On spanning sets and generators of near-vector spaces

Karin-Therese HOWELL1,*, Sogo Pierre SANON2,○
1Department of Mathematical Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
2Department of Mathematical Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa

Received: 20.07.2018 • Accepted/Published Online: 30.10.2018 • Final Version: 27.11.2018

Abstract: In this paper we study the quasi-kernel of certain constructions of near-vector spaces and the span of a vector. We characterize those vectors whose span is one-dimensional and those that generate the whole space.

Key words: Field, nearfield, vector space, near-vector space

1. Introduction

The near-vector spaces we study in this paper were first introduced by André in 1974 [1]. His near-vector spaces have less linearity than normal vector spaces. They have been studied in several papers, including [2–6]. More recently, since André did a lot of work in geometry, their geometric structure has come under investigation. In order to construct some incidence structures a good understanding of the span of a vector is necessary. It very quickly became clear that near-vector spaces exhibit some strange behavior, where the span of a vector need not be one-dimensional and it is possible for a single vector to generate the entire space.

In this paper we begin by giving the preliminary material of near-vector spaces. In Section 3 we take a closer look at the class of near-vector spaces of the form \((F^n, F)\), where \(F\) is a nearfield and \(n\) is a natural number, constructed using van der Walt’s important construction theorem in [9] for finite dimensional near-vector spaces. We give conditions for when the quasi-kernel will be the whole space. In the last section we prove that when for a near-vector space \((V, A)\), \(v \in V\), span \(v\) will equal \(vA\). We introduce the dimension of a vector and prove that in the case of a field, it is always less than or equal to the number of maximal regular subspaces in the decomposition of \(V\). We define a generator for \(V\) and give a condition for when \(v\) will be a generator for \(V\). Finally, we characterize the near-vector spaces that have generators.

2. Preliminary material

Definition 2.1 A (right) nearfield is a set \(F\) together with two binary operations \(+\) and \(\cdot\) such that

1. \((F, +)\) is a group;
2. \((F \setminus \{0\}, \cdot)\) is a group;
3. \((a + b) \cdot c = a \cdot c + b \cdot c\) for all \(a, b, c \in F\).

*Correspondence: kthowell@sun.ac.za
○2010 AMS Mathematics Subject Classification: 16Y30, 12K05

This work is licensed under a Creative Commons Attribution 4.0 International License.
Left nearfields are defined analogously and satisfy the left distributive law. We will use right nearfields throughout this paper. We also have the following definition.

Definition 2.2 Let F be a nearfield. We define the kernel of F to be the set of all distributive elements of F, i.e.

$$F_d := \{ a \in F | a \cdot (b + c) = a \cdot b + a \cdot c \text{ for every } b, c \in F \}.$$

If F is a nearfield, F_d is a subfield of it [8]; moreover, F is a vector space over F_d. We refer the reader to [7] and [8] for more on nearfields.

Definition 2.3 ([1]) A near-vector space is a pair (V, A) that satisfies the following conditions:

1. $(V, +)$ is a group and A is a set of endomorphisms of V;
2. A contains the endomorphisms 0, id, and $-id$;
3. $A^* = A \setminus \{0\}$ is a subgroup of the group $Aut(V)$;
4. If $x\alpha = x\beta$ with $x \in V$ and $\alpha, \beta \in A$, then $\alpha = \beta$ or $x = 0$, i.e. A acts fixed point free on V;
5. The quasi-kernel $Q(V)$ of V generates V as a group. Here, $Q(V) = \{ x \in V | \forall \alpha, \beta \in A, \exists \gamma \in A \text{ such that } x\alpha + x\beta = x\gamma \}$.

We will write $Q(V)^*$ for $Q(V) \setminus \{0\}$ throughout this paper. The *dimension* of the near-vector space, $\dim(V)$, is uniquely determined by the cardinality of an independent generating set for $Q(V)$, called a *basis* of V (see [1]).

