On small covers over a product of simplices

Murat ALTUNBULAK, Aslı GÜÇLÜKAN İLHAN*
Department of Mathematics, Faculty of Science, Dokuz Eylül University, Buca, İzmir, Turkey

Received: 12.06.2017 • Accepted/Published Online: 22.01.2018 • Final Version: 08.05.2018

Abstract: In this paper, we give a formula for the number of \mathbb{Z}_n^2-equivariant homeomorphism classes of small covers over a product of simplices. We also give an upper bound for the number of small covers over a product of simplices up to homeomorphism.

Key words: Small cover, equivariant homeomorphism, polytope, acyclic digraph

1. Introduction

A small cover is a smooth closed manifold M^n that admits a locally standard \mathbb{Z}_n^2-action whose orbit space is a simple convex polytope. The notion of a small cover was introduced by Davis and Januszkiewicz [5] as a generalization of real toric manifolds. In [5], it was shown that every small cover over a simple convex polytope P^n can be obtained from a characteristic function on the set of facets of P^n. There is a free action of the general linear group $GL(n, \mathbb{Z}_2)$ on the set of characteristic functions and the orbit space of this action is in one-to-one correspondence with the Davis–Januszkiewicz equivalence classes of small covers. Recently, several studies have been done to calculate the number of Davis–Januszkiewicz equivalence classes of small covers over a specific polytope (see [1, 3, 6]). In [6], Garrison and Scott used a computer program to find the number of small covers over a dodecahedron up to Davis–Januszkiewicz equivalence. In [3], Choi constructed a bijection between the set of Davis–Januszkiewicz equivalence classes of small covers over an n-cube and the set of acyclic digraphs with n-labeled nodes. He also gave a formula for the number of small covers over a product of simplices up to Davis–Januszkiewicz equivalence in terms of acyclic digraphs with labeled nodes.

There is a standard action of the automorphism group of the face poset of P^n on the set of characteristic functions on P^n. Lü and Masuda [7] showed that there is a bijection between the set of orbits of this action and the set of \mathbb{Z}_n^2-equivariant homeomorphism classes of small covers over P^n. By Burnside’s lemma, the number of orbits of an action is the average number of the points fixed by an element of the group. Therefore, one can find the number of \mathbb{Z}_n^2-equivariant homeomorphism classes of small covers over P^n by enumerating the number of fixed points of elements of the automorphism group. Using the Burnside lemma, Choi [3] gave a formula for the number of \mathbb{Z}_n^2-equivariant homeomorphism classes of small covers over a cube, which is the product of 1-simplices. When P^n is a product of simplices of dimension greater than 1, the action of the automorphism group of the face poset is free. Therefore, the number of equivariant small covers over a product of simplices of dimension greater than 1 is the quotient of the number of the small covers and the order of the automorphism group.

*Correspondence: asli.ilhan@deu.edu.tr
2010 AMS Mathematics Subject Classification: 37F20, 57S10
group of the face poset. In [2], Chen and Wang directly counted the number of equivariant homeomorphism classes of small covers over $\Delta^1 \times \Delta^{n_1} \times \Delta^{n_2}$ and $\Delta_1 \times \Delta^{n_3}$, where Δ^{n_i} is an n_i-simplex with $n_i \geq 1$ for $1 \leq i \leq 3$. In this paper, we use Choi’s argument to generalize these formulas to an arbitrary product of simplices.

The paper is organized as follows. In Section 2 we recall the basic theory about the small covers over a simple polytope and vector matrices. In Section 3 we obtain a formula for the number of \mathbb{Z}_2^n-equivariant homeomorphism classes over a product of equidimensional simplices. In Section 4 we give an upper bound for the number of small covers over a product of equidimensional simplices up to homeomorphism.

2. Preliminaries

An n-dimensional convex polytope P is said to be simple if every vertex of P is the intersection of precisely n facets. A small cover over P is a smooth closed n-manifold M^n that admits a \mathbb{Z}_2^n-action that is locally isomorphic to a standard action of \mathbb{Z}_2^n on \mathbb{R}^n and the orbit space of the action is P.

