Iterative roots of some functions

Sukrawan MAVĘCHA¹, Vichian LAOHAKOSOL², Boonrod Y_UTTANAN³,*
¹Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
²Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand
³Algebra and Applications Research Unit, Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University, Songkhla, Thailand

Received: 19.12.2016 • Accepted/Published Online: 02.08.2017 • Final Version: 08.05.2018

Abstract: The iterative equation \(f^q(x) = g(x), x \in X \) for a given function \(g \) and a positive integer \(q \) is solved in the following two main cases:

(i) \(X = \mathbb{Z}, g(x) = ax + b, (a, b \in \mathbb{Z}; a \neq 0, 1) \);
(ii) \(X = \mathbb{N} \cup \{0\}, g \) is increasing with no fixed point.

Key words: Iterative functional equations, monotone functions, cycles

1. Introduction

For a function \(f \) and a positive integer \(q \), define \(f^q = f \circ f \circ \cdots \circ f \) \((q \text{ times})\). Given a function \(g \), the polynomial-like iterative functional equation of the form

\[a_1 f(x) + a_2 f^2(x) + \cdots + a_q f^q(x) = g(x) \quad (x \in X) \tag{1.1} \]

has been studied in many different settings of \(a_1, a_2, \ldots, a_n, X \) and \(g(x) \).

In a recent paper [6], using Schauder’s fixed point theorem and the Banach contraction principle, sufficient conditions for the existence, uniqueness, and stability of the periodic and continuous solutions of (1.1) were given when \(X = \mathbb{R} \). In particular, the solution of \(2f(x) + \lambda f^2(x) = \sin x, \lambda \in [-1, 1] \), was established, as well as a similar result when the right-hand expression is a cosine function. In [4, 5], the equation of the form \(a_1 f(x) + a_2 f^2(x) = bx + c \) was solved for \(a_1, a_2, b, c \in \mathbb{R}, a_2 \neq 0 \). When \(g(x) \) is continuous and strictly monotonic, a comprehensive work dealing with continuous solutions of \(f^q(x) = g(x) \) can be found in [2, Chapter XV].

In 2008, Sarkaria [9] (see also his unpublished paper at http://kssarkaria.org/docs/RootsFunctions.pdf) found all functions \(f : X \rightarrow X \), where \(X = \mathbb{N}, \mathbb{Z}, \text{or} \mathbb{R} \), satisfying the iterative functional solution \(f^q(n) = n + k \)
for given \(q \) and \(k \in \mathbb{N} \). This equation arose from one of the problems posed at the International Mathematical Olympiad in 1987: prove that there is no function \(f : \mathbb{N} \rightarrow \mathbb{N} \) such that

\[
f(f(n)) = n + 1987.
\]

More precisely, Sarkaria proved that:

- (i) for \(q \geq 1, k \geq 1 \), there exists a function \(f : \mathbb{N} \rightarrow \mathbb{N} \) satisfying \(f^q(n) = n + k \) if and only if \(q \) divides \(k \);
- (ii) there are exactly \(k!/\lfloor k/q \rfloor! \) such functions and their shapes can be explicitly determined;
- (iii) there are infinitely many functions \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) satisfying \(f^q(n) = n + k \) if and only if \(q \) divides \(k \);
- (iv) there exist continuous functions \(f : \mathbb{R} \rightarrow \mathbb{R} \) satisfying \(f^q(n) = n + k \), and explicit forms of such functions can be determined.

In another direction, as mentioned in [1], Mallows observed that there is a unique increasing sequence \((a(n))_{n \geq 0}\) of nonnegative integers such that \(a(a(n)) = 2n \) for \(n \neq 1 \). In 1979, Propp [7, 8] introduced the sequence \((s(n))_{n \geq 0}\), defined to be the unique increasing sequence such that \(s(s(n)) = 3n \). In 2005, Allouche et al. [1] showed that there are uncountably many increasing sequences \((a(n))_{n \geq 0}\) such that \(a(a(n)) = dn \) for all \(d \geq 4 \), while for \(d = 2 \) and \(d = 3 \) there is a unique increasing sequence satisfying \(a(a(n)) = dn \). Recently, in 2014, the results of Propp [7, 8] and Allouche et al. [1] were generalized in [3], where it was proved that for \(q \geq 2, D \geq 2 \), if \(D - 1 \) divides \(q \), then there exists a unique increasing function \(f : \mathbb{N}_0 \rightarrow \mathbb{N}_0 \) satisfying \(f^q(n) = Dn \), where \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \); otherwise, there are uncountably many increasing functions satisfying this iterative functional equation.

Here, we consider the iterative functional equation

\[
f^q(x) = g(x) \quad (x \in X),
\]

for two different domains of \(X = \mathbb{Z} \) and \(X = \mathbb{N} \).

Since the domains considered in this work are discrete, the results in the continuous case as given in [2] and [4–6] are independent from ours here. In the next section, we find all solutions \(f \) for the case \(X = \mathbb{Z} \) and \(g(x) = ax + b \), where \(a, b \in \mathbb{Z} \) with \(a \neq 0, 1 \). Our approach is to look closely at the sequence of iterative values \(\{f^n(a)\}_{n \in \mathbb{Z}} \) for fixed \(a \). This sequence is periodic with somewhat arbitrarily given values in each period, and the main task is to systematize the values in each period to take care of all possibilities. It turns out that the analysis is most involved when \(a = -1 \). When \(a \notin \{-1, 0, 1\} \), the situation is simpler in the sense that the sequence of iterative values has a so-called initial element, called a starter, which enables us to systematize the values in each period more easily and cleanly.

In Section 3, we solve (1.2) when \(X = \mathbb{N}_0 \) and \(g \) is an increasing function having no fixed point. The approach in this part is similar to that of the case \(a \notin \{-1, 0, 1\} \) in the previous section.

2. Over the set of integers

In this section, we solve the iterative functional equation

\[
f^q(n) = an + b \quad (n \in \mathbb{Z})
\]
where \(q \geq 2 \), \(a \neq 0, 1 \), and \(b \) are integers. For brevity, put

\[
g(n) := an + b, \quad p := \frac{b}{1 - a}.
\]

The simple proof of the next lemma is left to the reader.

Lemma 2.1 If \(f \) is a solution function of (2.1), then:

(i) \(f \) is one-to-one;

(ii) \(f \) partitions \(\mathbb{Z} \) into equivalence classes via the relation \(x \sim y \iff y = f^s(x) \) for some \(s \in \mathbb{Z} \);

(iii) \(f \) has a unique fixed point at \(x = p \) provided that it is an integer.

For convenience, we will define some terminologies about equivalence classes. Let \(A_1, A_2, \ldots \) be equivalence classes on the set \(\mathbb{Z} \) or \(\mathbb{N}_0 \) with respect to some equivalence relation. If \(A_i \) for \(i = 1, 2, \ldots \) has the smallest absolute element, then this element is called the **starter** of class \(A_i \) and an element of \(A_i \) not being a starter is called a **nonstarter** of \(A_i \).

We start with the case \(a = -1 \).

Theorem 2.2 Let \(q \geq 2 \) and \(b \) be integers. If \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) satisfies the iterative functional equation

\[
f^q(n) = -n + b,
\]

then \(f \) must be of the form \(f_\pi \) for some \(\pi \) defined below.

Proof Let \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) be a solution of \(f^q(n) = -n + b \). Let \(\alpha \in \mathbb{Z} \setminus \{\frac{b}{2}\} \). Consider the set

\[
\{\alpha, f(\alpha), f^2(\alpha), \ldots, f^q(\alpha) = -\alpha + b, \ldots, f^{2q}(\alpha) = \alpha\},
\]

which has at most \(2q \) elements. Let \(m \) be the smallest natural number such that \(f^m(\alpha) = \alpha \). Since \(f^{-1} \) exists and \(f^{2q}(\alpha) = \alpha \), we get \(m \mid 2q \). If \(m \) is odd, then \(m \mid q \), say \(m = qk \), so \(f^q(\alpha) = f^{mk}(\alpha) = \alpha \), a contradiction. Hence, \(m \) is even, say

\[
m = 2r.
\]

If \(\alpha, f(\alpha), f^2(\alpha), \ldots, f^{2r-1}(\alpha) \) are not distinct, then \(f^j(\alpha) = f^i(\alpha) \) for some \(i, j \) with \(0 \leq i < j \leq 2r - 1 \) implying that \(f^{j-i}(\alpha) = \alpha \), which is a contradiction. Then \(\alpha, f(\alpha), f^2(\alpha), \ldots, f^{2r-1}(\alpha) \) are distinct. Note also that \(f^l(\alpha) = \alpha \) for \(l \in 2r\mathbb{Z} \). Since \(r \mid q \), if \(q/r \) is even, say \(q = (2t)r \), then \(f^q(\alpha) = f^{(2t)r}(\alpha) = \alpha \), a contradiction. Then \(q/r \) must be an odd number, say \(q = (2t + 1)r \), so

\[
f^{(2t+1)r}(\alpha) = f^r(f^{2r(t)}(\alpha)) = f^{(2t+1)r}(\alpha) = f^q(\alpha) = -\alpha + b.
\]