Definition 2.4 ([6]) We say that two near-vector spaces (V_1, A_1) and (V_2, A_2) are isomorphic (written $(V_1, A_1) \cong (V_2, A_2)$) if there are group isomorphisms $\theta : (V_1, +) \to (V_2, +)$ and $\eta : (A_1^*, \cdot) \to (A_2^*, \cdot)$ such that $\theta(x\alpha) = \theta(x)\eta(\alpha)$ for all $x \in V_1$ and $\alpha \in A_1^*$.

We will write a near-vector space isomorphism as a pair (θ, η).

Example 2.5 ([5]) Consider the field $(GF(3^2), +, \cdot)$ with

$$GF(3^2) := \{ 0, 1, 2, \gamma, 1 + \gamma, 2 + \gamma, 2\gamma, 1 + 2\gamma, 2 + 2\gamma \},$$

where γ is a zero of $x^2 + 1 \in \mathbb{Z}_3[x]$. In [8], p. 257, it was observed that $(GF(3^2), +, \circ)$, with

$$x \circ y := \begin{cases} x \cdot y & \text{if } y \text{ is a square in } (GF(3^2), +, \cdot) \\ x^3 \cdot y & \text{otherwise} \end{cases}$$

and

$$+: (a + b\gamma) + (c + d\gamma) = (a + c) \mod 3 + ((b + d) \mod 3) \gamma$$

is a (right) nearfield, but not a field.
The distributive elements of \((GF(3^2), +, \circ)\), denoted by \((GF(3^2), +, \circ)_d\), are the elements 0, 1, 2. From now on when there is no room for confusion, we will write \(x \circ y\) as \(xy\). Now let \(F = (GF(3^2), +, \circ)\), with \(\alpha \in F\) acting as an endomorphism of \(V = F^n\) by defining \((x_1, x_2, x_3)_\alpha = (x_1 \alpha, x_2 \alpha, x_3 \alpha)\). Thus, \(Q(V) = V_1 \cup V_2 \cup V_3\), with \(V_1 = (1, d_1, d_2) F\), \(V_2 = (d_1, 1, d_2) F\) and \(V_3 = (d_1, d_2, 1) F\), with \(d_1, d_2 \in F_d\). We will refer back to this example later in the paper.

In [9] it was proved that finite-dimensional near-vector spaces can be characterized in the following way:

Theorem 2.6 ([9]) Let \((G, +)\) be a group and let \(A = D \cup \{0\}\), where \(D\) is a fixed point free group of automorphism of \(G\). Then \((G, A)\) is a finite-dimensional near-vector space if and only if there exist a finite number of nearfields \(F_1, \ldots, F_m\), semigroup isomorphisms \(\psi_i : (A, \circ) \to (F_i, \cdot)\), and an additive group isomorphism \(\Phi : G \to F_1 \oplus \ldots \oplus F_m\) such that if \(\Phi(g) = (x_1, \ldots, x_m)\), then \(\Phi(\alpha g) = (x_1 \psi_1(\alpha), \ldots, x_m \psi_m(\alpha))\) for all \(g \in G\), \(\alpha \in A\).

Using this theorem we can specify a finite-dimensional near-vector space by taking \(n\) copies of a nearfield \(F\) for which there are semigroup isomorphisms \(\psi_i : (F, \cdot) \to (F_i, \cdot)\), \(i \in \{1, \ldots, n\}\). We then take \(V := F^n\), \(n\) a positive integer, as the additive group of the near-vector space and define the scalar multiplication by:

\[
(x_1, \ldots, x_n)_\alpha := (x_1 \psi_1(\alpha), \ldots, x_n \psi_n(\alpha)),
\]

for all \(\alpha \in F\) and \(i \in \{1, \ldots, n\}\). This is the type of construction we will use throughout this paper and we will use \((F^n, F)\) to denote an instance of a near-vector space of this form.

The concept of regularity is a central notion in the study of near-vector spaces.

Definition 2.7 ([1]) A near-vector space is regular if any two vectors of \(Q(V)^*\) are compatible, i.e. if for any two vectors \(u\) and \(v\) of \(Q(V)^*\) there exists a \(\lambda \in A \setminus \{0\}\) such that \(u + v \lambda \in Q(V)\).

