Some properties of e-symmetric rings

Funyun MENG*, Junchao WEI
School of Mathematics, Yangzhou University, Yangzhou, P.R. China

Received: 07.09.2017 • Accepted/Published Online: 04.07.2018 • Final Version: 27.09.2018

Abstract: In this paper, we first give some characterizations of e-symmetric rings. We prove that R is an e-symmetric ring if and only if $a_1a_2a_3 = 0$ implies that $a_\sigma(1)a_\sigma(2)a_\sigma(3)c = 0$, where σ is any transformation of $\{1, 2, 3\}$. With the help of the Bott–Duffin inverse, we show that for $e \in ME_1(R)$, R is an e-symmetric ring if and only if for any $a \in R$ and $g \in E(R)$, if a has a Bott–Duffin (e, g)-inverse, then $g = eg$. Using the solution of the equation $axe = c$, we show that for $e \in ME_1(R)$, R is an e-symmetric ring if and only if for any $a, c \in R$, if the equation $axe = c$ has a solution, then $c = ec$. Next, we study the properties of e-symmetric $*$-rings. Finally we discuss when the upper triangular matrix ring $T_2(R)$ (resp. $T_3(R, I)$) becomes an e-symmetric ring, where $e \in E(T_2(R))$ (resp. $e \in E(T_3(R, I))$).

Key words: e-Symmetric ring, $*$-ring, left semicentral, left min-abel ring, Bott–Duffin inverse, upper triangular matrix ring

1. Introduction
Throughout this paper, all rings are associative with unity. For a ring R, $T_2(R)$ denotes the 2×2 upper triangular matrix ring over R, and $E(R), U(R), Z(R)$, and $N(R)$ denote the set of all idempotents, the set of all invertible elements, the center of R, and the set of all nilpotent elements of R, respectively. An element $e \in E(R)$ is called left minimal idempotent of R if Re is a minimal left ideal of R. Write $ME_1(R)$ to denote the set of all left minimal idempotents of R. An idempotent e of a ring R is called left (right) semicentral if $ae = eae$ ($ea = eae$) for each $a \in R$. A ring R is called (strongly) left min-abel [10] if either $ME_1(R) = \emptyset$ or every element e in $ME_1(R)$ is (right) left semicentral.

A ring R is symmetric [5] if $abc = 0$ implies $acb = 0$ for all $a, b, c \in R$. The study of symmetric rings also can be found in [6]. Symmetric rings were generalized by Ouyang and Chen to weak symmetric rings in [8]; that is, a ring R is said to be weak symmetric if for all $a, b, c \in R$, if $abc \in N(R)$, then $acb \in N(R)$. Following [3], a ring R is called central symmetric if for any $a, b, c \in R$, $abc = 0$ implies $bac \in Z(R)$. Central symmetric rings are another form of generalization of symmetric rings. In [11], Wei introduced generalized weakly symmetric rings, which further generalized the concept of symmetric rings. In [7], a ring R is called (strongly) e-symmetric if for any $a, b, c \in R$, $abc = 0$ implies $aceb = 0$ if $ae \in Z(R)$. In the paper, it was shown that a ring R is e-symmetric if and only if e is left semicentral and eRe is symmetric [7, Theorem 2.2].

In [7, Theorem 3.1], it was shown that a ring R is strongly e-symmetric if and only if e is central and eRe
is symmetric. Also, using \(e \)-symmetric rings, we gave some new characterizations of left min-abel rings in [10] and [11].

This paper is organized as follows. In Section 2, we first discuss many properties of \(e \)-symmetric rings and strongly \(e \)-symmetric rings. Then, with the help of \(e \)-symmetric rings, we give some characterizations of left min-abel rings. In Section 3, we study the \(e \)-symmetricity of \(*\)-rings. We show that for a \(*\)-ring \(R \), if \(R \) is \(e \)-symmetric and \(1 + (e^* - e)^*(e^* - e) \in U(R) \), then \(R \) is strongly \(e \)-symmetric and \(e \) is a projection. In Section 4, we discuss when the upper triangular matrix ring \(T_2(R) \) (resp. \(T_3(R, I) \)) becomes an \(e \)-symmetric ring, where \(e \in E(T_2(R)) \) (resp. \(e \in E(T_3(R, I)) \)).

2. Some characterizations of \(e \)-symmetric rings

Proposition 2.1 The following conditions are equivalent for a ring \(R \):

1. \(R \) is an \(e \)-symmetric ring;
2. \(abc = 0 \) implies \(bace = 0 \) for all \(a, b, c \in R \).