Hence,

\[
\{\alpha, f(\alpha), f^2(\alpha), \ldots, f^{2r-1}(\alpha)\} = \{\alpha, f(\alpha), f^2(\alpha), \ldots, f^{r-1}(\alpha), -\alpha + b, -f(\alpha) + b, \ldots, -f^{r-1}(\alpha) + b\}.
\]
For $h = 0, 1, \ldots, r - 1$, let $D_h^a := \{f^h(\alpha), f^{h+r}(\alpha)\} = \{f^h(\alpha), -f^h(\alpha) + b\}$. Observe that $D_h^a \cap D_k^a = \emptyset$ for all $h, k \in \{0, 1, \ldots, r - 1\}$ and $h \neq k$. Denote the set $D_0^a \cup \cdots \cup D_{r-1}^a$ by $\mathcal{D}(r, a)$ and observe that

$$f : D_h^a = \{f^h(\alpha), -f^h(\alpha) + b\} \rightarrow D_{h+1}^a = \{f^{h+1}(\alpha), -f^{h+1}(\alpha) + b\}$$

satisfies

$$f(f^h(\alpha)) = f^{h+1}(\alpha), \quad f(-f^h(\alpha) + b) = f^{h+1}(\alpha) = -f^{h+1}(\alpha) + b.$$

Taking $\alpha_2 \in \mathbb{Z} \setminus (\mathcal{D}(r, \alpha) \cup \{b/2\})$ and repeating the above procedure, we obtain

$$\mathcal{D}(r_2, \alpha_2) = D_{r_2-1}^a \cup \cdots \cup D_0^a,$$

where $r_2 \mid q$ and q/r_2 is odd. This process can be continued until we eventually exhaust the set \mathbb{Z} and so

$$\mathbb{Z} \setminus \left(\frac{b}{2} \right) = \mathcal{D}(r, \alpha) \cup \mathcal{D}(r_2, \alpha_2) \cup \cdots .$$

We turn now to obtain an explicit form of the solution function f. Let

$$E_i = \{i, b - i\}, \quad i \in \left\{ m \in \mathbb{Z} \mid m \geq \frac{b}{2} \right\}.$$

Observe that $\mathbb{Z} = \cup_{i \in \mathbb{Z}} E_i$. Let π be a partition of the set $\{E_i\}_{i \neq b/2}$ into subsets, each of which contains s of the sets E_i, where s is a divisor of q with q/s odd as obtained in (2.3). Since q/s is an odd number, let $q = (2l + 1)s$. Consider the set

$$\mathcal{D}_{s(\pi(i))} = E_{i_0} \cup E_{i_1} \cup \cdots \cup E_{i_{s-1}},$$

where $\pi(i) = \{i_0, i_1, \ldots, i_{s-1}\}$ is the ith component of the partition π, and

$$E_{ij} = \{\alpha_{ij}, \beta_{ij}\}, \quad \alpha_{ij} \in \{i, b - i\}, \beta_{ij} = b - \alpha_{ij}$$

for $j = 0, 1, 2, \ldots, s - 1$.

Define the function $f_\pi : \mathbb{Z} \rightarrow \mathbb{Z}$ by assigning its values on each $\mathcal{D}_{s(\pi(i))}$ as

$$f_\pi : E_{ij} \rightarrow E_{ij+1} \quad (j = 0, 1, 2, \ldots, s - 2)$$

by

$$f_\pi(\alpha_{ij}) = \alpha_{ij+1}, \quad f_\pi(\beta_{ij}) = \beta_{ij+1}$$

and

$$f_\pi : E_{i_{s-1}} \rightarrow E_{i_0}$$

by

$$f_\pi(\alpha_{i_{s-1}}) = \beta_{i_0}, \quad f_\pi(\beta_{i_{s-1}}) = \alpha_{i_0}.$$

The mapping of function f_π on each $\mathcal{D}_{s(\pi(i))}$ is illustrated by

$$\alpha_{i_0} \xrightarrow{f_\pi} \alpha_{i_1} \xrightarrow{f_\pi} \alpha_{i_2} \xrightarrow{f_\pi} \cdots \xrightarrow{f_\pi} \alpha_{i_{s-1}} \xrightarrow{f_\pi} \beta_{i_0} \xrightarrow{f_\pi} \beta_{i_1} \xrightarrow{f_\pi} \beta_{i_2} \xrightarrow{f_\pi} \cdots \xrightarrow{f_\pi} \beta_{i_{s-1}} \xrightarrow{f_\pi} \alpha_{i_0}.$$

If $b/2 \in \mathbb{Z}$, define $f_\pi(b/2) = b/2$ so that $f_\pi^2(b/2) = b/2 = -(b/2) + b$.

822
We now show that \(f_\pi \) satisfies (2.2). For \(j = 0, 1, \ldots, s - 2 \), since
\[
\begin{align*}
 f_\pi(\alpha_{ij}) &= \alpha_{ij+1}, & f_\pi^2(\alpha_{ij}) &= f_\pi(\alpha_{ij+1}) = \alpha_{ij+2}, \\
 & \vdots & & \vdots \\
 f_\pi^{s-j}(\alpha_{ij}) &= \alpha_{i_{j+1}(s-j)-1}, & f_\pi^{s-j}(\alpha_{ij}) &= f_\pi(\alpha_{i_{s-1}}) = \beta_{i_0}, \\
 & \vdots & & \vdots \\
 f_\pi(\alpha_{i_{s-1}}) &= f_\pi^2(\beta_{i_0}) = \beta_{i_j}, & -\alpha_{ij} + b &= \beta_{ij},
\end{align*}
\]
we get
\[
 f_\pi^s(\alpha_{ij}) = -\alpha_{ij} + b \quad \text{and} \quad f_\pi^{2s}(\alpha_{ij}) = \alpha_{ij}
\]
so
\[
 f_\pi^s(\alpha_{ij}) = f_\pi^{2s}(\alpha_{ij}) = f_\pi^s(\alpha_{ij}) = -\alpha_{ij} + b.
\]
Similarly, we have \(f_\pi(\beta_{ij}) = -\beta_{ij} + b \) for \(j = 0, 1, \ldots, s - 2 \). Finally, on the set \(E_{i_{s-1}} \), we have
\[
 f_\pi^s(\alpha_{i_{s-1}}) = \beta_{i_0}, \\
 f_\pi^2(\alpha_{i_{s-1}}) = \beta_{i_1}, \\
 \vdots \\
 f_\pi(\alpha_{i_{s-1}}) = \beta_{i_{s-1}} = -\alpha_{i_{s-1}} + b, \\
 f_\pi^{2s}(\alpha_{i_{s-1}}) = \alpha_{i_{s-1}},
\]
so
\[
 f_\pi^s(\alpha_{i_{s-1}}) = f_\pi^{2s}(\alpha_{i_{s-1}}) = f_\pi^s(\alpha_{i_{s-1}}) = -\alpha_{i_{s-1}} + b,
\]
and similarly we also have
\[
 f_\pi^s(\beta_{i_{s-1}}) = -\beta_{i_{s-1}} + b.
\]
Since \(\mathbb{Z} = \bigcup_{i \in \mathbb{Z}} E_i \), it follows that \(f_\pi^s(n) = -n + b \).

From the above construction, we deduce that the totality of the \(\mathcal{E}_s(\pi(i)) \)'s is identical with that of the \(\mathcal{O}(\alpha, s) \)'s and so each solution function \(f \) of (2.2) must be of the form \(f_\pi \) for some \(\pi \) (with \(s \) being some divisor \(r \) of \(q \)). \(\square \)

The last part of the proof in Theorem 2.2 gives the following corollary.

Corollary 2.3 Let \(q, b \in \mathbb{Z}, q \geq 2 \) and let \(C_i = \{ i, b - i \}, i \in \mathbb{Z} \). For each divisor \(s \) of \(q \) such that \(q/s \) is odd, let \(I_s = \{ i_0, i_1, \ldots, i_{s-1} \} \subset \mathbb{Z} \) be a set of \(s \) indices \(i_0 < i_1 < \cdots < i_{s-1} \) such that \(C_{i_j} \cap C_{i_{k}} = \emptyset \) whenever \(i_j \notin \{ i_k, b - i_k \} \) and let \(\mathcal{E}_s^{(I_s)} = C_{i_0} \cup \cdots \cup C_{i_{s-1}} \).

For each decomposition of \(\mathbb{Z} \setminus \{ b/2 \} \) into a countable union of pointwise disjoint \(\mathcal{E}_s^{(I_s)} \)
(i.e., \(\mathbb{Z} \setminus \{ b/2 \} = \bigcup_{s} \mathcal{E}_s^{(I_s)} \)), define \(f_s : \mathbb{Z} \rightarrow \mathbb{Z} \) by
\[
 f_s \left(\frac{b}{2} \right) = \frac{b}{2} \quad \text{if} \quad \frac{b}{2} \in \mathbb{Z},
\]
823
from each $\mathcal{C}_s^{(1)}$ into itself

$$f_s : C_i := \{\alpha_{ij}, \beta_{ij}\} \rightarrow C_{i+1} \quad (j = 0, 1, \ldots, s - 2)$$

where $\alpha_{ij} \in \{i, j \rightarrow b - i\}$, $\beta_{ij} = b - \alpha_{ij}$, by

$$f_s(\alpha_{ij}) = \alpha_{ij+1}, \quad f_s(\beta_{ij}) = \beta_{ij+1},$$

and

$$f_s : C_{i-1} := \{\alpha_{i-1}, \beta_{i-1}\} \rightarrow C_i$$

by

$$f_s(\alpha_{i-1}) = \beta_i, \quad f_s(\beta_{i-1}) = \alpha_i.$$

Then f_s satisfies $f_s^q(n) = -n + b$.