Theorem 2.8 ([1]) Let \(F\) be a (right) nearfield and let \(I\) be a nonempty index set. Then the set

\[
F^{(I)} := \{(n_i)_{i \in I} | n_i \in F, n_i \neq 0 \text{ for at most a finite number of } i \in I\}
\]

with the scalar multiplication defined by

\[
(n_i)\lambda := (n_i \lambda)
\]

gives that \((F^{(I)}, F)\) is a near-vector space.
We describe the quasi-kernel of $F^{(I)}$:

Theorem 2.9 ([1]) We have

$$Q(F^{(I)}) = \{(d_i)\lambda | \lambda \in F, d_i \in F_d \text{ for all } i \in I \}.$$

We can also show that the quasi-kernel is not the entire space.

Theorem 2.10 Letting F be a proper (right) nearfield and let I be a nonempty index set, then the near-vector space $(F^{(I)}, F)$ has $Q(F^{(I)}) \neq F^{(I)}$.

Proof Consider the element $v = (a_1, 1, \ldots, 0) \in V$, where $a_1 \notin F_d$. We show that v is in $V \setminus Q(V)$. Suppose that $v \in Q(V)$, and then $(a_1, 1, \ldots, 0) = (d_1\lambda, d_2\lambda, \ldots, 0)$. Thus, we get that $a_1 = d_1\lambda$, $1 = d_2\lambda$, and since F is a nearfield, we can solve this and get that $\lambda = d_2^{-1}$. Substituting this in the first equation we get that $a_1 = d_1d_2^{-1}$, and since F_d is a field, this gives that $a_1 \in F_d$, a contradiction.

The following theorem gives a characterization of regularity in terms of the near-vector space $(F^{(I)}, F)$.

Theorem 2.11 ([1]) A near-vector space (V, F), with F a nearfield and $V \neq 0$, is a regular near-vector space if and only if V is isomorphic to $F^{(I)}$ for some index set I.

The following theorem is central in the theory of near-vector spaces.

Theorem 2.12 ([1]) (The Decomposition Theorem) Every near-vector space V is the direct sum of regular near-vector spaces V_j ($j \in J$) such that each $u \in Q(V)^*$ lies in precisely one direct summand V_j. The subspaces V_j are maximal regular near-vector spaces.

3. Spanning sets and generators

In [5] a study of the subspaces of near-vector spaces was initiated. In this section we add to these results. We begin with some basic definitions.

Definition 3.1 ([5]) If (V, A) is a near-vector space and $\emptyset \neq V' \subseteq V$ is such that V' is the subgroup of $(V, +)$ generated additively by $X A = \{x a | x \in X, a \in A \}$, where X is an independent subset of $Q(V)$, then we say that (V', A) is a subspace of (V, A), or simply V' is a subspace of V if A is clear from the context.

From the definition, since X is a basis for V', the dimension of V' is $|X|$. It is clear that V is a subspace of itself since it is generated by $X A$ where X denotes a basis of $Q(V)$ and we define the trivial subspace, $\{0\}$, to be the space generated by the empty subset of $Q(V)$.

Definition 3.2 Letting (V, A) be a near-vector space, then the span of a set S of vectors is defined to be the intersection W of all subspaces of V that contain S, denoted span S.

It is straightforward to verify that W is a subspace, called the subspace spanned by S, or conversely, S is called a spanning set of W and we say that S spans W. Moreover, if we define span $\emptyset = \{0\}$, then it is not difficult to check that span S is the set of all possible linear combinations of S.
For a vector space \((V, F)\) the span of a single vector \(v\) is always of the form \(vF\), but in general this is not true for near-vector spaces. The following two results were recently proved:

\{

\textbf{Lemma 3.3} Let \((V, A)\) be a near-vector space. Then for all \(v \in V\), \(\text{span}\{v\} = vA\) if and only if \(Q(V) = V\).