Given a simple convex polytope P of dimension n, let $\mathcal{F}(P) = \{F_1, \ldots, F_m\}$ be the set of facets of P. A function $\lambda : \mathcal{F}(P) \to \mathbb{Z}_2^n$ is called a characteristic function if it satisfies the nonsingularity condition that whenever the intersection $F_{i_1} \cap \cdots \cap F_{i_k}$ is nonempty, the set \{\(\lambda(F_{i_1}), \ldots, \lambda(F_{i_k})\)\} forms a basis for \mathbb{Z}_2^n. For a given point $p \in P$, let $\mathbb{Z}_2^n(p)$ be the subgroup of \mathbb{Z}_2^n generated by $\lambda(F_{i_1}), \ldots, \lambda(F_{i_k})$ where the intersection $\bigcap_{j=1}^k F_{i_j}$ is the minimal face containing p in its relative interior. Then the manifold $M(\lambda) = (P \times \mathbb{Z}_2^n) / \sim$ where

\[(p, g) \sim (q, h) \text{ if } p = q \text{ and } g^{-1}h \in \mathbb{Z}_2^n(p)\]

is a small cover over P.

Theorem 2.1 ([5]) For every small cover M over P, there is a characteristic function λ with \mathbb{Z}_2^n-homeomorphism $M(\lambda) \to M$ covering the identity on P.

Two small covers M_1 and M_2 over P are said to be DJ-equivalent (Davis-Januszkiewicz equivalent) if there is a weakly \mathbb{Z}_2^n-homeomorphism $f : M_1 \to M_2$ covering the identity on P. Following [7], let $\Lambda(P)$ be the set of all characteristic functions on P. There is a free action of $GL(n, \mathbb{Z}_2)$ on $\Lambda(P)$ defined by $g \cdot \lambda = g \circ \lambda$. By the above theorem, DJ-equivalence classes of small covers over P bijectively correspond to the coset $GL(n, \mathbb{Z}_2) \backslash \Lambda(P)$. In particular, $|\Lambda(P)|$ is equal to the product of $|GL(n, \mathbb{Z}_2) \backslash \Lambda(P)|$ and $|GL(n, \mathbb{Z}_2)| = \prod_{k=1}^{n} (2^n - 2^{k-1})$.

On the other hand, the equivariant classes of small covers over P are characterized by the action of the automorphism group of the face poset of P. More precisely, let $\text{Aut}(\mathcal{F}(P))$ be the group of bijections from the set of faces of P to itself, which preserves the poset structure. Then $\text{Aut}(\mathcal{F}(P))$ acts on $\Lambda(P)$ on the right by $\lambda \cdot h = \lambda \circ h$. In [7], Lu and Masuda proved the following theorem.

Theorem 2.2 The set of \mathbb{Z}_2^n-homeomorphism classes of small covers over P corresponds bijectively to the coset $\Lambda(P) / \text{Aut}(\mathcal{F}(P))$.

By the above theorem, to find the number of equivariant classes of small covers over P, we need to find the number of orbits of $\Lambda(P)$ under the action of $\text{Aut}(\mathcal{F}(P))$. The Burnside lemma reduces this problem to
the enumeration of fixed points

\[\Lambda(P)_h = \{ \lambda \in \Lambda(P) \mid \lambda(h(F)) = \lambda(F) \text{ for all } F \in \mathcal{F}(P) \} \]

by elements \(h \in \text{Aut}(\mathcal{F}(P)) \).

Lemma 2.3 (Burnside lemma) Let \(G \) be a finite group acting on a set \(X \). Then the number of \(G \)-orbits of \(X \) is equal to \(\frac{1}{|G|} \sum_{g \in G} |X^g| \), where \(X^g = \{ x \in X \mid gx = x \} \).

Therefore, one can find the number of \(\mathbb{Z}_2^n \)-equivariant homeomorphism classes of small covers over \(P^n \) by enumerating \(\Lambda(P)_h \) for all \(h \in \text{Aut}(\mathcal{F}(P)) \).

As a combination of the above theorems, we have the following result.

Theorem 2.4 The number of weakly \(\mathbb{Z}_2^n \)-homeomorphism classes of small covers over \(P \) is the size of the double coset \(\text{GL}(n, \mathbb{Z}_2) \backslash \Lambda(P)/\text{Aut}(\mathcal{F}(P)) \).