Example 2.4 Let $f : \mathbb{Z} \rightarrow \mathbb{Z}$ satisfy the iterative functional equation

$$f^6(n) = g(n) := -n + 5. \quad (2.4)$$

Then $g(n)$ has no fixed points in \mathbb{Z}. Since $q = 6$, there are two possible values of s for which q/s is odd, i.e. $s = 2, 6$. Let

$$C_i = \{i, 5 - i\}, \quad i \in \left\{m \in \mathbb{Z} \mid m \geq \frac{5}{2}\right\}.$$

Case $s = 2$. To illustrate how to obtain a solution function, as an example of a possible partition π, we take

$$\pi = \{C_3, C_4\} \cup \{C_5, C_6\} \cup \{C_7, C_8\} \cup \{C_9, C_{10}\} \cup \cdots.$$

The solution function f_π is shown via the following diagram of element maps:

$$f_\pi : C_i \rightarrow C_{i+1} \quad f_\pi : C_{i+1} \rightarrow C_i \quad i = 3, 5, 7, \ldots$$

$$i = 3 : \quad 3 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow \cdots$$

$$i = 5 : \quad 5 \rightarrow 6 \rightarrow 0 \rightarrow -1 \rightarrow 5 \rightarrow 6 \rightarrow 0 \rightarrow -1 \rightarrow \cdots$$

$$i = 7 : \quad 7 \rightarrow 8 \rightarrow -2 \rightarrow -3 \rightarrow 7 \rightarrow 8 \rightarrow -2 \rightarrow -3 \rightarrow \cdots$$

$$\vdots$$

As another example of possible partition π, take

$$\pi = \{C_3, \mathcal{C}_5\} \cup \{C_4, \mathcal{C}_6\} \cup \{C_7, \mathcal{C}_8\} \cup \{C_9, \mathcal{C}_{10}\} \cup \cdots,$$

which gives another solution function f_π:

$$f_\pi : C_i \rightarrow C_{i+2} \quad f_\pi : C_{i+2} \rightarrow C_i \quad i = 3, 4, 7, 8, 11, 12, \ldots$$

824
Since there are infinite many partitions of the set \(\{C_i\}_{i \geq 3} \) into subsets, each of which contains two elements of the sets \(C_i \), the equation (2.4) has infinitely many solutions.

Case s = 6. As an example of the partition \(\pi \), take

\[\pi = \{C_3, C_4, C_5, C_6, C_7, C_8\} \cup \{C_9, C_{10}, C_{11}, C_{12}, C_{13}, C_{14}\} \cup \cdots. \]

Then the solution \(f_\pi \) is given by

\[f_\pi : C_i \to C_{i+1} \text{ for } i \geq 3 \text{ and } i \neq 8, 14, 20, 26, \ldots \]

\[f_\pi : C_i \to C_{i-5} \text{ for } i = 8, 14, 20, 26, \ldots \]

\[i = 3 : 3 \to 5 \to 2 \to 0 \to 3 \to 5 \to 2 \to 0 \to \cdots \]

\[i = 4 : 4 \to 6 \to 1 \to -1 \to 4 \to 6 \to 1 \to -1 \to \cdots \]

\[i = 7 : 7 \to 9 \to -2 \to -4 \to 7 \to 9 \to -2 \to -4 \to \cdots \]

\[i = 8 : 8 \to 10 \to -3 \to -5 \to 8 \to 10 \to -3 \to -5 \to \cdots \]

\[\vdots \]

Since there are infinitely many partitions of the set \(\{C_i\}_{i \geq 3} \) into subsets of six elements, there are uncountably many solutions of (2.4).

Throughout the rest of this section, we assume that \(q, a, \) and \(b \) are integers such that \(q \geq 2 \) and \(a \neq -1, 0, 1 \).

Lemma 2.5 Let \(\beta \in \mathbb{Z} \).

(i) If \(g^{-i} (\beta) \notin \mathbb{Z} \) for some \(i \in \mathbb{N} \), then \(g^{-i+1} (\beta) \notin \mathbb{Z} \).

(ii) If \(\beta = p \), then \(g^{-j} (\beta) \in \mathbb{Z} \) for all \(j \geq 1 \).

(iii) If \(\beta \neq p \), then there exists a positive integer \(J \) such that \(g^{-j} (\beta) \in \mathbb{Z} \) for all \(j \leq J \) and \(g^{-j} (\beta) \notin \mathbb{Z} \) for all \(j > J \).

Proof

(i) Assume that \(g^{-i+1} (\beta) := n \in \mathbb{Z} \). Then \(g^{-i} (\beta) = g(n) \in \mathbb{Z} \), a contradiction.

(ii) We see that

\[g(p) = a \left(\frac{b}{1-a} \right) + b = \frac{b}{1-a} = p, \]

and so \(p = g^{-j} (p) \) for all \(j \geq 1 \).
(iii) Suppose \(\beta \neq p \). If \(p \in \mathbb{Z} \), then let \(J \) be the largest nonnegative integer such that \(a' \) divides \(\beta - p \). For \(i = 0, 1, \ldots, J \), we have \(\frac{\beta - p}{a^i} + p \in \mathbb{Z} \) and

\[
\frac{\beta - p}{a^i} + p = \frac{\beta}{a^i} - \frac{b}{a} \left(\frac{a^i - 1}{a^i} \right) = \frac{\beta - b}{a^i - 1} - \cdots - \frac{b}{a} = 1 - \cdots = g^{-1}(\beta).
\]

For \(j > J \), we easily see that \(g^{-j}(\beta) = \frac{\beta - p}{a^j} + p \notin \mathbb{Z} \).

If \(p \notin \mathbb{Z} \), then consider the numbers of the form \(\frac{\beta - p}{a^k} + p \) \((k \in \mathbb{N}_0) \). For \(k = 0 \), note that \(\frac{\beta - p}{a^0} + p \in \mathbb{Z} \). Let \(K \in \mathbb{N} \) be large enough so that \(\left| \frac{\beta - p}{a^K} \right| < |p| - |p| \). Thus, \(\frac{\beta - p}{a^K} + p \notin \mathbb{Z} \). Let \(J \) be the largest positive integer such that \(\frac{\beta - p}{a^J} + p \in \mathbb{Z} \) for \(j = 0, 1, \ldots, J \). For \(j > J \), we then have \(g^{-j}(\beta) = \frac{\beta - p}{a^j} + p \notin \mathbb{Z} \). \(\square \)

By Lemma 2.5, each equivalence class constructed via the equivalence relation in Lemma 2.1 contains a unique element called a starter (\(\alpha \) is a starter if there is no integer \(n \) such that \(g(n) = \alpha \)). Let \(S \) denote the set of all starters in \(\mathbb{Z} \setminus \{p\} \) and let \(N \) denote the set of all nonstarters in \(\mathbb{Z} \) together with \(p \) if \(p \in \mathbb{Z} \). We see that \(S \) is an infinite set since \(\{ma + b - 1 \mid m \in \mathbb{N}_0 \} \subset S \).

By Lemma 2.5, the equivalence classes constructed via the equivalence relation in Lemma 2.1 are either of the form

\[C_\alpha = \{ g^m(\alpha) \mid m \in \mathbb{N}_0 \} \text{ where } \alpha \in S \]

or of the form

\[C_p = \{ (p) \}, \quad \text{if } p \in \mathbb{Z}, \]

\[\emptyset, \quad \text{if } p \notin \mathbb{Z}, \]

which yields

\[\mathbb{Z} = \left(\bigcup_{\alpha \in S} C_\alpha \right) \cup C_p. \]

For convenience, let \(C = \{ C_\alpha \mid \alpha \in S \} \). Useful properties of these classes are gathered below.

Lemma 2.6 If \(r \) and \(l \) are in \(S \) but \(r \neq l \), then \(r \) and \(l \) are in different classes.

Proof If \(r \) and \(l \) are in the same equivalence class, then there is \(t \in \mathbb{Z} \setminus \{0\} \) such that \(r = f^t(l) \). Interchanging \(r, l \), we may assume \(t > 0 \). Thus, \(r = f^t(f^{t-1}(l)) = g(f^{t-1}(l)) \), i.e. \(r \notin S \), a contradiction. \(\square \)

Lemma 2.7

(i) For each \(\alpha \in S \), \(f \) sends the class \(C_\alpha \) into a unique class in \(C \) that contains \(f(\alpha) \).

(ii) We have \(f^q(C_\alpha) \subset C_\alpha \) for all \(\alpha \in S \).

(iii) The function \(f \) is not onto.
Proof

(i) Let \(x \in C_\alpha \), i.e. there exists a nonnegative integer \(m \) such that \(x = g^m(\alpha) \). We see that

\[
f(x) = f(g^m(\alpha)) = f^{qm}(f(\alpha)) = g^m(f(\alpha)),
\]

e. \(f(x) \) and \(f(\alpha) \) are in the same class, say, \(C_\pi \) for some \(\pi \in S \). If \(C_\pi \cap C_p \neq \emptyset \), then there is a nonnegative integer \(m \) such that \(p = g^m(f(\alpha)) = f(g^m(\alpha)) \). Since \(p \) is the fixed point of \(f \) and \(f \) is one-to-one, we get \(g^m(\alpha) = p \), and so \(\alpha = p \), which is a contradiction.

(ii) Let \(\alpha \in S \) and \(x = g^m(\alpha) \) for some \(m \in \mathbb{N}_0 \). Then \(f^q(x) = g^{m+1}(\alpha) \in C_\alpha \), which shows that \(f^q(C_\alpha) \subseteq C_\alpha \) for all \(\alpha \in S \).