One might wonder if it is possible for a nonzero \(w \in V \setminus Q(V)\) to have \(\text{span}\{w\} = vA\) for some \(v \in Q(V)\).

\textbf{Lemma 3.4} Let \((V, A)\) be a near-vector space. Then for all nonzero \(w \in V \setminus Q(V)\), \(\text{span}\{w\} \neq vA\) for some \(v \in Q(V)\).

\}

We are interested in what the span of a vector outside of \(Q(V)\) looks like.

Let \((V, A)\) be a near-vector space, not necessarily finite-dimensional. By definition, the quasi-kernel \(Q(V)\) generates \(V\), so for any \(v \in V\), there is \(u_1, \ldots, u_m \in Q(V) \setminus \{0\}\) and \(\alpha_1, \ldots, \alpha_m \in A \setminus \{0\}\), such that \(v = u_1\alpha_1 + \cdots + u_m\alpha_m\). This expression is not unique. We can also have \(u_1', \ldots, u_l' \in Q(V) \setminus \{0\}\) and \(\alpha_1', \ldots, \alpha_l' \in A \setminus \{0\}\) such that \(v = u_1'\alpha_1' + \cdots + u_l'\alpha_l'\) with \(m \neq l\).

For \(v \in V \setminus \{0\}\), we consider

\[n = \min \left\{ m \in \mathbb{N} \mid v = \sum_{i=1}^{m} u_i\alpha_i, \text{ with } u_i \in Q(V) \setminus \{0\}, \alpha_i \in A \setminus \{0\}, i = 1, \ldots, m \right\}. \]

\textbf{Definition 3.5} For \(v \in V \setminus \{0\}\) we define the dimension of \(v\) to be

\[n = \min \left\{ m \in \mathbb{N} \mid v = \sum_{i=1}^{m} u_i\alpha_i, \text{ with } u_i \in Q(V) \setminus \{0\}, \alpha_i \in A \setminus \{0\}, i = 1, \ldots, m \right\}, \]

and we denote it by \(\text{dim}(v) = n\) and \(\text{dim}(v) = 0\) if \(v\) is the zero vector.

\textbf{Theorem 3.6} We have that \(\text{dim}(\text{span}\{v\}) = \text{dim}(v)\).

\textbf{Proof} Let \(n = \text{dim}(v)\) and \(\{u_1, \ldots, u_n\} \subset Q(V)\), such that \(v = \sum_{i=1}^{n} u_i\alpha_i\) for some \(\alpha_i \in A \setminus \{0\}\). Then \(\text{span}\{v\} \subset \text{span}\{u_1, \ldots, u_n\}\). Since \(\text{span}\{v\}\) is the smallest subset of \(V\) that contains \(v\). Since \(n\) is minimal, \(\{u_1, \ldots, u_n\}\) is a linearly independent subset of \(Q(V)\). Hence, \(\dim(W) = n\) and \(\dim(\text{span}\{v\}) \leq n\).

Let us assume that \(\dim(\text{span}\{v\}) < n\). Since \(v \in \text{span}\{v\}\), there are \(u_1, \ldots, u_m \in Q(V) \setminus \{0\}\) and \(\beta_1, \ldots, \beta_m \in A \setminus \{0\}\) such that \(v = \sum_{i=1}^{m} u_i\beta_i\), with \(m < n\). This a contradiction since \(n\) is the smallest integer that satisfies this condition. Hence, \(\dim(\text{span}\{v\}) = \text{dim}(v)\). \(\square\)

We know that any subspace of \(W\) of \(V\) is generated by \(XA\), with \(X\) a linearly independent subset of \(Q(V)\). For \(\text{span}\{v\}\), \(v\) a vector in \(V \setminus \{0\}\), the subset \(X\) is given by any linearly independent set \(\{u_1, \ldots, u_n\} \subset Q(V)\), such that \(n = \text{dim}(v)\) and \(v = \sum_{i=1}^{n} u_i\alpha_i\) for some \(\alpha_i \in A \setminus \{0\}\).