3. The number of \(\mathbb{Z}_2^n \)-equivariant homeomorphism classes

Let \(P = \Delta^{n_1} \times \cdots \times \Delta^{n_m} \), where \(\Delta^{n_i} \) is the standard \(n_i \)-simplex. Let \(G_m \) be the set of acyclic digraphs with \(m \) labeled nodes with labeled vertex set \(V(G) = \{ v_1, \ldots, v_m \} \). Here, a digraph is a graph with at most one edge directed from vertex \(v_i \) to \(v_j \). A directed graph is said to be acyclic if there is no directed cycle. The outdegree \(\text{outdeg}(v) \) (the indegree \(\text{indeg}(v) \)) of a vertex \(v \) is the number of edges directed from (to) \(v \). In [3], Choi gave the following formula for the number of small covers over \(P \).

Theorem 3.1 (Theorem 2.8, [3]) The number of DJ-equivalence classes of small covers over \(P = \Delta^{n_1} \times \cdots \times \Delta^{n_m} \) with \(\sum_{i=1}^m n_i = n \) is

\[|\text{GL}(n, \mathbb{Z}_2) \backslash \Lambda(P)| = \sum_{G \in G_m} \prod_{v_i \in V(G)} (2^{n_i} - 1)^{\text{outdeg}(v_i)}. \]

It is well known that the automorphism group of the face poset of \(\Delta^n \) is the group of permutations on the set of facets, i.e. \(\text{Aut}(\mathcal{F}(\Delta^n)) \cong S_{n+1} \), where \(S_{n+1} \) is the symmetric group of degree \(n+1 \). To understand the automorphism group of \(\mathcal{F}(P) \), we need to take the number of \(\Delta^n \) occurring in \(P \) into account. For this reason, we write

\[P = \prod_{i=1}^l P_i, \text{ where } P_i = \Delta_1^{n_{i_1}} \times \cdots \times \Delta_{m_i}^{n_{i_k}}, \]

with \(1 \leq n_1 < n_2 < \cdots < n_l \) and \(\sum_{i=1}^l n_i m_i = n \). Then the set of facets of \(P^i \) is

\[\{ f_{j,k}^i = \Delta_1^{n_{i_1}} \times \cdots \times \Delta_{j-1}^{n_{i_{j-1}}} \times \Delta_{j+1}^{n_{i_{j+1}}} \times \cdots \times \Delta_{m_i}^{n_{i_{m_i}}} \mid 0 \leq k \leq n_i, \ 1 \leq j \leq m_i \} \]

where \(\{ f_{j,0}, \ldots, f_{j,n_i} \} \) is the set of facets of the simplex \(\Delta_j^{n_i} \). Therefore, we have

\[\mathcal{F}(P) = \{ F_{j,k}^i \mid 0 \leq k \leq n_i, \ 1 \leq j \leq m_i, \ 1 \leq i \leq l \} \]
where $F^i_{j,k} = P_i \times \cdots \times P_{i-1} \times f^i_{j,k} \times P_{i+1} \times \cdots \times P_l$. Note that there are $(n + m)$-facets, where $m = \sum_{i=1}^l m_i$.

Since $\text{Aut}(F(D^n)) \cong S_{n+1}$, $\text{Aut}(F(P))$ is the wreath product of S_{n+1} with S_{m_i}, where $\mu \in S_{m_i}$ sends $f^i_{j,k}$ to $f^\mu_{j,k}$. More precisely, $\text{Aut}(F(P)) = S_{n+1} \wr S_{m_i}$ is equal to $S_{n+1} \times \cdots \times S_{n+1} \times S_{m_i}$, as a set where the group multiplication is defined by

$$\left(\sigma_1, \ldots, \sigma_{m_i}, \mu\right)\left(\sigma'_1, \ldots, \sigma'_{m_i}, \mu'\right) = \left(\sigma_1\sigma'_{\mu^{-1}(1)}, \ldots, \sigma_{m_i}\sigma'_{\mu^{-1}(m_i)}, \mu\mu'\right)$$

for any $\sigma_i, \sigma'_i \in S_{n+1}$ and $\mu, \mu' \in S_{m_i}$. Since $n_1 < n_2 < \cdots < n_l$, we have the following.