Proof
(1) \(\Rightarrow \) (2) Since \(R \) is an \(e \)-symmetric ring, by [7, Theorem 2.2], \(e \) is left semicentral. Let \(a, b, c \in R \) and satisfy \(abc = 0 \). Then we have \(1a(bc) = 0 \), \(1bcae = 0 \); that is, \(bcae = 0 \). Again, the \(e \)-symmetricity of \(R \) gives that \(b(ace) = 0 \). Noting that \(e \) is left semicentral, then we get \(bace = 0 \).

(2) \(\Rightarrow \) (1) Let \(x \in R \). We have \(xc(1 - e)e = 0 \); by hypothesis, one obtains \((1 - e)xeee = 0 \), and it follows that \((1 - e)Re = 0 \). Thus, \(e \) is left semicentral. By (2) we know that \(eRe \) is a symmetric ring. By [7, Theorem 2.2], \(R \) is an \(e \)-symmetric ring.

By Proposition 2.1, we get the following corollaries.

Corollary 2.2 Let \(R \) be an \(e \)-symmetric ring. If \(abc = 0 \), then we have

1. \(bace = 0 \);
2. \(cbae = 0 \);
3. \(cbae = 0 \).

Corollary 2.3 \(R \) is an \(e \)-symmetric ring if and only if for any \(a_1, a_2, a_3 \in R \), \(a_1a_2a_3 = 0 \) implies that \(a_{\sigma(1)}a_{\sigma(2)}a_{\sigma(3)}e = 0 \), where \(\sigma \) is any transformation of \(\{1, 2, 3\} \).

Let \(e, g \in E(R) \). If \(Re \cong Rg \) as left \(R \)-modules, then we say \(e \) and \(g \) are left isomorphic. Similarly, if \(eR \cong gR \) as right \(R \)-modules, then we say \(e \) and \(g \) are right isomorphic.

Theorem 2.4 Let \(R \) be an \(e \)-symmetric ring.

1. If \(g \) and \(e \) are left isomorphic, then \(R \) is a \(g \)-symmetric ring.
2. If \(g \) and \(e \) are right isomorphic, then \(R \) is a \(g \)-symmetric ring.
3. If \(g \) and \(e \) are left isomorphic, then \(eR = gR \).

Proof Since \(R \) is an \(e \)-symmetric ring, by [7, Theorem 2.2], \(e \) is left semicentral.

1. Let \(\sigma : Re \to Rg \) be the left \(R \)-module isomorphism and \(g = \sigma(xe) \) where \(x \in R \); then \(eg = e\sigma(xe) = \sigma(exe) = \sigma(xe) = g \). Let \(a, b, c \in R \) and satisfy \(abc = 0 \). Then \(acbe = 0 \) (since \(R \) is an \(e \)-symmetric ring), so we have \(acbg = acbeg = 0 \). Thus, \(R \) is a \(g \)-symmetric ring.

2. Let \(\tau : eR \to gR \) be the right \(R \)-module isomorphism. Then there exist \(x, y \in R \) such that \(\tau(e) = gx \) and \(\tau(ey) = g \), so we have \(g = \tau(e)y = gx \). Let \(f = ygx \). Then

\[
f^2 = ygxygx = yg^2x = ygx = f,
\]
\[ef = eygx = \tau^{-1}(g)gx = \tau^{-1}(gx) = e, \]
\[fe = ygxe = yr(e)e = y(e)ygx = f, \]
and so \(Re = Rf \), and \(e \) and \(f \) are left isomorphic. By (1), \(R \) is an \(f \)-symmetric ring. Then by [7, Theorem 2.2], \(f \) is left semicentral. Therefore,
\[g = g^2 = gxygxy = gx fy = fgxfy = fg. \]

Let \(a, b, c \in R \) and satisfy \(abc = 0 \); then \(acbf = 0 \) (since \(R \) is an \(f \)-symmetric ring). We have \(acbg = acbf g = 0 \). Thus, \(R \) is a \(g \)-symmetric ring.

(3) Since \(g \) and \(e \) are left isomorphic, by (1), \(R \) is a \(g \)-symmetric ring. Hence, \(g \) is left semicentral by [7, Theorem 2.2]. Observing the proof of (1), we have \(e = ge \) and \(g = eg \), and this gives \(eR = gR \). \(\square \)

Corollary 2.5 Let \(R \) be a strongly \(e \)-symmetric ring.

(1) If \(g \) and \(e \) are left isomorphic, then \(e = g \).

(2) If \(g \) and \(e \) are right isomorphic, then \(e = g \).