By Lemma 3.3, we have that:
Proposition 3.7 For any \(v \in V \), \(\dim(v) = 1 \) if and only of \(v \in Q(V) \setminus \{0\} \).

Also, if \(V \) is finite-dimensional, of dimension \(n \), then \(\dim(v) \leq n \), and if \(\dim(v) = n \), then \(\text{span}\{v\} = V \).

Thus, we define:

Definition 3.8 Let \((V, A)\) be a near-vector space. If \(v \in V \) such that \(\text{span}\{v\} = V \), then \(v \) is called a generator of \(V \).

Isomorphisms preserve generators:

Theorem 3.9 Let \((V_1, A_1)\) and \((V_2, A_2)\) be isomorphic near-vector spaces and \(v \in V_1 \). Then \(\dim(v) = \dim(\theta(v)) \), where \((\theta, \eta)\) is the isomorphism.

Proof Let \(\dim(v) = k \) and \(\dim(\theta(v)) = k' \). Then there exist \(u_1, \ldots, u_k \in Q(V_1) \setminus \{0\} \) and \(\alpha_1, \ldots, \alpha_k \in A_1 \setminus \{0\} \) such that \(v = \sum_{i=1}^{k} u_i \alpha_i \). We have

\[
\theta(v) = \theta \left(\sum_{i=1}^{k} u_i \alpha_i \right) = \sum_{i=1}^{k} \theta(u_i) \alpha_i = \sum_{i=1}^{k} \theta(u_i) \eta(\alpha_i).
\]

It follows that \(\dim(\theta(v)) \leq k \).

Assume that \(k' = \dim(\theta(v)) < k \). There are \(v_1, \ldots, v_{k'} \in Q(V_2) \setminus \{0\} \) and \(\beta_1, \ldots, \beta_{k'} \in A_2 \setminus \{0\} \) such that \(\theta(v) = \sum_{i=1}^{k} v_i \beta_i. \) Since \((\theta, \eta)\) is an isomorphism, we have

\[
\theta(v) = \sum_{i=1}^{k'} \theta(v_i') \eta(\beta_i') = \sum_{i=1}^{k'} \theta(v_i' \beta_i') = \theta \left(\sum_{i=1}^{k'} v_i' \beta_i' \right).
\]

It follows that \(v = \sum_{i=1}^{k'} v_i' \beta_i' \) and \(\dim(v) \leq k' < k \), which is a contradiction. \(\Box \)

Corollary 3.10 Let \((V_1, A_1)\) and \((V_2, A_2)\) be isomorphic near-vector spaces. \(v \) is a generator of \(V_1 \) if and only if \(\theta(v) \) is a generator of \(V_2 \), where \((\theta, \eta)\) is the isomorphism.

For \(F \) a field, using the following recently proved result, we can show more.

Theorem 3.11 Let \(F = GF(p^r) \) and \(V = F^n \) be a near-vector space with scalar multiplication defined for all \(\alpha \in F \) by

\[
(x_1, \ldots, x_n) \alpha := (x_1 \psi_1(\alpha), \ldots, x_n \psi_n(\alpha)),
\]

where the \(\psi_i's \) are automorphisms of \((F, \cdot)\). If \(Q(V) \neq V \) and \(V = V_1 \oplus \cdots \oplus V_k \) is the canonical decomposition of \(V \), then \(Q(V) = Q_1 \cup \cdots \cup Q_k \) where \(Q_i = V_i \) for each \(i \in \{1, \ldots, k\} \).
Theorem 3.12 Let F be a field and $V = F^n$ be a near-vector space over F with scalar multiplication defined for all $(x_1, \ldots, x_n) \in F$ and $\alpha \in F$ by

$$(x_1, \ldots, x_n)\alpha := (x_1\psi_1(\alpha), \ldots, x_n\psi_n(\alpha)),$$

where the ψ_is are automorphisms of (F, \cdot) for $i \in \{1, \ldots, n\}$ and they can be equal. If $V_1 \oplus \cdots \oplus V_k$ is the canonical decomposition of V, then for all $v \in V$, $\dim(v) \leq k$.