(iii) Suppose that \(f \) is onto. Let \(\alpha \in S \). Then there exists \(\alpha_1 \in \mathbb{Z} \) such that \(\alpha = f(\alpha_1) \). Similarly, there exists \(\alpha_2 \in \mathbb{Z} \) such that \(\alpha_1 = f(\alpha_2) \), i.e. \(\alpha = f^2(\alpha_2) \). Continuing in this way, we get \(\alpha = f^q(\alpha_q) \) for some \(\alpha_q \in \mathbb{Z} \), i.e. \(\alpha = g(\alpha_q) \), a contradiction.

\(\square \)

Lemma 2.7(iii) tells us that \(R_f \neq \mathbb{Z} \). Since \(N \subseteq R_f \), it follows that the set \(S \setminus R_f \) is nonempty and we explore it further.

Lemma 2.8 If \(k \in S \setminus R_f \), then \(f^{q-1}(k), f^{q-2}(k), \ldots, f(k), k \) are the starters of \(q \) distinct classes.

Proof For \(i = 0, 1, \ldots, q-1 \), suppose \(f^i(k) \in C_\alpha \), where the \(\alpha_i \)'s are not necessarily distinct. We now show that \(f^i(k) \) is the starter of the class \(C_{\alpha_i} \). Starting from class \(C_{\alpha_{q-1}} \), we have \(f^{q-1}(k) = g^t(\alpha_{q-1}) \) for some \(t \in \mathbb{N}_0 \). Since both \(\alpha_{q-1} \) and \(f^{q-1}(k) \) are in class \(C_{\alpha_{q-1}} \), Lemma 2.7(ii) implies that both \(f(\alpha_{q-1}) \) and \(f^q(k) \) are in the same class. By Lemma 2.7(iii), we have \(f^q(k) \in C_{\alpha_0} \), and so \(f(\alpha_{q-1}) \in C_{\alpha_0} \), i.e. \(f(\alpha_{q-1}) = g^s(k) \) for some \(s \in \mathbb{N} \). Then

\[
g(k) = f^q(k) = f(f^{q-1}(k)) = f(g^t(\alpha_{q-1})) = g^s(f(\alpha_{q-1})) = g^{t+s}(k).
\]

Since \(g \) is one-to-one, we have \(k = g^{t+s-1}(k) = a^{t+s-1}(k-p) + p \). Since \(k \) is not a fixed point, we have \(s = 1 \), so \(t = 0 \) and \(s = 1 \). Hence, \(f^{q-1}(k) = \alpha_{q-1} \). The same reasoning also shows that \(f^{q-2}(k), \ldots, f(k), k \) are the starters of the distinct classes \(C_{\alpha_{q-2}}, \ldots, C_{\alpha_1}, C_{\alpha_0} \), respectively.

\(\square \)

We can now determine our solution function.

Theorem 2.9 If \(f : \mathbb{Z} \to \mathbb{Z} \) satisfies the iterative functional equation \(f^q(n) = an + b \), then \(f \) must be of the form \(f_\pi \) for some \(\pi \) defined below.

Proof Let \(f : \mathbb{Z} \to \mathbb{Z} \) be a solution of \(f^q(n) = an + b \). Let \(\alpha_0 \in S \setminus R_f \) so that \(\alpha_0 \neq p \). From Lemma 2.8, we see that \(\alpha_0, f(\alpha_0) = \alpha_1, \ldots, f^{q-1}(\alpha_0) = \alpha_{q-1} \) are starters of \(q \) distinct classes. Since \(f \) is 1-1, we have \(\alpha_i \neq p \) for \(i = 0, 1, \ldots, q-1 \). Indeed, \(\alpha_i = f^i(\alpha_0) \) is the starter of \(C_{\alpha_i} \).

Let \(C(\alpha_0) = C_{\alpha_0} \cup \cdots \cup C_{\alpha_{q-1}} \) and observe that for \(h = 0, 1, \ldots, q-2 \),

\[
f : C_{\alpha_h} = \{g^m(\alpha_h) \mid m \in \mathbb{N}_0 \} \to C_{\alpha_{h+1}} = \{g^m(\alpha_{h+1}) \mid m \in \mathbb{N}_0 \}
\]

827
via
\[
f(g^0(\alpha_h)) = f(\alpha_h) = \alpha_{h+1},
\]
\[
f(g(\alpha_h)) = f(f^q(\alpha_h)) = f^q(f(\alpha_h)) = af(\alpha_h) + b = a\alpha_{h+1} + b = a\alpha_{h+1} - (a-1)p
\]
\[
\vdots
\]
\[
f(g^m(\alpha_h)) = g^m(\alpha_{h+1}) = a^m(\alpha_{h+1}) - (a^m - 1)p
\]
and
\[
f : C_{\alpha_{q-1}} = \{g^m(\alpha_{q-1}) \mid m \in \mathbb{N}_0 \} \to C_{\alpha_0} = \{g^m(\alpha_0) \mid m \in \mathbb{N}_0 \}
\]
via
\[
f(g^0(\alpha_{q-1})) = f(\alpha_{q-1}) = f^q(\alpha_0) = a\alpha_0 + b = a\alpha_0 - (a-1)p,
\]
\[
f(g(\alpha_{q-1})) = f(f^q(\alpha_{q-1})) = f^{q+1}(f^{q-1}(\alpha_0)) = f^{2q}(\alpha_0) = af^{q}(\alpha_0) + b = a^2\alpha_0 - (a^2 - 1)p
\]
\[
\vdots
\]
\[
f(g^m(\alpha_{q-1})) = g^m(a\alpha_0 + b) = a^{m+1}(\alpha_0) - (a^{m+1} - 1)p.
\]
Take \(\alpha_q \in (S \setminus R_f) \cap (\mathbb{Z} \setminus \{\mathcal{C}(\alpha_0) \cup \{p\}\}) \) and repeat the above procedure to obtain
\[
\mathcal{C}(\alpha_q) = C_{\alpha_q} \cup \cdots \cup C_{\alpha_{2q-1}}.
\]
Continuing in the same manner, at stage \(i + 1 \) choose
\[
\alpha_{iq} \in (S \setminus R_f) \cap (\mathbb{Z} \setminus \{\mathcal{C}(\alpha_0) \cup \mathcal{C}(\alpha_q) \cup \cdots \cup \mathcal{C}(\alpha_{(i-1)q}) \cup \{p\}\})
\]
and construct
\[
\mathcal{C}(\alpha_{iq}) = C_{\alpha_{iq}} \cup \cdots \cup C_{\alpha_{(i+1)q-1}}.
\]
We finally arrive at
\[
\mathbb{Z} \setminus \{p\} = \mathcal{C}(\alpha_0) \cup \mathcal{C}(\alpha_q) \cup \mathcal{C}(\alpha_{2q}) \cup \cdots.
\]
We turn now to obtain an explicit form of the solution function \(f \). Define \(f_\pi : \mathbb{Z} \to \mathbb{Z} \) on each \(\mathcal{C}(\alpha_h) \), \(h \in q\mathbb{N}_0 \), by
\[
f_\pi : C_{\alpha_{h+j}} \to C_{\alpha_{h+j+1}} \quad (j = 0, 1, \ldots, q - 2)
\]
via
\[
f_\pi(g^m(\alpha_{h+j})) = g^m(\alpha_{h+j+1})
\]
and
\[
f_\pi : C_{\alpha_{h+q-1}} \to C_{\alpha_{h}}
\]
via
\[
f_\pi(g^m(\alpha_{h+q-1})) = g^{m+1}(\alpha_h)
\]
and if \(p \in \mathbb{Z} \), define \(f_\pi(p) = p \), so that \(f_\pi^q(p) = ap + b \).
For $j = 0, 1, \ldots, q-2$, we have
\begin{align*}
 f^\pi(g^n(\alpha_{h+j})) &= g^n(\alpha_{h+j+1}), \\
 f^\pi_2(g^n(\alpha_{h+j})) &= f^\pi(g^n(\alpha_{h+j+1})) = g^n(\alpha_{h+j+2}), \\
 & \vdots \\
 f^\pi_{q-1-j}(g^n(\alpha_{h+j})) &= g^n(\alpha_{h+j+(q-1-j)}) = g^n(\alpha_{h+q-1}), \\
 f^\pi_{(q-1-j)+1}(g^n(\alpha_{h+j})) &= f^\pi(g^n(\alpha_{h+q-1})) = g^{m+1}(\alpha_h), \\
 & \vdots \\
 f^\pi_{q}(g^n(\alpha_{h+j})) &= f^\pi_{(q-1-j)+(1+j)}(g^n(\alpha_{h+j})) = g^{m+1}(\alpha_{h+j}).
\end{align*}

Since $g^{m+1}(\alpha_{h+j}) = g(g^n(\alpha_{h+j})) = ag^n(\alpha_{h+j}) + b$, it follows that
\[f^\pi_q(g^n(\alpha_{h+j})) = ag^n(\alpha_{h+j}) + b. \]

On the set $C_{\alpha_{h+q-1}}$, we have
\begin{align*}
 f^\pi(g^n(\alpha_{h+q-1})) &= g^{m+1}(\alpha_h), \\
 f^\pi_2(g^n(\alpha_{h+q-1})) &= f^\pi(g^{m+1}(\alpha_h)) = g^{m+1}(\alpha_{h+1}), \\
 & \vdots \\
 f^\pi_{q-1}(g^n(\alpha_{h+q-1})) &= g^{m+1}(\alpha_{h+q-2}), \\
 f^\pi_{q}(g^n(\alpha_{h+q-1})) &= f^\pi(g^{m+1}(\alpha_{h+q-2})) = g^{m+1}(\alpha_{h+q-1}).
\end{align*}