Proof Since \(R \) is a strongly \(e \)-symmetric ring, by [7, Theorem 3.1], \(e \) is a central element and \(R \) is \(e \)-symmetric.

(1) If \(g \) and \(e \) are left isomorphic, then \(eR = gR \) by Theorem 2.4(3). Hence, \(g = eg \) and \(ge = e \). Noting that \(e \) is central, then \(g = ge = e \).

(2) If \(g \) and \(e \) are right isomorphic, then the proof of Theorem 2.4(2) implies that \(eR = gR \), and by (1), we know that \(e = g \). \(\square \)

Let \(R \) be a ring and \(a \in R \) and \(e, f \in E(R) \). If there exists an element \(y \in R \) satisfying
\[y = ey = yf, \quad yae = e, \quad fay = f, \]
then \(y \) is called a Bott–Duffin \((e, f)\)-inverse of \(a \) (see [2]). If \(y \) exists, then it is unique. Denote it by \(a^{(e,f)}_{BD} \).

Proposition 2.6 Let \(a \in R \) and \(e, f \in E(R) \). If \(R \) is \(e \)-symmetric and \(a \) has a Bott–Duffin \((e, f)\)-inverse \(y \), then:

(1) \(R \) is \(f \)-symmetric and \(eR = fR \);

(2) \(y^{(e,f)}_{BD} = eaf \).

Proof (1) Since \(a \) has a Bott–Duffin \((e, f)\)-inverse \(y \), \(y = ey = yf, \ yae = e, \) and \(fay = f \). Noting that \(R \) is \(e \)-symmetric, then \(e \) is left semicentral by [7, Theorem 2.2], so \(f = fay = fa(ey) = e(aye) = ef \), and this implies that \(R \) is \(f \)-symmetric. Hence, \(f \) is left semicentral, and it follows that \(e = yae = (yf)ae = (fyf)ae = f(yf)ae = f(e)ae = fe \). Therefore, \(eR = fR \).

(2) Noting that \(e \) and \(f \) are left semicentral, then \(eafye = eafye = eaye = eaye = (fe)aye = faye = fe = e \) and \(fyeaf = feafy = yeaf = yfa = yfa = yae = ef = f \). Then \(y^{(e,f)}_{BD} = eaf. \square \)

Proposition 2.7 Let \(R \) be an \(e \)-symmetric ring and \(f \in E(R) \). If \(R \) satisfies one of the following conditions, then \(R \) is \(f \)-symmetric:
(1) \(eR + (1 - f)R = R\);
(2) \(ea + 1 - f \in U(R)\) for some \(a \in R\);
(3) \(Re + R(1 - f) = R\);
(4) \(ae + 1 - f \in U(R)\) for some \(a \in R\).

Proof (1) Since \(R\) is \(e\)-symmetric, \(e\) is left semicentral by [7, Theorem 2.2]. Noting that \(eR + (1 - f)R = R\), then \(fR = feR = efR \subseteq eR\), and it follows that \(f = ef\). The proof of Theorem 2.4(1) implies that \(R\) is \(f\)-symmetric.

(2) Set \(ea + 1 - f = u \in U(R)\). Then \(fu = fea\) and one obtains \(f = feau^{-1}\). Noting that \(e\) is left semicentral, then \(f = ef\), and this gives that \(R\) is \(f\)-symmetric.

(3) If \(Re + R(1 - f) = R\), then \(Rf = Ref\). Set \(f = eaf\) for some \(c \in R\). Then \(f = ecf = ef\) because \(e\) is left semicentral. Therefore, \(R\) is \(f\)-symmetric.

(4) Set \(ae + 1 - f = v \in U(R)\). Then \(fv = fae\) and one obtains \(f = faev^{-1}\). Noting that \(e\) is left semicentral, then \(f = ef\), so \(R\) is \(f\)-symmetric. \(\square\)

Proposition 2.8 A ring \(R\) is a strongly left min-abel ring if and only if for \(e \in ME_1(R)\) and \(a, b \in R\), \(e = eab\) implies that \(e = eba\).

Proof \((\Rightarrow)\) Assume that \(R\) is strongly left min-abel and \(e = eab\). Then \(e\) is central, and it follows that \(e = ee = eabeab = e(aeba)b\). This implies that \(eba \neq 0\), and one has \(Re = Reba\). Set \(e = eaba\) for some \(c \in R\).

Noting that \(e = eab\), then \(be = beab = ebab\). This gives \(eba = bea = eba\), so \(e = eca = (eaba)ba = eba\).

\((\Leftarrow)\) Let \(e \in ME_1(R)\) and \(x \in R\). Set \(g = e + ex(1 - e)\). Then \(eg = g, ge = e,\) and \(g^2 = g \in ME_1(R)\).