Proof Let $v \in V$ and suppose that $\dim(v) > k$, say $\dim(v) = k'$, where $k' > k$. Then $v = \sum_{i=1}^{k'} u_i \lambda_i$, where $u_i \in Q(V) \setminus \{0\}$, $\lambda_i \in F$ for $i \in 1, \ldots, k'$. However, for all $i \in 1, \ldots, k'$, $u_i \in Q_j$ for some j with $1 \leq j \leq k$, since by Theorem 3.11, $Q(V) = Q_1 \cup \cdots \cup Q_k$ and $k' > k$. Suppose, without loss of generality, that u_s and $u_{s'}$ are in Q_j, and then $u_s \lambda_s + u_{s'} \lambda_{s'} \in Q_j$, since $Q_j = V_j$ (F is a field). Now we have that v can be written with fewer than k' elements, i.e. $v = u_1 \lambda_1 + \cdots + u_k \lambda_k$, a contradiction. \hfill \square

Thus, in the case where F is a field, unless the dimension of V is less than or equal to 1, or equal to k, where k is the number of maximal regular subspaces in the canonical decomposition of the near-vector space, we cannot have any generators. If the dimension of V is exactly k then the maximal regular spaces have dimension 1 and any element of the form $(1, \ldots, 1)$ will be generator of V.

3.1. Generators for regular near-vector spaces

When F is a proper nearfield, we have the following result:

Theorem 3.13 Let F be a proper nearfield and $V' = F^n$ be a near-vector space over F with scalar multiplication defined for all $(x_1, \ldots, x_n) \in V'$, $\alpha \in F$ by

$$(x_1, \ldots, x_n)\alpha := (x_1\alpha, \ldots, x_n\alpha).$$

$v = (a_1, \ldots, a_n)$ is a generator of V' if and only for $d_1, \ldots, d_n \in F_d$,

$$\sum_{i=1}^{n} d_ia_i = 0 \iff d_1 = d_2 = \ldots = d_n = 0.$$

Proof Let us assume that there are $d_1, \ldots, d_n \in F_d$ such that $\sum_{i=1}^{n} d_ia_i = 0$ and $d_{i_0} \neq 0$. We show that $\dim(v) < n$. Without loss of generality let us assume that $i_0 = 1$. Then $a_1 = \sum_{i=2}^{n} d_i^{-1}d_ia_i$, so we get

$$(a_1, \ldots, a_n) = \left(\sum_{i=2}^{n} d_i^{-1}d_ia_i, a_2, \ldots, a_n\right)$$

$$= \sum_{i=2}^{n} u_i, \text{ with } u_i = (d_i^{-1}d_ia_i, \ldots, 0, a_i, 0, \ldots, 0).$$

Since $Q(V') = \{(d_1, \ldots, d_n)\alpha | d_1, \ldots, d_n \in F_d, \alpha \in F\}$, $u_i \in Q(V')$ for all $i = 2, \ldots, n$. It follows that $\dim(v) < n$. Therefore, $\dim(v) = n$ implies that for $d_1, \ldots, d_n \in F_d$,

$$\sum_{i=1}^{n} d_ia_i = 0 \iff d_1 = d_2 = \ldots = d_n = 0.$$
Now let us assume that for \(d_1, \ldots, d_n \in F_d \),

\[
\sum_{i=1}^{n} d_i a_i = 0 \iff d_1 = d_2 = \ldots = d_n = 0,
\]

and that \(\text{dim}(v) < n \). Thus, \(v \) can be written as a linear combination of less than \(k \) vectors of the quasi-kernel with \(k < n \), so there is

\[
(a_i)_{1 \leq i \leq k} \subseteq F \quad \text{and} \quad (d_{i,j})_{1 \leq i \leq n, 1 \leq j \leq k} \subseteq F_d,
\]

such that

\[
(a_1, \ldots, a_n) = \sum_{i=1}^{k} (d_{1,i}, \ldots, d_{n,i}) a_i.
\]