Since $g^{m+1}(\alpha_{h+q-1}) = g(g^n(\alpha_{h+q-1})) = ag^n(\alpha_{h+q-1}) + b$, it follows that
\[f^\pi_q(g^n(\alpha_{h+q-1})) = ag^n(\alpha_{h+q-1}) + b. \]

Hence, f is of the form f^π. \hfill \Box

Corollary 2.10 Let $\alpha \in \mathbb{Z} \setminus \{p\}$ and $C_\alpha = \{g^n(\alpha) \mid m \in \mathbb{N}_0\}$. Let
\[I_j = \{\alpha_{jq}, \alpha_{jq+1}, \ldots, \alpha_{(j+1)q-1}\} \subset \mathbb{Z} \setminus \{p\} \quad (j \in \mathbb{N}_0) \]
be a set of q indices $\alpha_{jq} < \alpha_{jq+1} < \cdots < \alpha_{(j+1)q-1}$ such that $C_{\alpha_i} \cap C_{\alpha_i} = \emptyset$ whenever $\alpha_i \neq \alpha_i$ and let
\[\mathcal{C}^{(I_j)} = C_{\alpha_{jq}} \cup C_{\alpha_{jq+1}} \cup \cdots \cup C_{\alpha_{(j+1)q-1}}. \]

For each decomposition of $\mathbb{Z} \setminus \{p\}$ into a countable union of pointwise disjoint
\[\mathcal{C}^{(I_j)} \quad (i.e. \ \mathbb{Z} \setminus \{p\} = \bigcup_{j \in \mathbb{N}_0} \mathcal{C}^{(I_j)}), \] denote this partition (I_j) by π.

Define $F^\pi : \mathbb{Z} \to \mathbb{Z}$ by $F^\pi(p) = p$ if $p \in \mathbb{Z}$, from each class $\mathcal{C}^{(I_j)}$ into itself by
\[F^\pi : C_{\alpha_{jq+l}} := \{g^n(\alpha_{jq+l}) \mid m \in \mathbb{N}_0\} \to C_{\alpha_{jq+l+1}} \quad (l = 0, 1, \ldots, q-2) \]

829
via

\[F_\pi(g^m(\alpha_{jq+i})) = g^m(\alpha_{jq+i+1}), \]

and

\[F_\pi : C_{\alpha_{(j+1)q-1}} := \{g^m(\alpha_{(j+1)q-1}) \mid m \in \mathbb{N}_0\} \rightarrow C_{\alpha_{jq}} \]

via

\[F_\pi(g^m(\alpha_{(j+1)q-1})) = g^{m+1}(\alpha_{jq}). \]

Then \(F_\pi \) satisfies \(f^\pi(n) = an + b \).

Proof Choose \(\alpha_0 \in \mathbb{Z} \setminus \{p\} \) and construct \(C_{\alpha_0} = \{g^m(\alpha_0) \mid m \in \mathbb{N}_0\} \). Choose \(\alpha_1 \in \mathbb{Z} \setminus (C_{\alpha_0} \cup \{p\}) \) and construct \(C_{\alpha_1} = \{g^m(\alpha_1) \mid m \in \mathbb{N}_0\} \). Choose \(\alpha_2 \in \mathbb{Z} \setminus (C_{\alpha_0} \cup C_{\alpha_1} \cup \{p\}) \) and construct \(C_{\alpha_2} = \{g^m(\alpha_2) \mid m \in \mathbb{N}_0\} \). Continue in the same manner until we choose \(\alpha_q \in \mathbb{Z} \setminus (C_{\alpha_0} \cup \cdots \cup C_{\alpha_{q-1}} \cup \{p\}) \) and construct \(C_{\alpha_q} = \{g^m(\alpha_q) \mid m \in \mathbb{N}_0\} \). Let \(I_0 = \{\alpha_0, \ldots, \alpha_{q-1}\} \).

Let \(\mathcal{C}^{(I_0)} = \bigcup_{i=0}^{q-1} C_{\alpha_i} \). Let \(\alpha_q \in \mathbb{Z} \setminus (\mathcal{C}(\alpha_0) \cup \{p\}) \). We repeat the above procedure to obtain \(I_1 = \{\alpha_q, \ldots, \alpha_{2q-1}\} \) and

\[\mathcal{C}^{(I_1)} = \bigcup_{i=q}^{2q-1} C_{\alpha_i}. \]

Continuing in the same manner, choose

\[\alpha_{jq} \in \mathbb{Z} \setminus (\mathcal{C}(\alpha_0) \cup \mathcal{C}(\alpha_q) \cup \cdots \cup \mathcal{C}(\alpha_{(j-1)q})) \]

and construct \(I_j = \{\alpha_{jq}, \ldots, \alpha_{(j+1)q-1}\} \)

\[\mathcal{C}^{(I_j)} = \bigcup_{i=jq}^{(j+1)q-1} C_{\alpha_i}. \]

Repeat the process until we finally exhaust \(\mathbb{Z} \setminus \{p\} \), and so

\[\mathbb{Z} \setminus \{p\} = \mathcal{C}^{(I_0)} \cup \mathcal{C}^{(I_1)} \cup \mathcal{C}^{(I_2)} \cup \cdots ; \quad \mathcal{C}^{(I_j)} \cap \mathcal{C}^{(I_k)} = \emptyset \quad (j \neq k). \]

Denote this partition of \(\mathbb{Z} \setminus \{p\} \) by \(\pi \).

Define \(F_\pi : \mathbb{Z} \rightarrow \mathbb{Z} \) by \(F_\pi(p) = p \) if \(p \in \mathbb{Z} \) and on each class \(\mathcal{C}^{(I_j)} \) \((j \geq 0) \) (of the partition \(\pi \)) onto itself by

\[F_\pi : C_{\alpha_i} \left(\in \mathcal{C}^{(I_j)} \right) \rightarrow C_{\alpha_{i+1}}, \quad (i = (j-1)q, (j-1)q + 1, \ldots, jq - 2), \]

\[g^m(\alpha_i) \rightarrow g^m(\alpha_{i+1}), \]

\[F_\pi : C_{\alpha_{jq-1}} \rightarrow C_{\alpha_{(j-1)q-1}}, \]

\[g^m(\alpha_{jq-1}) \rightarrow g^{m+1}(\alpha_{(j-1)q}). \]

We see that \(F_\pi^l(p) = p \) if \(p \in \mathbb{Z} \) and for \(l \in \{0, 1, \ldots, q - 2\} \),

\[F_\pi(g^m(\alpha_{(j-1)q+l})) = g^m(\alpha_{(j-1)q+l+1}). \]
\[F^2_\pi (g^m(\alpha_{(j-1)q+l})) = F_\pi (g^m(\alpha_{(j-1)q+l+1})) = g^m(\alpha_{(j-1)q+l+2}), \]
\[\vdots \]
\[F^{q-1}_\pi (g^m(\alpha_{(j-1)q+l})) = g^m(\alpha_{(j-1)q+l+(q-l-1)}) = g^m(\alpha_{j-1}), \]
\[F^q_\pi (g^m(\alpha_{(j-1)q+l})) = F_\pi (g^m(\alpha_{j-1})) = g^{m+1}(\alpha_{(j-1)q}), \]
\[F^{q-1}_\pi (g^m(\alpha_{j-1})) = g^{m+1}(\alpha_{j-1}) = g(\alpha_{j-1}) = ag^m(\alpha_{j-1}) + b, \]

and
\[F^m_\pi (g^m(\alpha_{j-1})) = g^m(\alpha_{j-1}), \]
\[F^m_\pi (g^m(\alpha_{j-1})) = g^m(\alpha_{j-1}), \]
\[\vdots \]
\[F^{m-1}_\pi (g^m(\alpha_{j-1})) = g^{m+1}(\alpha_{j-1}) = g^{m+1}(\alpha_{j-1}) = g^{m+1}(\alpha_{j-1}) = g^{m+1}(\alpha_{j-1}) = g^{m+1}(\alpha_{j-1}) = ag^m(\alpha_{j-1}) + b. \]

Hence, \(F_\pi \) satisfies \(f^m(n) = an + b \). \(\square \)

Example 2.11 Let \(f : \mathbb{Z} \to \mathbb{Z} \) satisfy the iterative functional equation
\[f^3(n) = g(n) := 3n + 1. \] (2.5)

Then \(g(n) \) has no fixed points in \(\mathbb{Z} \). The existence of a solution function is guaranteed by Theorem 2.9. The set of all starters is infinite of the form
\[S = \mathbb{Z} \setminus (3\mathbb{Z} + 1) = 3\mathbb{Z} \cup (3\mathbb{Z} + 2) = \{ \ldots, -4, -3, -1, 0, 2, 3, 5, \ldots \}. \]

Then we have
\[\ldots, C_{-4} = \{-4, -11, -32, \ldots\}, \ C_{-3} = \{-3, -8, -23, \ldots\}, \ C_{-1} = \{-1, -2, -5, \ldots\}, \]
\[C_0 = \{0, 1, 4, \ldots\}, \ C_2 = \{2, 7, 22, \ldots\}, \ C_3 = \{3, 10, 31, \ldots\}, \ \ldots \]