Lemma 3.2 $\text{Aut}(F(P)) \cong \prod_{i=1}^l \left(S_{n+1} \wr S_{m_i}\right)$.

By the nonsingularity condition, a characteristic function must send any set obtained by taking $\{F^i_{j,k} \mid 0 \leq k \leq n_i\}$ for each $1 \leq j \leq m_i$ and $1 \leq i \leq l$ to a basis of \mathbb{Z}^n_2. When $1 < n_1$, more than one element is arbitrarily chosen from each set. However, for every nontrivial element g of $\text{Aut}(F(P))$, there exist $1 \leq j \leq m_i$ and $1 \leq i \leq l$ for which at least two elements from the set $\{F^i_{j,k} \mid 0 \leq k \leq n_i\}$ are not fixed by g. Therefore, g cannot fix any characteristic function. This means that the action of $\text{Aut}(F(P))$ on $F(P)$ is free and hence the number of equivariant homeomorphism classes of small covers over P with $n_1 > 1$ is

$$\frac{|\Lambda(P)|}{|\text{Aut}(F(P))|} = \frac{|\Lambda(P)|}{\prod_{i=1}^l [(n_i + 1)!]^{m_i}(m_i)!}.$$

Since $|\text{GL}(n, \mathbb{Z}_2)| = \prod_{k=1}^n (2^n - 2^{k-1})$, by the above theorem we have:

Corollary 3.3 Let $P = \prod_{i=1}^l \Delta^{n_i}_i \times \cdots \times \Delta^{n_l}_l$ with $\sum_{i=1}^l m_i = m$ and $\sum_{i=1}^l n_i m_i = n$. Define a function $n : \{1, \ldots, m\} \to \{n_1, \ldots, n_l\}$ by $n(s) = n_i$ whenever $k_1 + \cdots + k_{i-1} + 1 \leq s \leq k_1 + \cdots + m_i$.

Then the number of equivariant homeomorphism classes of small covers over P with $n_1 > 1$ is

$$\frac{|\Lambda(P)|}{|\text{Aut}(F(P))|} = \frac{\left(\prod_{k=1}^n (2^n - 2^{k-1})\right)\left(\sum_{G \in \mathcal{G}_m} \prod_{v_j \in V(G)} (2^{n(s)} - 1)^{\text{outdeg}(v_j)}\right)}{\prod_{i=1}^l [(n_i + 1)!]^{m_i}(m_i)!}.$$

When $n_1 = 1$, the only elements of $\text{Aut}(F(P))$ that have a fixed point are the ones of the form

$$\chi_1^{\epsilon_1} \cdots \chi_{m_1}^{\epsilon_{m_1}}, \quad \epsilon_i \in \mathbb{Z}_2$$

where $\chi_1, \cdots, \chi_{m_1}$ are the reflections in $\text{Aut}(F(P))$. To count the number of elements in $\Lambda(P)_{\chi_1^{\epsilon_1} \cdots \chi_{m_1}^{\epsilon_{m_1}}}$, first note that it is a $\text{GL}(n, \mathbb{Z}_2)$-invariant subset of $\Lambda(P)$. Since the action of $\text{GL}(n, \mathbb{Z}_2)$ is free, we have

$$|\Lambda(P)_{\chi_1^{\epsilon_1} \cdots \chi_{m_1}^{\epsilon_{m_1}}}| = |\text{GL}(n, \mathbb{Z}_2)| \times |\text{GL}(n, \mathbb{Z}_2)\backslash \Lambda(P)_{\chi_1^{\epsilon_1} \cdots \chi_{m_1}^{\epsilon_{m_1}}}|.$$
To find $|GL(n,\mathbb{Z}_2)\setminus \Lambda(P)_{\chi_1^{s_1}\cdots \chi_{m_1}^{s_{m_1}}}|$ we use the correspondence given by Choi [3]. By the nonsingularity condition, for any $\lambda \in \Lambda(P)$, the vectors

$$\lambda(F^1_{1,1}), \ldots, \lambda(F^1_{m_1,1}), \lambda(F^2_{1,1}), \lambda(F^2_{1,2}), \ldots, \lambda(F^2_{1,n_2}), \ldots, \lambda(F^l_{m_1,1}), \ldots, \lambda(F^l_{m_1,n_l})$$