Hence, we get the following system of \(n \) equations with \(k \) unknowns:

\[
\begin{align*}
 d_{1,1} x_1 + d_{1,2} x_2 + \cdots + d_{1,k} x_k &= a_1 \\
 d_{2,1} x_1 + d_{2,2} x_2 + \cdots + d_{2,k} x_k &= a_2 \\
 \vdots & \quad \ddots \\
 d_{n,1} x_1 + d_{n,2} x_2 + \cdots + d_{n,k} x_k &= a_n
\end{align*}
\]

with \((\alpha_1, \ldots, \alpha_k)\) as the solution. Since the equation has a solution, the matrix

\[
A = \begin{pmatrix}
 d_{1,1} & d_{1,2} & d_{1,3} & \ldots & d_{1,k} \\
 d_{2,1} & d_{2,2} & d_{2,3} & \ldots & d_{2,k} \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 d_{n,1} & d_{n,2} & \ldots & d_{n,k-1} & d_{n,k}
\end{pmatrix}
\]

has rank \(k \) in \(F_d \). Therefore, there exist \(\delta_1, \ldots, \delta_n \in F_d \) not all zero such that \(\sum_{i=1}^{n} \delta_i a_i = 0 \). This is a contradiction. \(\square \)

Let \(F \) be a proper nearfield and \(V'' = F^n \) be a regular near-vector space over \(F \).

Theorem 3.14 \(v = (a_1, \ldots, a_n) \) is a generator of \(V'' \) if and only if for \(d_1, \ldots, d_n \in F_d \),

\[
\sum_{i=1}^{n} d_i a_i = 0 \iff d_1 = \cdots = d_n = 0.
\]

Proof It follows from the fact that \((V'', F)\) is isomorphic to \((V', F)\) by Theorem 2.11. \(\square \)

Theorem 3.15 Let \(V = F^n \) be a near-vector space with \(|F| = |F_d|^m \) and

\[
(x_1, \ldots, x_n) \alpha := (x_1 \alpha, \ldots, x_n \alpha),
\]

for all \((x_1, \ldots, x_n) \in V \) and \(\alpha \in F \). \(v \) is a generator of \(V \) if and only if \(m \geq n \).
Theorem Suppose that there is \(v = (a_1, \ldots, a_n) \in V \) such that \(\dim(v) = n \). By Theorem 3.13 we have that for any \(d_i \in F_d, \ i = 1, \ldots, n, \sum_{i=1}^{n} d_i a_i = 0 \) implies \(d_i = 0 \) for all \(i \). It follows that \(\{a_1, \ldots, a_n\} \) is a linearly independent set of vectors in the vector space \(F \) over \(F_d \). Hence, \(m \geq n \).

To show the converse we assume that \(m < n \). Then for any \(v = (a_1, \ldots, a_n) \in V \) there are \(d_1, \ldots, d_n \) not all zero with \(\sum_{i=1}^{n} d_i a_i = 0 \). Hence, we cannot have \(v \in V \) such that \(\dim(v) = n \).

\[\square \]

Example 3.16 Let us consider the Dickson nearfield \(F = DF(3, 2) \) and \(V = F^2 \) a near-vector space with \((x, y)\alpha := (xa, y\alpha) \). Then the element \(v = (1, \gamma) \) has dimension 2. In fact, \(v \) is not in any of the subspaces. Suppose that \(v \in V_1 \), with \(V_1 \) a one-dimensional subspace of \(V \). Let \(w \) be a basis of \(V^\prime \). It follows that \(v = w\lambda \), with \(\lambda \in F \), since the quasi-kernel is closed under scalar multiplication \(v \in Q(V) \), but \(v \notin Q(V) \). Hence, the smallest subspace of \(V \) that contains \(v \) is \(V \) itself. Hence, \(v \) is a generator of \(V \) and \(\dim(v) = 2 \). Using Theorem 3.15 we can also see that \(\dim(v) = 2 \). For any \(d_1, d_2 \in F_d \), \(d_1 + d_2 \gamma = 0 \) implies that \(d_1 = d_2 = 0 \), since \(\{1, \gamma\} \) is a basis of the vector space \(F \) over \(F_d \).

