w = \infty)$, respectively. The place $(w = \alpha)$ splits completely in $\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)$ if and only if α is a t-th power in \mathbb{F}_{q^n}. This shows that for $\alpha \in \langle \zeta^t \rangle$, where ζ is a primitive element of \mathbb{F}_{q^n}, there are t rational places of $\mathbb{F}_{q^n}(x)$ lying over $(w = \alpha)$.

(iii) The extension $\mathbb{F}_{q^n}(y)/\mathbb{F}_{q^n}(z)$ defined by $z = \text{Tr}(y) + c$:

Note that $(z = \infty)$ is totally ramified and $(y = \infty)$ of $\mathbb{F}_{q^n}(y)$ is the unique place lying over it. Also, the fact that

$$z = \text{Tr}(y) + c = y + y^q + \cdots + y^{q^{n-1}} + c$$

is a separable polynomial implies that there is no other ramification. Furthermore, the place $(z = \alpha)$ splits completely in $\mathbb{F}_{q^n}(y)/\mathbb{F}_{q^n}(z)$ if and only if $\alpha \in c + \mathbb{F}_q$.

To analyze the ramification structure of the compositum of function fields, we mainly use Abhyankar’s Lemma [10, Theorem 3.9.1]. For convenience of the reader, we state the lemma as follows.

Lemma 2.1 (Abhyankar’s Lemma) Let F/E be a finite separable extension. Suppose that $F = E_1 \cdot E_2$ is the compositum of the intermediate fields $E \subseteq E_1, E_2 \subseteq F$. Let $Q \in \mathbb{P}_F$ lying over $P \in \mathbb{P}_E$. We set $Q_i = Q \cap E_i$ for $i = 1, 2$. If at least one of $Q_1|P$ or $Q_2|P$ is tame, then

$$e(Q|P) = \text{lcm} \{e(Q_1|P), e(Q_2|P)\},$$

where lcm denotes the least common multiple.

Lemma 2.2 Let $E = \mathbb{F}_{q^n}(w, y)$ be the compositum of the rational function fields $\mathbb{F}_{q^n}(w)$ and $\mathbb{F}_{q^n}(y)$ over $\mathbb{F}_{q^n}(z)$ defined as above, see Figure. Then E is a function field over \mathbb{F}_{q^n} such that

(i) $[E: \mathbb{F}_{q^n}(w)] = q^{n-1}$, $[E: \mathbb{F}_{q^n}(y)] = s$, and

(ii) there are q^{n-1} rational places of E lying over $(z = \alpha)$ for $\alpha \in c + \mathbb{F}_q$.

Proof As $(z = 0)$ is totally ramified in $\mathbb{F}_{q^n}(w)/\mathbb{F}_{q^n}(z)$, and it is not ramified in $\mathbb{F}_{q^n}(y)/\mathbb{F}_{q^n}(z)$, by Abhyankar’s Lemma, any place P of $\mathbb{F}_{q^n}(y)$ lying over $(z = 0)$ is ramified in $E/\mathbb{F}_{q^n}(y)$ with ramification index $e((w = 0)|(z = 0)) = s$. This shows that

$$[E: \mathbb{F}_{q^n}(y)] = s, \quad [E: \mathbb{F}_{q^n}(w)] = q^{n-1}$$

and E is a function field over \mathbb{F}_{q^n}, i.e. \mathbb{F}_{q^n} is the full constant field of E.

535
A place \((z = \alpha)\) splits completely in \(\mathbb{F}_{q^n}(y)/\mathbb{F}_{q^n}(z)\) if and only if \(\alpha \in c + \mathbb{F}_q\). Recall that there exists a unique rational place of \(\mathbb{F}_{q^n}(w)\) lying over \((z = \alpha)\) for \(\alpha \in \mathbb{F}_{q^n}\). Therefore, the place lying over \((z = \alpha)\) splits completely in \(E/\mathbb{F}_{q^n}(w)\) for \(\alpha \in \mathbb{F}_{q^n}\), see [10, Proposition 3.9.6].

\[\text{Lemma 2.3}\]

Let \(F = \mathbb{F}_{q^n}(x, y)\) be the compositum of the rational function fields \(\mathbb{F}_{q^n}(x)\) and \(E = \mathbb{F}_{q^n}(w, y)\) over \(\mathbb{F}_{q^n}(w)\) defined as above, see Figure. Let \(H\) be the subgroup of the multiplicative group of \(\mathbb{F}_{q^n}\) generated by \(\zeta^t\), where \(\zeta\) is a primitive element of \(\mathbb{F}_{q^n}\). Then \(F\) is a function field over \(\mathbb{F}_{q^n}\) such that

(i) \([F : \mathbb{F}_{q^n}(x)] = q^{n-1}\), \([F : E] = t\), and

(ii) there are \(tq^{n-1}\) rational places of \(F\) lying over \((w = \alpha)\) for all \((1/\gamma)\alpha^s \in (1/\gamma)H \cap c + \mathbb{F}_q\).

\[\text{Proof}\]

As \([E : \mathbb{F}_{q^n}(w)] = q^{n-1}\) and \([\mathbb{F}_{q^n}(x) : \mathbb{F}_{q^n}(w)] = t\) are relatively prime, we have \([F : \mathbb{F}_{q^n}(x)] = q^{n-1}\) and \([F : E] = t\). Note that \((w = 0)\) is totally ramified in \(\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)\), and by Lemma 2.2, it is not ramified in \(E/\mathbb{F}_{q^n}(w)\). Therefore, a place \(P\) of \(E\) lying over \((w = 0)\) is totally ramified in \(F/E\). This shows that \(F\) is a function field with full constant field \(\mathbb{F}_{q^n}\).