Since \(e = ege\), by hypothesis, \(e = eeg = eg = g\). Thus, \(ex(1 - e) = g - e = 0\) for each \(x \in R\), and this gives that \(e\) is right semicentral. By [7, Lemma 3.3], \(e\) is central. Hence, \(R\) is strongly left min-abel. \(\square\)

Theorem 2.9 Let \(e \in ME_1(R)\). Then \(R\) is an \(e\)-symmetric ring if and only if for any \(a \in R\) and \(g \in E(R)\), if \(a\) has a Bott–Duffin \((e,g)\)-inverse, then \(g = eg\).

Proof \((\Rightarrow)\) Let \(R\) be an \(e\)-symmetric ring. Then \(e\) is left semicentral. Assume that \(a \in R\) and \(g \in E(R)\) and \(a\) has a Bott–Duffin \((e,g)\)-inverse. Letting \(a_{BD}^{(e,g)} = y\), then \(y = ey = yg\) and \(g = gay = gaey = egaey = eg\).

\((\Leftarrow)\) First we prove that \(e\) is left semicentral. For any \(x \in R\), set \(g = e + (1 - e)xe\); then \(eg = e, ge = g, g^2 = g\). Obviously, \(e\) is a Bott–Duffin \((e,g)\)-invertible element and \(e_{BD}^{(e,g)} = e\). By hypothesis \(g = eg = e\), and then \((1 - e)xe\) for any \(x \in R\). Thus, \(e\) is left semicentral.

Next, we prove that \(eRe\) is a symmetric ring. Any \(a, b, c \in eRe\) satisfy \(abc = 0\). Assuming that \(acb \neq 0\), then \(a \neq 0\) and \(b \neq 0\), and so we have \(Ra = Re = Rb\). Let \(e = ra = sb\) for some \(r, s \in R\); then \(acb = aecb = ashcb = asecb = fathercb = 0\), which is a contradiction. Thus, \(eRe\) is a symmetric ring, and hence \(R\) is an \(e\)-symmetric ring by [7, Theorem 2.2]. \(\square\)

Proposition 2.10 Let \(e \in ME_1(R)\). Then \(R\) is an \(e\)-symmetric ring if and only if for any \(a \in R\) and \(g \in E(R)\), if \(a\) has a Bott–Duffin \((e,g)\)-inverse, then \(e = ge\).
Proof (⇒) From Theorem 2.9, we know $g = eg$. Since $e \in ME_l(R)$, $g \in ME_l(R)$, and R is a g-symmetric ring, g is left semicentral. Thus, $e = yae = ygae = gygae = ge$, where $y = \sigma^{(e,g)}_{BD}$. (⇐) The proof is similar to Theorem 2.9.

Let R be a ring and $a \in R$. If there exists $b \in R$ such that $a = aba$, then a is called a regular element of R and b is called an inner inverse. Clearly, if b exists, it is not unique. We denote by $a\{1\}$ the set of all inner inverses of a regular element a. Let $b \in a\{1\}$. Then $ab, ba \in E(R)$.

Proposition 2.11 Let a be a regular element of R and $b \in a\{1\}$. If R is ab-symmetric, then R is ba-symmetric.

Proof Since $b \in a\{1\}$, we have $a = aba$. Let $e = ab$ and $g = ba$; then $e, g \in E(R)$ and $ea = a = ag$. Denote $\sigma : Re \to Ra$ by $\sigma(re) = rea$ for any $r \in R$. It is easy to prove that σ is a left R-module isomorphism. Since $Ra = Rg$, we have $Re \cong Rg$ as left R-modules. By hypothesis, R is an e-symmetric ring, and thus R is a g-symmetric ring by Theorem 2.4. That is, R is a ba-symmetric ring.

Lemma 2.12 Let $a, b \in R$ and $e \in ME_l(R)$ satisfy $abe = e$. If e is left semicentral, then $e = bae$.

Proof Since $abe = e$ and e is left semicentral, we have $e = aceb$. Then $Re = Rae$. Letting $e = cae$ for some $c \in R$, then $e = c(abe) = caeb = eb = be$ and $b = beae = ceae = ca = e$.

Lemma 2.13 Let $e \in ME_l(R)$. If e is left semicentral, then eRe is a symmetric ring.

Proof Let $a, b, c \in eRe$ and satisfy $abc = 0$. If $acb \neq 0$, then $Racb = Re$, so $e = dacbe$ for some $d \in R$. By Lemma 2.12, $e = bdaec = cbdae$. Thus, $e = dacbe = dacbe = dabaedacecbe = d(ab)daedacecbe = 0$, which is a contradiction. Hence, $acb = 0$ and so eRe is a symmetric ring.