As an example of a partition \(\pi \) of \(\mathbb{Z} \), choose
\[I_0 = \{0, 2, 3\}, \ I_1 = \{-4, -3, -1\}, \ I_2 = \{5, 6, 8\}, \ \ldots \]

and let
\[\mathcal{C}_0^{(I_0)} = C_0 \cup C_2 \cup C_3, \ \mathcal{C}_1^{(I_1)} = C_{-4} \cup C_{-3} \cup C_{-1}, \ \mathcal{C}_2^{(I_2)} = C_5 \cup C_6 \cup C_8, \ \ldots \]

Then the set
\[\pi = \left\{ \mathcal{C}_0^{(I_0)}, \mathcal{C}_1^{(I_1)}, \mathcal{C}_2^{(I_2)}, \ldots \right\} \]
forms a partition of \(\mathbb{Z} \). The following diagram shows element maps of one such function \(F_\pi \).

\[
\begin{align*}
F_\pi & : C_0 \to C_2 \quad F_\pi & : C_{-4} \to C_{-3} \quad F_\pi & : C_5 \to C_6 \\
F_\pi & : C_2 \to C_3 \quad F_\pi & : C_{-3} \to C_{-1} \quad F_\pi & : C_6 \to C_8 \\
F_\pi & : C_3 \to C_0 \quad F_\pi & : C_{-1} \to C_{-4} \quad F_\pi & : C_8 \to C_5 \\
& 0 \overset{F_\pi}{\to} 2 \overset{F_\pi}{\to} 3 \overset{F_\pi}{\to} 1 \overset{F_\pi}{\to} 7 \overset{F_\pi}{\to} 10 \overset{F_\pi}{\to} 4 \overset{F_\pi}{\to} 22 \overset{F_\pi}{\to} 31 \overset{F_\pi}{\to} \cdots \\
& -4 \to -3 \to -1 \to -11 \to -8 \to -2 \to -32 \to -23 \to -5 \to \cdots \\
& 5 \to 6 \to 8 \to 16 \to 19 \to 25 \to 49 \to 58 \to 76 \to \cdots \\
& 9 \to 11 \to 12 \to 28 \to 34 \to 37 \to 85 \to 103 \to 112 \to \cdots \\
& \cdots
\end{align*}
\]

As there are many ways to construct such a partition \(\pi \), there are infinitely many solutions of (2.5).

3. Over the set of natural numbers

In this section, we prove the following theorem.

Theorem 3.1 Let \(q \in \mathbb{N} \), \(q \geq 2 \) and \(g : \mathbb{N}_0 \to \mathbb{N}_0 \). Assume that \(g \) is an increasing function having no fixed point. If \(f : \mathbb{N}_0 \to \mathbb{N}_0 \) satisfies the iterative functional equation

\[
f^q(n) = g(n),
\]

then \(f \) must be of the form \(f_K \) for some \(K \) defined in the proof of this theorem.

Adopting the notation in Sections 1 and 2, let \(R_g \) and \(R_f \) denote the range of \(g \) and \(f \), respectively. We begin with some preliminary observations.

(i) Since \(g = f^q \) is increasing, it is injective.

(ii) That \(g \) has no fixed points is equivalent to the condition that \(g(1) \neq 1 \).

(iii) The two functions \(f, g \) commute with each other, i.e. \(f \circ g = g \circ f \).

Assuming the existence of a function \(f : \mathbb{N}_0 \to \mathbb{N}_0 \) satisfying (3.1), we proceed by proving a number of lemmas containing its illuminating properties.

Lemma 3.2 If \(f \) is a solution function of (3.1), then:

(i) \(f \) is one-to-one (and so \(f^{-1} \) is well defined on \(R_f \subseteq \mathbb{N}_0 \));

(ii) \(f \) partitions \(\mathbb{N}_0 \) into (nonempty) equivalence classes via the relation

\[
x \sim y \iff y = f^q(x) \quad \text{for some} \ s \in \mathbb{Z}.
\]

The proof of Lemma 3.2 is simple, so it is left to the reader. We next investigate these equivalence classes.
Proof Suppose \(r \) and \(s \) are in the same class. There is \(t \in \mathbb{Z} \) such that \(r = f^t(s) \). Since \(r \neq s \), we see that \(t \neq 0 \), and by interchanging \(r \), \(s \), we can assume \(t > 0 \). Thus, \(r = f^t \left(f^{(t-1)}q(s) \right) = g(f^{(t-1)}q(s)) \), showing that \(r \in R_g \), a contradiction.

Lemma 3.4 There is a unique nonnegative integer \(r \not\in R_g \) in each equivalence class, and it is the smallest element in this class.

Proof Let \(C \) be such an equivalence class. If \(C \subseteq R_g \), take an \(n_0 \in C \); since \(g \) is increasing, we see that \(n_0 = g(n_1) \) for some \(n_1 \leq n_0 \), and since \(g \) has no fixed point, we must have \(n_1 < n_0 \). Moreover, from \(f^q(n_1) = g(n_1) = n_0 \), we have \(n_1 \in C \). Repeating the arguments, we obtain \(n_1 = g(n_2) \), \(n_2 < n_1 \), \(n_2 \in C \). Continuing in the same manner, we arrive at a negative integer belonging to \(C \), which is not possible. Thus, \(C \) contains an element \(r \not\in R_g \), which must be unique by Lemma 3.3.

Next we show that \(r \) is the smallest element in \(C \). If there exists \(u \in C \) such that \(u < r \), from the preceding result, \(u \in R_g \), i.e. \(u = g(u_1) \) for some \(u_1 \in N_0 \). This element satisfies \(u_1 < u \), \(u_1 \in C \), by the same reasoning as above. Continuing in the same manner, we get a negative integer in \(C \), which is again a contradiction.

Taking into account the results of Lemmas 3.2–3.4, it is convenient to denote each equivalence class by \(C_r \), where \(r \not\in R_g \) is the (unique) smallest element in the class, and such an element \(r \) is the starter of \(C_r \). Clearly, the classes \(C_r \) are disjoint, and

\[
N_0 = \bigcup_{r \not\in R_g} C_r, \quad C_r = \{g^m(r) \mid m \in \mathbb{Z}\}.
\]

Lemma 3.5 If \(r \not\in R_g \) is the starter of \(C_r \), then \(C_r = \{g^m(r) \mid m \in N_0\} \).

Proof If \(x \in C_r \) is such that \(x = g^{-m}(r) \) for some \(m \in \mathbb{N} \), then \(r = g^m(x) \). Since \(g \) is an increasing function without fixed points, we have

\[
r = g^m(x) > g^{m-1}(x) \geq g^{m-2}(x) \geq \cdots \geq x,
\]

contradicting the minimality of \(r \).

Lemma 3.6 Let \(r \) be the starter of \(C_r \). Then:

(i) the function \(f \) sends the class \(C_r \) into a unique class that contains \(f(r) \); (ii) after \(q \) iterations, \(f \) maps a class back into itself, i.e. \(f^q(C_r) \subseteq C_r \).

Proof From Lemma 3.5, each element in \(C_r \) is of the form \(g^s(r) \in C_r \) (\(s \in N_0 \)). Since

\[
f(g^s(r)) = f(g(g^{s-1}(r))) = g(f(g^{s-2}(r))) = \cdots = g^s(f(r)),
\]

we see that \(f(g^s(r)) \) and \(f(r) \) are in the same class, which shows that all elements of \(f(C_r) \) belong to one and only one class, which proves (i). To prove (ii), observe that

\[
f^q(g^s(r)) = g(g^s(r)) = g^{s+1}(r) \in C_r.
\]
If \(x \in R_g = R_f \), then clearly \(x \in R_f \), i.e. \(R_g \subseteq R_f \), and we now look more closely at \(R_f \).

Lemma 3.7

(i) There are elements in \(\mathbb{N}_0 \) but not in \(R_f \).

(ii) If \(k \in \mathbb{N}_0 \setminus R_f \), then \(k, f(k), f^2(k), \ldots, f^{q-1}(k) \) belong to distinct classes and each of them is the starter of its class.

Proof

(i) If \(R_f = \mathbb{N}_0 \), then \(f \) is a bijection (Lemma 3.2) onto its range, and so is \(f^{-1} \). Since \(g \) is increasing without fixed points, we get \(g(0) \neq 0 \), yielding

\[
g(0) \geq 1, \ g(1) \geq 2, \ldots, f^q(k) = g(k) \geq k + 1 \ (k \in \mathbb{N}_0).
\]

This last relation implies that \(f^{-q}(l) := u \leq l - 1 \). Using this repeatedly, we get

\[
f^{-2q}(l) = f^{-q}(u) \leq u - 1 \leq l - 2, \ f^{-3q}(l) = f^{-2q}(u) \leq u - 2 \leq l - 3, \ldots
\]

Thus, for \(t \) sufficiently large, we arrive at \(f^{-qt}(l) < 0 \), which is untenable.

(ii) Take an integer \(k \in \mathbb{N}_0 \setminus R_f \), and let

\[
f^i(k) \in C_{r_i} \quad (i = 0, 1, 2, \ldots, q - 1),
\]

where the \(r_i \)'s are not necessarily distinct.

We claim that \(f^i(k) \) is the smallest element in its class \(C_{r_i} \).