Note that \(\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)\) and \(E/\mathbb{F}_{q^n}(w)\) are Galois extensions. For a nonzero \(\alpha \in \mathbb{F}_{q^n}\), the place \((w = \alpha)\) is not ramified in both extensions, and hence, a place \(P\) of \(F\) lying over \((w = \alpha)\) is rational if and only if \((w = \alpha)\) splits completely in both extensions. We have seen in Lemma 2.2 that \((w = \alpha)\) splits in \(E/\mathbb{F}_{q^n}(w)\) if and only if \((1/\gamma)\alpha^s \in c + \mathbb{F}_q\). Furthermore, \((w = \alpha)\) splits in \(\mathbb{F}_{q^n}(x)/\mathbb{F}_{q^n}(w)\) if and only if \(\alpha \in H\). Since \(\gcd(s, q^n - 1) = 1\), this holds if and only if \(\alpha^s \in H\), i.e. \((1/\gamma)\alpha^s \in (1/\gamma)H\). Therefore, \(P\) is a rational place lying over \((w = \alpha)\) if and only if \((1/\gamma)\alpha^s \in (1/\gamma)H \cap (c + \mathbb{F}_q)\). In this case, since \((w = \alpha)\) splits completely in \(F\), and there are \(tq^{n-1}\) rational places lying over \((w = \alpha)\).

\[\text{Corollary 2.4}\]

For a nonzero \(\gamma \in \mathbb{F}_{q^n}\) and an integer \(k \geq 1\), the polynomial \(f(X, Y) = (1/\gamma)X^k - \text{Tr}(Y) - c \in \mathbb{F}_{q^n}[X, Y]\) is an absolutely irreducible polynomial. Therefore, the zero set defines an absolutely irreducible curve over \(\mathbb{F}_{q^n}\).

3. Main Result

In this section, we investigate the permutation polynomials of the type \(P(x) = x^k - \gamma \text{Tr}(x)\). A well-known fact is that a monomial \(x^k\) is a permutation if and only if \(k\) is relatively prime to \(q^n - 1\). Therefore, \(P(x)\) is not a permutation of \(\mathbb{F}_{q^n}\) if \(\gcd(k, q^n - 1) > 1\) in the case \(\gamma = 0\). From now on, we assume that \(\gamma\) is a nonzero element of \(\mathbb{F}_{q^n}\).

As mentioned in the introduction, we consider the multiplicative and the additive structure of \(\mathbb{F}_{q^n}\) to investigate the image of \(P(x)\) on \(\mathbb{F}_{q^n}\). In particular, for some \(c \in \mathbb{F}_{q^n}\), we consider the solution set of

\[
\frac{1}{\gamma}x^k = \text{Tr}(x) + c, \tag{3.1}
\]

and by Equation (3.1), we investigate the rational points of the curve \(X_c\) over \(\mathbb{F}_{q^n}\) defined by

\[
f_c(X, Y) = \frac{1}{\gamma}X^k - \text{Tr}(Y) - c = 0. \tag{3.2}
\]
Theorem 3.1 Let $P(x) = x^k - \gamma \text{Tr}(x)$ be a polynomial, where γ is a nonzero element in \mathbb{F}_{q^n} and k is a positive integer. If $t = \gcd(k, q^n - 1) > 1$, then $P(x)$ is not a permutation of \mathbb{F}_{q^n}.

Proof We will show that there exist $x_1, x_2 \in \mathbb{F}_{q^n}$ with $x_1 \neq x_2$ such that $P(x_1) = P(x_2)$.

As in the previous section, we denote by H the subgroup generated by ζ^t, where ζ is a primitive element of \mathbb{F}_{q^n}, i.e. H is a subgroup of order $(q^n - 1)/t$. Note that the image $\text{Im}((\text{Tr}(\mathbb{F}_{q^n}))) = \mathbb{F}_q$ is an additive subgroup of \mathbb{F}_{q^n}, i.e. \mathbb{F}_{q^n} is the disjoint union of q^{n-1} cosets of \mathbb{F}_q. In particular, there exists $c \in \mathbb{F}_{q^n}$ such that we have

$$|(1/\gamma)H \cap (c + \mathbb{F}_q)| \geq \left\lceil \frac{q^n - 1}{tq^{n-1}} \right\rceil$$

where $[x]$ denotes the least integer greater than or equal to the real number x. Note that we have

$$\frac{q^n - 1}{t} = bq^{n-1} + i \quad \text{for some } 1 \leq i < q^{n-1} - 1.$$ \hfill (3.3)