Proposition 2.14 Let $e \in ME_l(R)$. Then R is an e-symmetric ring if and only if for any $a \in R$ either $aRe = 0$ or the equation $axe = e$ has a solution.

Proof (⇒) Since R is an e-symmetric ring, e is left semicentral. Let $a \in R$. If $aRe \neq 0$, then $abe \neq 0$ for some $b \in R$. Thus, $Rabe = Re$. Set $e = dabe$ for some $d \in R$. By Lemma 2.12, $e = abde$. Hence, $x = bd$ is a solution of the equation $axe = e$.

(⇐) Let $e \in ME_l(R)$. If $(1 - e)Re \neq 0$, then by hypothesis we know $(1 - e)xe = e$ has a solution. However, $(1 - e)xe = e$ does not have a solution and that is a contradiction. Thus, $(1 - e)Re = 0$, e is left semicentral. By Lemma 2.13, eRe is a symmetric ring. Hence, R is an e-symmetric ring by [7, Theorem 2.2].

Theorem 2.15 Let $e \in ME_l(R)$. Then R is an e-symmetric ring if and only if for any $a, c \in R$, if the equation $axe = c$ has a solution, then $c = ec$.

Proof (⇒) Since R is an e-symmetric ring, e is left semicentral. If the equation $axe = c$ has a solution $x = b$, then $c = abe = eabe = ec$.

2393
(⇐) For any \(a \in R \), denote \(h = (1 - e)ae \). If \(h \neq 0 \), then \(Rh = Re \). Let \(e = ch \) for some \(c \in R \). Then \(h(ch)e = hch = he = h \). Thus, the equation \(hxe = h \) has a solution, and then \(h = eh = e(1 - e)ae = 0 \), which is a contradiction. Then \((1 - e)ae = 0 \) for any \(a \in R \). Hence, \(e \) is left semicentral. By Lemma 2.13, \(eRe \) is a symmetric ring. Hence, \(R \) is an \(e \)-symmetric ring.

\[\square \]

3. Symmetricity of \(* \)-rings

An involution \(a \mapsto a^{*} \) in a ring \(R \) is an antiisomorphism of degree 2; that is,

\[(a^{*})^{*} = a, \quad (a + b)^{*} = a^{*} + b^{*}, \quad (ab)^{*} = b^{*}a^{*}.\]

A ring \(R \) with an involution \(* \) is called a \(* \)-ring (see [1]).

Let \(R \) be a \(* \)-ring and \(e \in E(R) \). If \(e^{*} = e \), then \(e \) is called projection.

Let \(R \) be a ring and \(e \in E(R) \). \(R \) is called left \(e \)-reflexive if \(aRe = 0 \) implies \(eRa = 0 \) for any \(a \in R \).

Proposition 3.1 (1) \(R \) is strongly \(e \)-symmetric if and only if \(R \) is \(e \)-symmetric and left \(e \)-reflexive.

(2) If \(e \) is a projection element of a \(* \)-ring \(R \), then \(R \) is strongly \(e \)-symmetric if and only if \(R \) is \(e \)-symmetric.

Proof (1) \((\Rightarrow)\) Assume that \(aRe = 0 \). Since \(R \) is a strongly \(e \)-symmetric ring, by [7, Theorem 3.1], \(e \) is a central element. Then we get \(eRa = eRa = 0 \). Thus, \(R \) is left \(e \)-reflexive.

\((\Leftarrow)\) Suppose that \(R \) is \(e \)-symmetric and left \(e \)-reflexive; by [7, Theorem 2.2], \(e \) is left semicentral. Then we have \((1 - e)Re = 0 \). Since \(R \) is left \(e \)-reflexive, we have \(eR(1 - e) = 0 \), so \(e \) is a central element. Thus, \(R \) is a strongly \(e \)-symmetric ring by [7, Theorem 3.1].

(2) Noting that a projection element \(e \) in a \(* \)-ring \(R \) is left semicentral if and only if it is central, (2) holds.

\[\square \]

Proposition 3.2 Let \(R \) be a \(* \)-ring and \(e \in E(R) \). If \(R \) is an \(e \)-symmetric ring, then:

1. \(e^{*}e \) is an idempotent element;
2. the following conditions are equivalent:
 a. \(R \) is \(e^{*}e \)-symmetric,
 b. for each \(x \in R \), \(e^{*}xe = xe^{*}e \),
 c. \(e^{*}e \) is central,
 d. \(ee^{*}e = e^{*}e \).