Starting from the last class, \(C_{r_{q-1}} \), if the claim is false, then its starter satisfies \(r_{q-1} < f^{q-1}(k) \). Since \(r_{q-1} = g^0(r_{q-1}) \), the definition of the class shows that \(f^{q-1}(k) = g^t(r_{q-1}) \) for some \(t \in \mathbb{N} \). Since \(r_{q-1} \) and \(f^{q-1}(k) \) are in the same class \(C_{r_{q-1}} \), Lemma 3.6(i) indicates that \(f(r_{q-1}) \) and \(f(f^{q-1}(k)) \) are in the same class. Since \(k \in C_{r_0} \), by Lemma 3.6(ii), \(f(f^{q-1}(k)) = f(q)(k) \in C_{r_0} \). Thus, \(f(r_{q-1}) \in C_{r_0} \). As \(g \) is increasing with no fixed point, we have

\[
f(r_{q-1}) < g^t(f(r_{q-1})) = f(g^t(r_{q-1})) = f(f^{q-1}(k)) = f^q(k) = g(k).
\]

Since there is no element between \(k \) and \(g(k) \) in \(C_{r_0} \) and since \(k \not\in R_f \), we have \(f(r_{q-1}) < k \). After applying \(f^t = g \) repeatedly to \(f(r_{q-1}) \), we must reach \(k \), so that \(k \in R_f \), which is a contradiction. Hence, \(f^{q-1}(k) \) is the starter in \(C_{r_{q-1}} \). The same reasoning also shows that \(f^{q-2}(k), \ldots, f(k) \) are the starters of classes \(C_{r_{q-2}}, \ldots, C_{r_1} \), respectively.

It remains to show that \(k \) is the starter in \(C_{r_0} \). Since \(r_0 = g^0(r_0) = g^t(r_0) \ (t \in \mathbb{N}) \), are both in \(C_{r_0} \), by Lemma 3.6(i), \(f(r_0) \) and \(f(k) \) are in the same class. Since \(g \) is increasing with no fixed point, we have

\[
f(r_0) < g^t(f(r_0)) = f(g^t(r_0)) = f(k) \in C_{r_1},
\]

yielding \(f(r_0) \in C_{r_1} \), which contradicts the fact that \(f(k) \) is the smallest in \(C_{r_1} \). By Lemmas 3.3 and 3.4, \(k, f(k), f^2(k), \ldots, f^{q-1}(k) \) are in distinct classes.

Remark. From Lemma 3.7, we see that \(r_i = f^i(k) \quad (i = 0, 1, \ldots, q - 1) \) and it is clear that for \(k \in \mathbb{N}_0 \setminus R_f \), the elements \(f(k), f^2(k), \ldots, f^{q-1}(k) \) can be given arbitrary values from \(\mathbb{N}_0 \).
Keeping the above notation, we now prove Theorem \ref{thm:main} by showing that a function \(f : \mathbb{N}_0 \to \mathbb{N}_0 \) satisfying (3.1) must be one of the functions \(f_K \) for some \(K \) defined below.

Proof of Theorem \ref{thm:main} Let \(f : \mathbb{N}_0 \to \mathbb{N}_0 \) be a solution of \(f^q(n) = g(n) \). Let \(k_0 \in \mathbb{N}_0 \setminus R_f \) and \(r_i = f^i(k_0) \ (i = 0, 1, \ldots, q - 1) \). By Lemma \ref{lem:starter}(ii), we see that \(r_0, r_1, \ldots, r_{q - 1} \) are starters of \(q \) distinct classes \(C_{r_i} \) \((0 \leq i \leq q - 1)\). Since \(r_i \) is the starter of \(C_{r_i} \), let

\[
\mathcal{E}(r_0) = C_{r_0} \cup C_{r_1} \cup \cdots \cup C_{r_{q-1}}
\]

and observe that for \(h = 0, 1, \ldots, q - 2 \),

\[
f : C_{r_h} := \{g^m(r_h) \mid m \in \mathbb{N}_0\} \to C_{r_{h+1}} := \{g^m(r_{h+1}) \mid m \in \mathbb{N}_0\}
\]

and

\[
f : C_{r_{q-1}} \to C_{r_0}
\]

satisfy

\[
f(g^m(r_h)) = g^m(f(r_h)) = g^m(r_{h+1})
\]

and

\[
f(g^m(r_{q-1})) = g^m(f(r_{q-1})) = g^m(r_0).
\]

Proceeding generally at the state \(i + 1, \ (i \geq 0) \), choose

\[
r_{iq} \in (S \setminus R_f) \cap \left(\mathbb{N}_0 \setminus (\mathcal{E}(r_0) \cup \cdots \cup \mathcal{E}(r_{(i-1)q})) \right)
\]

and construct

\[
\mathcal{E}(r_{iq}) = C_{r_{iq}} \cup \cdots \cup C_{r_{(i+1)q-1}}.
\]

Since \(\mathcal{E}(r_{iq}) \cap \mathcal{E}(r_{jq}) = \emptyset \) if \(i \neq j \), continuing this procedure will eventually exhaust \(\mathbb{N}_0 \), i.e. we obtain a partition \(K \) of \(\mathbb{N}_0 \) as

\[
\mathbb{N}_0 = \mathcal{E}(r_0) \cup \mathcal{E}(r_q) \cup \mathcal{E}(r_{2q}) \cup \cdots = \bigcup_{i \geq 0} \mathcal{E}(r_{iq}). \quad (3.3)
\]

We turn now to obtain an explicit form of the solution \(f \).

Define \(f_K : \mathbb{N}_0 \to \mathbb{N}_0 \) on each \(\mathcal{E}(r_h) \) \((h \in q\mathbb{N}_0)\) by

\[
f_K : C_{r_{h+j}} \longrightarrow C_{r_{h+j+1}} \quad (j = 0, 1, \ldots, q - 2)
\]

via

\[
f_K (g^m(r_{h+j})) = g^m(r_{h+j+1})
\]

and

\[
f_K : C_{r_{h+q-1}} \longrightarrow C_{r_h}
\]

via

\[
f_K (g^m(r_{h+q-1})) = g^{m+1}(r_h).
\]
The mapping f_K on each $C(r_h)$ is illustrated by

$$
\ldots \xrightarrow{f_K} g^m(r_h) \xrightarrow{f_K} g^m(r_{h+1}) \xrightarrow{f_K} g^m(r_{h+2}) \xrightarrow{f_K} \ldots \xrightarrow{f_K} g^m(r_{h+q-1}) \xrightarrow{f_K} g^{m+1}(r_h) \\
\xrightarrow{f_K} g^{m+1}(r_{h+1}) \xrightarrow{f_K} g^{m+1}(r_{h+2}) \xrightarrow{f_K} \ldots \xrightarrow{f_K} g^{m+1}(r_{h+q-1}) \xrightarrow{f_K} g^{m+2}(r_h) \xrightarrow{f_K} \ldots .
$$

For $j = 0, 1, \ldots, q - 2$, we have

$$
f_K(g^m(r_{h+j})) = g^m(r_{h+j+1}),
$$

$$
f_K^2(g^m(r_{h+j})) = f_K(g^m(r_{h+j+1})) = g^m(r_{h+j+2}),
$$

$$
\vdots
$$

$$
f_K^{q-1-j}(g^m(r_{h+j})) = g^m(r_{h+j+(q-1-j)}) = g^m(r_{h+q-1}),
$$

$$
f_K^{(q-1-j)+1}(g^m(r_{h+j})) = f_K(g^m(r_{h+q-1})) = g^{m+1}(r_h),
$$

$$
\vdots
$$

$$
f_K^q(g^m(r_{h+j})) = f_K^{(q-1-j)+(1+j)}(g^m(r_{h+j})) = g^{m+1}(r_{h+j}) = g(g^m(r_{h+j})).
$$

On the set $C_{r_{h+q-1}}$, we have

$$
f_K(g^m(r_{h+q-1})) = g^{m+1}(r_h),
$$

$$
f_K^2(g^m(r_{h+q-1})) = f_K(g^{m+1}(r_h)) = g^{m+1}(r_{h+1}),
$$

$$
\vdots
$$

$$
f_K^q(g^m(r_{h+q-1})) = g^{m+1}(r_{h+q-1}) = g(g^m(r_{h+q-1})).
$$

Hence, f is of the form f_K.

Corollary 3.8 Let $q \in \mathbb{N}$, $q \geq 2$ and $g : \mathbb{N}_0 \to \mathbb{N}_0$. Assume that g is an increasing function having no fixed point.

Let $r \in \mathbb{N}_0$ and $C_r = \{g^m(r) \mid m \in \mathbb{N}_0\}$. Let $I_j = \{r_{j_q}, r_{j_{q+1}}, \ldots, r_{(j+1)q-1}\} \subset \mathbb{N}_0$ ($j \in \mathbb{N}_0$) be a set of q indices $r_{j_q} < r_{j_{q+1}} < \cdots < r_{(j+1)q-1}$ such that $C_{r_{j}} \cap C_{r_{j+1}} = \emptyset$ whenever $r_l \neq r_i$ and let $C_j = C_{r_{j}} \cup C_{r_{j+1}} \cup \cdots \cup C_{r_{(j+1)q-1}}$.

For each decomposition of \mathbb{N}_0 into a countable union of pointwise disjoint $C_j^{(l)}$ (i.e. $\mathbb{N}_0 = \bigcup_{j \in \mathbb{N}_0} C_j^{(l)}$), denote this partition (I_j) by K.

Define $F_K : \mathbb{N}_0 \to \mathbb{N}_0$ from each class $C_j^{(l)}$ into itself by

$$
F_K : C_{r_{j_q+l}} := \{g^m(r_{j_q+l}) \mid m \in \mathbb{N}_0\} \to C_{r_{j_q+l+1}} \quad (l = 0, 1, \ldots, q - 2)
$$

via

$$
F_K(g^m(r_{j_q+l})) = g^m(r_{j_q+l+1}).
$$
and
\[F_K : C_{r_{(i+1)q-1}} : = \{ g^m(r_{(j+1)q-1}) \mid m \in \mathbb{N}_0 \} \rightarrow C_{r_q} \]
via
\[F_K (g^m(r_{(j+1)q-1})) = g^{m+1}(r_q). \]
Then \(F_K \) satisfies \(f^q(n) = g(n) \).