Then we have $[(q^n - 1)/tq^{n-1}] = b + 1$, i.e. there exists c such that

$$|(1/\gamma)H \cap (c + \mathbb{F}_q)| \geq b + 1.$$ \hfill (3.4)

For this value of c, we consider the curve \mathcal{X}_c defined by $f_c(X, Y) = 0$, where f_c is the bivariate polynomial defined as in Equation (3.2). By Corollary 2.4, \mathcal{X}_c is an absolutely irreducible curve defined over \mathbb{F}_{q^n}. Let $F = \mathbb{F}_{q^n}(x, y)$ be the function field of \mathcal{X}_c. By Lemma 2.3, for each $\alpha \in (1/\gamma)H \cap (c + \mathbb{F}_q)$, there are tq^{n-1} distinct rational places of F. Note that these are the places lying over $(z = \alpha)$ for $\alpha \in (1/\gamma)H \cap (c + \mathbb{F}_q)$, i.e. all of them correspond to affine points of \mathcal{X}_c.

It is a well-known fact that each nonsingular rational point of \mathcal{X}_c corresponds to a unique rational place of F, see [9, 10]. Recall that an affine point (x_0, y_0) on \mathcal{X}_c is singular if and only if we have

$$f(x_0, y_0) = \frac{df(X, Y)}{dX}(x_0, y_0) = \frac{df(X, Y)}{dY}(x_0, y_0) = 0,$$

where df/dX and df/dY denote the partial derivatives of f with respect to X and Y, respectively. Since $df(X, Y)/dY = -1$, we conclude that \mathcal{X}_c has no singular affine points. That is, each rational place of F lying over $(z = \alpha)$ for $\alpha \in (1/\gamma)H \cap (c + \mathbb{F}_q)$ corresponds to a unique rational point of \mathcal{X}_c. Therefore, the number $N(\mathcal{X}_c)$ of affine rational points of \mathcal{X}_c satisfies

$$N(\mathcal{X}_c) \geq (b + 1)tq^{n-1} = btq^{n-1} + tq^{n-1}.$$ \hfill (3.4)

By Equation (3.3), we have $btq^{n-1} = q^n - 1 - it \geq q^n - 1 - (q^{n-1} - 1)t$. Hence, by Equation (3.4), we have

$$N(\mathcal{X}_c) \geq q^n + (t - 1) > q^n.$$ \hfill (3.4)

Let ℓ_d be the line defined by the equation $Y = X + d$ for $d \in \mathbb{F}_{q^n}$. Then the set

$$\mathcal{L} = \{\ell_d \mid d \in \mathbb{F}_{q^n}\}$$

covers all affine points in the projective plane, and hence it covers all affine points on \mathcal{X}_c. Since $N(\mathcal{X}_c) > q^n$, there exists ℓ_d intersect \mathcal{X}_c at least two rational points. That is, there exist distinct elements $x_1, x_2 \in \mathbb{F}_{q^n}$ such that $(x_1, x_1 + d), (x_2, x_2 + d) \in \mathcal{X}_c \cap \ell_d$. Then the defining equation f_c, see Equation (3.2), implies that

$$x_1^k - \gamma \text{Tr}(x_1) = x_2^k - \gamma \text{Tr}(x_2) = \gamma(e + \text{Tr}(d)),$$ \hfill (3.4)

which gives the desired result. \qed
Corollary 3.2 Let \mathbb{F}_{q^n} be the finite field of characteristic $p > 2$ and $n \geq 2$. Then for any $\gamma \in \mathbb{F}_{q^n}$, the polynomial $P(x) = x^{2r} - \gamma \text{Tr}(x)$ is not a permutation of \mathbb{F}_{q^n}.

Remark 3.3 Let $P(x) = x^k - \gamma \text{Tr}(x^d)$ for some integers k, d such that d is relatively prime to $q^n - 1$. We recall that a polynomial $P(x)$ is a permutation of \mathbb{F}_{q^n} if and only if $P(x^r)$ is a permutation of \mathbb{F}_{q^n} for any integer r relatively prime to $q^n - 1$. Let r be the integer with $rd \equiv 1 \mod (q^n - 1)$. We set

$$\tilde{P}(x) = P(x^r) = x^{rk} - \gamma \text{Tr}(x^{rd}) = x^{rk} - \gamma \text{Tr}(x) .$$

(3.5)

Then by Theorem 3.1, we conclude that $P(x)$ is not a permutation of \mathbb{F}_{q^n} if $\gcd(k, q^n - 1) > 1$.

Acknowledgments

The author would like to thank Prof. Gohar Kyureghyan for pointing out the problem and helpful discussions. The author is partially supported by the Austrian Science Fund (FWF): Project F5505–N26 and Project F5511–N26, which is a part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”.

References