Proof (1) Since \(R \) is an \(e \)-symmetric ring, \(e \) is left semicentral, and it follows that \((e^{*}e)^{2} = e^{*}ee^{*}e = e^{*}e = e^{*}e \).

(2) \((a) \Rightarrow (c)\) By (1), we know that \(e^{*}e \) is a projection. Since \(R \) is \(e^{*}e \)-symmetric, by Proposition 3.1(2), \(R \) is strongly \(e^{*}e \)-symmetric, and by [7, Theorem 3.1], \(e^{*}e \) is central.

\((c) \Rightarrow (b)\) For each \(x \in R \), by (c), we have \(e^{*}ex = xe^{*}e \), and this gives \(xe^{*}e = e^{*}exe \). Noting that \(e \) is left semicentral, \(xe^{*}e = e^{*}xe \).

\((b) \Rightarrow (d)\) Choose \(x = e \); we are done.

\((d) \Rightarrow (a)\) Let \(a, b, c \in R \) and satisfy \(abc = 0 \). Since \(R \) is \(e \)-symmetric, \(acbe = 0 \), and this leads to \(acbe^{*}e = acbee^{*}e = 0 \). Hence, \(R \) is \(e^{*}e \)-symmetric.

\[\square \]
Proposition 3.3 Let R be a *-ring. If R is e-symmetric, then the following conditions are equivalent:

(1) $ee^* \in E(R)$;
(2) $xxee^* = e^*xe$ for each $x \in R$;
(3) $ee^* = e^*e$;
(4) ee^* is central.

Proof (1) \implies (2) Since R is an e-symmetric ring and $ee^* \in E(R)$, R is ee^*-symmetric, and it follows that ee^* is left semicentral. Hence, $xee^* = ee^*xee^*$ for each $x \in R$. Noting that e is left semicentral and e^* is right semicentral, then $xee^* = e^*xe$.

(2) \implies (3) Choose $x = e$. Then, by (2), we have $ee^* = e^*e$.

(3) \implies (4) Since R is e-symmetric and $ee^* = e^*e$, R is e^*e-symmetric, and by Proposition 3.2(2), e^*e is central. Hence, ee^* is central.

(4) \implies (1) Trivial. \hfill \qedsymbol

Theorem 3.4 Let R be a *-ring and an e-symmetric ring. If $1 + (e^* - e)(e^* - e) \in U(R)$, then R is a strongly e-symmetric ring and e is a projection.

Proof Set $u = 1 + (e^* - e)(e^* - e)$ and $v = u^{-1}$. Then $u^* = u$, $eu = ee^*e = ue$, and it follows that $ev = ve$ and $v^* = v$, so $e^*v = ve^*$. Choose $f = ee^*v = vee^*$. Then $f^2 = (vee^*)(vee^*) = v(vee^*)e^*v = vee^*v = vee^*v = ee^*v = f$ and $f^* = f$, and this gives that f is a projection. Since R is e-symmetric and $f = ef$, R is f-symmetric. By Proposition 3.1(2), R is strongly f-symmetric, so f is central and it follows that $f = ef = fe = vee^*v = vee = e$. Hence, e is projection and R is a strongly e-symmetric ring. \hfill \qedsymbol

Let R be a *-ring and $e \in E(R)$. $p \in R$ is said to be a range projection [4] if p is a projection satisfying $pe = e$ and $ep = p$. The range projection of e is denoted by e^\perp.

Proposition 3.5 Let R be a *-ring. If R is e-symmetric, then the following conditions are equivalent:

(1) $1 + (e^* - e)(e^* - e) \in U(R)$;
(2) $e + e^* - 1 \in U(R)$;
(3) e^\perp exists.

Proof (1) \implies (2) By Theorem 3.4, e is a projection. Hence, $e + e^* - 1 = 2e - 1 \in U(R)$.

(2) \implies (3) Follows from [4, Theorem 2.1].

(3) \implies (1) Let $p = e^\perp$. Then $ep = p$. Noting that R is e-symmetric, then R is p-symmetric, and by Proposition 3.1, p is central. It follows that $e = pe = ep = p$. Hence, $1 + (e^* - e)(e^* - e) = 1 \in U(R)$. \hfill \qedsymbol

An element a^\dagger in a *-ring R is called the Moore–Pensor inverse (or MP-inverse) of a [9] if

$$aa^\dagger a = a, \quad a^\dagger aa^\dagger = a^\dagger, \quad aa^\dagger = (aa^\dagger)^*, \quad a^\dagger a = (a^\dagger a)^*.$$

In this case, we call a MP-invertible in R. The set of all MP-invertible elements of R is denoted by R^\dagger.