For three copies of \(F \), \(V = F^3 \), it is not possible to have an element that generates \(V \).

3.2. Generators for general near-vector spaces

In this subsection we consider the case where \(F \) is a proper nearfield and \(V = F^n \) is a near-vector space over \(F \) with the canonical decomposition \(V = \bigoplus_{i=1}^{k} V_i \).

Lemma 3.17 If \(v_i \in V_i \setminus \{0\} \) and \(v_j \in V_j \setminus \{0\} \) with \(i \neq j \), then

\[\dim(v_i + v_j) = \dim(v_i) + \dim(v_j). \]

Proof Let \(\dim(v_i) = l_i, \dim(v_j) = l_j \). It is not difficult to check that \(\dim(v_i + v_j) \leq l_i + l_j \). Suppose that \(l = \dim(v_i + v_j) < l_i + l_j \). There are \(u_1, \ldots, u_l \in Q(V_i) \setminus \{0\} \cup Q(V_j) \setminus \{0\} \) and \(a_1, \ldots, a_l \in F \setminus \{0\} \) such that

\[v_i + v_j = l m=1 u_m \alpha_m. \]

It follows that we write \(v_i \) as \(v_i = \sum_{m=1}^{l'} u_m \alpha_m, \) with \(l' < l \) or \(v_j = \sum_{m=1}^{l''} u_m \alpha_m \) with \(l'' < l_j \), since \(V_i \cap V_j = \{0\} \). This is a contradiction since \(\dim(v_i) = l_i, \dim(v_j) = l_j \) and we should have \(l_i \geq l' \) and \(l_j \geq l'' \).

\[\square \]

Corollary 3.18 If \(v_i \in V_i \setminus \{0\} \) and \(v_j \in V_j \setminus \{0\} \) with \(i \neq j \), then

\[\text{span}\{v_i + v_j\} = \text{span}\{v_i\} \oplus \text{span}\{v_j\}. \]

Proof We have \(\text{span}\{v_i\} \cap \text{span}\{v_j\} = \{0\} \), since \(\text{span}\{v_i\} \subseteq V_i, \text{span}\{v_j\} \subseteq V_j \) and \(V_i \cap V_j = \{0\} \).

We have \(\text{span}\{v_i + v_j\} \subseteq \text{span}\{v_i\} \oplus \text{span}\{v_j\} \). Since \(\dim(v_i + v_j) = \dim(v_i) + \dim(v_j) \), \(\text{span}\{v_i + v_j\} = \text{span}\{v_i\} \oplus \text{span}\{v_j\} \).

\[\square \]
Corollary 3.19 Let $v_1, \dots, v_m \in V$ such that they are all in distinct maximal regular subspaces. We have

$$\dim(v_1 + \cdots + v_m) = \dim(v_1) + \cdots + \dim(v_m),$$

$$\text{span}\{v_1 + \cdots + v_m\} = \text{span}\{v_1\} \oplus \cdots \oplus \text{span}\{v_m\}.$$

Theorem 3.20 A vector $v \in V$ is a generator of V if and only if there are $v_i \in V_i$ generators of V_i for all $i = 1, \ldots, k$, such that $v = v_1 + \cdots + v_k$.

Proof We have $\text{span}\{v\} = \text{span}\{v_1 + \cdots + v_k\} = \text{span}\{v_1\} \oplus \cdots \oplus \text{span}\{v_k\}$. If v is a generator of v we have $\text{span}\{v\} = V$ and so $\text{span}\{v_1\} \oplus \cdots \oplus \text{span}\{v_k\} = V$. Hence, $\text{span}\{v_i\} = V_i$ for all $i = 1, \ldots, k$. Thus, v_i is a generator of V_i for all i. Likewise, if v_i is a generator of V_i for all i, then v is a generator of V.

Acknowledgment
The authors would like to express their gratitude for funding by the National Research Foundation (Grant Number 93050) and Stellenbosch University.

References