Proof Given \(q \in \mathbb{N}, q \geq 2 \) and \(g : \mathbb{N}_0 \rightarrow \mathbb{N}_0 \) an increasing function having no fixed point, choose \(r_0 \in \mathbb{N}_0 \) and construct \(C_{r_0} = \{ g^m(r_0) \mid m \in \mathbb{N}_0 \} \). Choose \(r_1 \in \mathbb{N}_0 \setminus C_{r_0} \) and construct \(C_{r_1} = \{ g^m(r_1) \mid m \in \mathbb{N}_0 \} \). Choose \(r_2 \in \mathbb{N}_0 \setminus (C_{r_0} \cup C_{r_1}) \) and construct \(C_{r_2} = \{ g^m(r_2) \mid m \in \mathbb{N}_0 \} \). Continue in the same manner until we choose \(r_{q-1} \in \mathbb{N}_0 \setminus (C_{r_0} \cup \cdots \cup C_{r_{q-2}}) \) and construct \(C_{r_{q-1}} = \{ g^m(r_{q-1}) \mid m \in \mathbb{N}_0 \} \).

Let \(\mathcal{C}(r_0) = \bigcup_{i=0}^{q-1} C_{r_i} \). Let \(r_q \in \mathbb{N}_0 \setminus \mathcal{C}(r_0) \). We repeat the above procedure to obtain
\[\mathcal{C}(r_q) = \bigcup_{i=q}^{2q-1} C_{r_i}. \]
Continuing in the same manner, choose
\[r_{jq} \in \mathbb{N}_0 \setminus \{ \mathcal{C}(r_0) \cup \mathcal{C}(r_q) \cup \cdots \cup \mathcal{C}(r_{(j-1)q}) \} \]
and construct
\[\mathcal{C}(r_{jq}) = \bigcup_{i=(j-1)q}^{jq-1} C_{r_i}. \]
Repeat the process until we finally exhaust \(\mathbb{N}_0 \), and so
\[\mathbb{N}_0 = \mathcal{C}(r_0) \cup \mathcal{C}(r_q) \cup \mathcal{C}(r_{2q}) \cup \cdots ; \quad \mathcal{C}(r_{jq}) \cap \mathcal{C}(r_{kq}) = \emptyset \quad (j \neq k). \]
Denote this partition of \(\mathbb{N}_0 \) by \(\mathcal{K} \).

Define \(F_K : \mathbb{N}_0 \rightarrow \mathbb{N}_0 \) on each class \(\mathcal{C}(r_{jq}) \) \((j \geq 0) \) (of the partition \(\mathcal{K} \)) onto itself by
\[F_K : C_{r_i} \ (\in \mathcal{C}(r_{jq})) \rightarrow C_{r_{i+1}}, \quad (i = (j-1)q, (j-1)q+1, \ldots, jq-2), \]
\[g^m(r_i) \mapsto g^m(r_{i+1}), \]
\[F_K : C_{r_{jq-1}} \rightarrow C_{r_{(j-1)q}}, \]
\[g^m(r_{jq-1}) \mapsto g^{m+1}(r_{(j-1)q}). \]
We see that for \(l \in \{0, 1, \ldots, q-2\} \),
\[F_K (g^m(r_{(j-1)q+l})) = g^m(r_{(j-1)q+l+1}), \]
\[F_K^2 (g^m(r_{(j-1)q+l})) = F_K (g^m(r_{(j-1)q+l+1})) = g^m(r_{(j-1)q+l+2}), \]
\[\vdots \]
\[F_K^{q-l-1} \left(g^m(r_{(j-1)q+i}) \right) = g^m(r_{(j-1)q+l+(q-l-1)}) = g^m(r_{jq-1}), \]
\[F_K^{(q-l-1)+1} \left(g^m(r_{(j-1)q+i}) \right) = F_K(g^m(r_{jq-1})) = g^{m+1}(r_{(j-1)q}), \]
\[F_K^l \left(g^m(r_{(j-1)q+i}) \right) = g^{m+1}(r_{(j-1)q+i}) = g^{m+1}(r_{jq+1}) = g \left(g^m(r_{jq+1}) \right), \]

and
\[F_K \left(g^m(r_{jq-1}) \right) = g^{m+1}(r_{jq-1}), \]
\[F_K^2 \left(g^m(r_{jq-1}) \right) = g^{m+1}(r_{jq+1}), \]
\[\vdots \]
\[F_K^{q-2} \left(g^m(r_{jq-1}) \right) = g^{m+1}(r_{jq+q-(q-3)}) = g^{m+1}(r_{jq-3}), \]
\[F_K^{q-1} \left(g^m(r_{jq-1}) \right) = F_K^{(q-1)+1} \left(g^m(r_{jq-1}) \right) = F_K \left(g^{m+1}(r_{jq-1}) \right) = g^{m+1}(r_{jq-2}), \]
\[F_K^q \left(g^m(r_{jq-1}) \right) = F_K^{(q-1)+1} \left(g^m(r_{jq-1}) \right) = F_K \left(g^{m+1}(r_{jq-2}) \right) = g^{m+1}(r_{jq-1}) = g \left(g^m(r_{jq-1}) \right). \]

Hence, \(F_K \) satisfies \(f^q(n) = g(n) \). \(\square \)

As an application, we show that the result of Sarkaria mentioned earlier is an immediate consequence of Theorem 3.1.

Corollary 3.9 Let \(\alpha, q \in \mathbb{N}, q \geq 2 \). Then there exists \(f : \mathbb{N}_0 \to \mathbb{N}_0 \) satisfying
\[f^q(n) = n + \alpha \]
if and only if \(q \mid \alpha \).

Proof Let \(g : \mathbb{N}_0 \to \mathbb{N}_0 \) be given by \(g(n) = n + \alpha \). Clearly,
\[\mathbb{N}_0 \backslash R_g = \{0, 1, \ldots, \alpha - 1 \} =: S \]
is the set of all possible starters. The corresponding equivalence classes are
\[C_i(k) = \{ f^i(k), g(f^i(k)), g^2(f^i(k)), \ldots \} = \{ f^i(k), f^i(k) + \alpha, f^i(k) + 2\alpha, \ldots \} \]
\[= \{ l \in \mathbb{N}_0 \mid l \equiv f^i(k) \mod \alpha \} \]
\[(k \in S, \ r_i = i \in \{0, 1, \ldots, q-1\}). \]

Observe that for the classes (3.4) and the relation (3.3) to be consistent with \(\mathbb{N}_0 = \bigcup_{i=0}^{n-1} \{ k \in \mathbb{N}_0 \mid k \equiv i \mod \alpha \} \), i.e. for \(f_K \) to be constructible, it is necessary and sufficient that \(q \mid \alpha \). \(\square \)

Example 3.10 Let \(f : \mathbb{N}_0 \to \mathbb{N}_0 \) satisfy the iterative functional equation
\[f^3(n) = g(n) := n^3 + 1. \]
Clearly, \(g(n) \) is an increasing function with no fixed points in \(\mathbb{N}_0 \). The existence of a solution function is guaranteed by Theorem 3.1. The set of all starters is infinite of the form
\[
S = \mathbb{N}_0 \setminus g(\mathbb{N}_0) = \{ m \in \mathbb{N}_0 \mid m - 1 \text{ is not a perfect cube in } \mathbb{N}_0 \}
= \{0, 3, 4, 5, 6, 7, 8, 10, 11, \ldots \}.
\]

Then we have
\[
C_0 = \{0, 1, 2, \ldots \}, \quad C_3 = \{3, 28, 21953, \ldots \}, \quad C_4 = \{4, 65, 274626, \ldots \},
\]
\[
C_5 = \{5, 126, 2000377, \ldots \}, \quad C_6 = \{6, 217, 10218314, \ldots \}, \quad C_7 = \{7, 344, 40707585 \ldots \}, \quad \ldots
\]

As an example of a partition \(K \) of \(\mathbb{N}_0 \), choose
\[
I_0 = \{0, 3, 4\}, \quad I_1 = \{5, 6, 7\}, \quad I_2 = \{8, 10, 11\}, \quad \ldots
\]

and let
\[
\mathcal{C}(I_0) = C_0 \cup C_3 \cup C_4, \quad \mathcal{C}(I_1) = C_5 \cup C_6 \cup C_7, \quad \mathcal{C}(I_2) = C_8 \cup C_{10} \cup C_{11}, \quad \ldots
\]

Then the set
\[
K = \{\mathcal{C}(I_0), \mathcal{C}(I_1), \mathcal{C}(I_2), \ldots\}
\]
forms a partition of \(\mathbb{N}_0 \). The following diagram shows element maps of one such function \(F_K \):
\[
F_K : C_0 \rightarrow C_3 \quad F_K : C_5 \rightarrow C_6 \quad F_K : C_8 \rightarrow C_{10}
\]
\[
F_K : C_3 \rightarrow C_4 \quad F_K : C_6 \rightarrow C_7 \quad F_K : C_{10} \rightarrow C_{11} \quad \ldots
\]
\[
F_K : C_4 \rightarrow C_0 \quad F_K : C_7 \rightarrow C_5 \quad F_K : C_{11} \rightarrow C_8
\]

As there are many ways to construct such a partition \(K \), there are infinitely many solutions of (3.5).

References