Corollary 3.6 Let R be a *-ring and an e-symmetric ring. Then $e \in R^\dagger$ if and only if e is a projection.
Proof \((\Rightarrow)\) Assume that \(e \in R^\dagger\). By [4, Theorem 3.1], \(e + e^* - 1 \in U(R)\). By Proposition 3.5, \(1 + (e^* - e)(e^* - e) \in U(R)\), and by Theorem 3.4, \(e\) is a projection.

\((\Leftarrow)\) Suppose that \(e\) is a projection. Then \(e + e^* - 1 = 2e - 1 \in U(R)\). By [4, Theorem 3.1], \(e \in R^\dagger\). \(\square\)

Theorem 3.7 Let \(R\) be a \(*\)-ring and \(a \in R^\dagger\). If \(R\) is \(aa^\dagger\)-symmetric, then \(a\) is EP.

Proof Note that \(R\) is \(aa^\dagger\)-symmetric and \(aa^\dagger\) is projection. Hence, by Proposition 3.1(2), \(R\) is strongly \(aa^\dagger\)-symmetric, and it follows that \(aa^\dagger\) is central from [7, Theorem 3.1]. This gives that \(a = (aa^\dagger)a = a(aa^\dagger) = a^2a^\dagger\).

Noting that \(Ra = R(a^\dagger a)\) and \(Raa^\dagger \cong Ra\) as left \(R\)-module, then \(Raa^\dagger \cong Ra^\dagger a\) as left \(R\)-module. Since \(R\) is \(aa^\dagger\)-symmetric, it follows that \(R\) is \(a^\dagger a\)-symmetric from Theorem 2.4. Noting that \(a^\dagger a\) is projection, then \(a^\dagger a\) is central, which implies that \(a = a(a^\dagger a) = a^\dagger a^2\). Hence, \(a \in a^2R \cap Ra^2\), and one obtains that \(a \in R^\dagger\) and so \(a^2\) exists. Now we have \(a^2a = a^2a^2a^\dagger = aa^\dagger\); hence, \(a\) is EP. \(\square\)

4. Upper triangular matrix ring

Proposition 4.1 Let \(R\) be a ring and \(e \in E(R), r \in R\). Then we have the following results:

1. \(T_2(R)\) is a \(\left(\begin{array}{cc} 1 & r \\ 0 & 0 \end{array} \right)\)-symmetric ring if and only if \(R\) is a symmetric ring.
2. \(T_2(R)\) is a \(\left(\begin{array}{cc} e & 0 \\ 0 & 0 \end{array} \right)\)-symmetric ring if and only if \(R\) is an \(e\)-symmetric ring.
3. \(T_2(R)\) is a \(\left(\begin{array}{cc} e & e \\ 0 & 0 \end{array} \right)\)-symmetric ring if and only if \(R\) is an \(e\)-symmetric ring.

Proof \((1)\) \((\Rightarrow)\) Let \(a, b, c \in R\) and satisfy \(abc = 0\). Then we have

\[
\left(\begin{array}{ccc} a & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{ccc} b & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{ccc} c & 0 \\ 0 & 0 \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right);
\]

Since \(T_2(R)\) is a \(\left(\begin{array}{cc} 1 & r \\ 0 & 0 \end{array} \right)\)-symmetric ring, we have

\[
\left(\begin{array}{ccc} a & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{ccc} b & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{ccc} 1 & r \\ 0 & 0 \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right);
\]

this is \(\left(\begin{array}{ccc} abc & acbr \\ 0 & 0 \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right)\). Then we get \(acb = 0\), and so \(R\) is a symmetric ring.

\((\Leftarrow)\) Let \(A = \left(\begin{array}{ccc} a_1 & b_1 \\ 0 & c_1 \end{array} \right), B = \left(\begin{array}{ccc} a_2 & b_2 \\ 0 & c_2 \end{array} \right), C = \left(\begin{array}{ccc} a_3 & b_3 \\ 0 & c_3 \end{array} \right) \in T_2(R)\), and \(ABC = \left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right)\); this is \(ABC = \left(\begin{array}{ccc} a_1a_2a_3 & * \\ 0 & c_1c_2c_3 \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right)\), and then we get \(a_1a_2a_3 = c_1c_2c_3 = 0\). Since \(R\) is a symmetric ring, we have \(a_1a_3a_2 = c_1c_3c_2 = 0\), so \(ACB\left(\begin{array}{ccc} 1 & r \\ 0 & 0 \end{array} \right) = \left(\begin{array}{ccc} a_1a_3a_2 & a_1a_3a_2r \\ 0 & 0 \end{array} \right) = \left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right)\). Hence, \(T_2(R)\) is a \(\left(\begin{array}{cc} 1 & r \\ 0 & 0 \end{array} \right)\)-symmetric ring.
Similarly, we can prove (2) and (3).

Let R be a ring and I an ideal of R,

$$T_3(R, I) = \{ \begin{pmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{pmatrix} | a_1, a_3, a_4, a_5, a_6 \in R \text{ and } a_2 \in I \}. $$

Then, by the usual matrix addition and multiplication, $T_3(R, I)$ is a ring.

Proposition 4.2 Let R be a ring, I an ideal of R, and $e \in E(R)$. Then $T_3(R, I)$ is a e-symmetric ring if and only if R is an e-symmetric ring and $Ie = 0$.

Proof Let $a \in I$, $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in T_3(R, I)$, $B = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in T_3(R, I)$, and $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in T_3(R, I)$. Then $ABC = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Since $T_3(R, I)$ is a e-symmetric ring, we have $ACB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Hence, $ae = 0$, and so $Ie = 0$.

Let $x, y, z \in R$ and satisfy $xyz = 0$. Choose $A = \begin{pmatrix} x & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in T_3(R, I)$, $B = \begin{pmatrix} y & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in T_3(R, I)$, and $C = \begin{pmatrix} z & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in T_3(R, I)$. Then $ABC = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Since $T_3(R, I)$ is a e-symmetric ring, we have $ACB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Hence, $xyz = 0$, and R is an e-symmetric ring.

Conversely, let $A = \begin{pmatrix} a_1 & a_2 & a_3 \\ 0 & a_4 & a_5 \\ 0 & 0 & a_6 \end{pmatrix} \in T_3(R, I)$, $B = \begin{pmatrix} b_1 & b_2 & b_3 \\ 0 & b_4 & b_5 \\ 0 & 0 & b_6 \end{pmatrix} \in T_3(R, I)$, $C = \begin{pmatrix} c_1 & c_2 & c_3 \\ 0 & c_4 & c_5 \\ 0 & 0 & c_6 \end{pmatrix} \in T_3(R, I)$, and $ABC = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. We have

$$\begin{pmatrix} a_1b_1c_1 & * & * \\ 0 & a_4b_4c_4 & * \\ 0 & 0 & a_5b_5c_6 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and then

$$a_1b_1c_1 = a_4b_4c_4 = a_5b_5c_6 = 0.$$
Since R is an e-symmetric ring, we get that $a_1c_1b_1e = a_4c_4b_4e = a_6c_6b_6e = 0$. Since $a_2, b_2, c_2 \in I$, $a_1c_1b_2 + a_1c_2b_4 + a_2c_4b_4 \in I$, by hypothesis $(a_1c_1b_2 + a_1c_2b_4 + a_2c_4b_4)e = 0$. Hence,

$$ACB \begin{pmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} a_1c_1b_1e & (a_1c_1b_2 + a_1c_2b_4 + a_2c_4b_4)e & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Thus, $T_3(R, I)$ is a $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$-symmetric ring. \hfill \Box

The following corollary follows from Proposition 4.2.

Corollary 4.3 $T_3(R, I)$ is a $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$-symmetric ring if and only if R is a symmetric ring and $I = 0$.

Example 4.4 Let R be a symmetric ring and $I = 0$. Take $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in T_3(R, 0)$, $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in T_3(R, 0)$, and $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in T_3(R, 0)$. Then $ABC = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, but $ACB \neq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. This shows that $T_3(R, 0)$ is not a symmetric ring. Similarly, we can prove that for an e-symmetric ring R, $T_3(R, 0)$ need not be a $\begin{pmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{pmatrix}$-symmetric ring.

Let R be a ring,

$$WV_3(R) = \{ \begin{pmatrix} a & 0 & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} | a, b, c \in R \},$$

$$WT_3(R) = \{ \begin{pmatrix} a & 0 & b \\ 0 & c & 0 \\ 0 & 0 & d \end{pmatrix} | a, b, c, d \in R \}.$$

Then by the usual matrix addition and multiplication, $WV_3(R)$ and $WT_3(R)$ are rings. Obviously, $WV_3(R)$ and $WT_3(R)$ are subrings of $T_3(R, I)$. Similarly, we can prove that Proposition 4.2 and Corollary 4.3 also hold for $WV_3(R)$ and $WT_3(R)$.

Acknowledgment

We would like to thank the referee for his/her helpful suggestions and comments.
References