form a basis for \mathbb{Z}_2^n. For each coset in $GL(n,\mathbb{Z}_2)\setminus \Lambda(P)_{\chi_1^{s_1}\cdots \chi_{m_1}^{s_{m_1}}}$, choose a representative λ for which the vectors in (1) correspond to the standard basis elements

$$\{\epsilon_i = (1,0,\ldots,0), \ldots, \epsilon_n = (0,\ldots,0,1)\},$$

respectively. More precisely, we have

$$\lambda(F^i_{j,k}) = \epsilon_{m_1n_1+\cdots+m_{i-1}n_{i-1}+(j-1)n_i+k}$$

for $1 \leq i \leq l$, $1 \leq j \leq m_i$ and $1 \leq k \leq n_i$. Let $A(\epsilon_1, \ldots, \epsilon_{m_1})$ be the set of such representatives. For the remaining facets, we write $F^i_{j,0} = F^i_{m_1+\cdots+m_{i-1}+j}$ for $1 \leq i \leq l$ and $1 \leq j \leq m_i$. Then we have

$$\lambda(F^i_{p}) = \sum_{q=1}^{n} a_{pq}\epsilon_q.$$

We can view the corresponding $(n \times m)$-matrix $\Lambda = [a_{pq}]$ as an $(m \times m)$-vector matrix $[v_{pq}]$ whose entries in the pth row are vectors in $\mathbb{Z}_2^{n(p)}$ where $n(p)$ is defined as in Corollary 3.3. We refer reader to [4] for details. Let $\Lambda_{s_1\cdots s_m}$ be the $(m \times m)$-submatrix of Λ whose ith row is the s_ith row of $[v_{pq}]$. Then λ satisfies the singularity condition if and only if every principal minor of $\Lambda_{s_1\cdots s_m}$ is 1 for any $1 \leq s_1 \leq n(1), \ldots, 1 \leq s_m \leq n(m)$.

Theorem 3.4 $|\Lambda(P)_{\chi_1^{s_1}\cdots \chi_{m_1}^{s_{m_1}}}| = \left(\prod_{k=1}^{n} (2^n - 2^{k-1})\right) \left(\sum_{G \in \mathcal{G}_m(\epsilon_1, \ldots, \epsilon_{m_1}) \atop v_i \in V(G)} \prod_{v_i \in V(G)} (2^{n_i} - 1)^{\text{outdeg}(v_i)}\right)$

where $\mathcal{G}_m(\epsilon_1, \ldots, \epsilon_{m_1})$ is the set of acyclic digraphs with m labeled nodes $\{v_1, \ldots, v_m\}$ such that $\text{indeg}(v_i) = 0$ whenever $\epsilon_i = 1$ for $1 \leq i \leq m_1$.

Proof Without loss of generality, we assume that $\epsilon_i = 1$ for $1 \leq i \leq t \leq m_1$ and $\epsilon_i = 0$ for $t < i \leq m_1$. Let $A = A(1, \ldots, 1, 0, \ldots, 0)$. For $\lambda \in A$, let $\Lambda = [v_{ij}]$ be the $(m \times m)$-vector matrix corresponding to λ.

Let $B(A) =: [b_{ij}]$ be the \mathbb{Z}_2-matrix whose (i, j)th entry is 1 if v_{ij} is nonzero and 0 otherwise. By Lemma 5.1 in [4], Λ is conjugate to a unipotent upper triangular vector matrix. Therefore, $B(A) - I_m$, where I_m is the $(m \times m)$ identity matrix, is an adjacency matrix of an acyclic digraph. Define ϕ from A to \mathcal{G}_m by $\phi(\lambda) = G$ where the adjacency matrix of G is $B(A) - I_m$.

Since $\lambda \in A$, $b_{ij} = 0$ for $i \neq j$ where $1 \leq j \leq t$ and $1 \leq i \leq n$. Therefore, the image of ϕ is indeed $\mathcal{G}_m(\epsilon_1, \ldots, \epsilon_{m_1})$. For $G \in \mathcal{G}_m(\epsilon_1, \ldots, \epsilon_{m_1})$, we have

$$|\phi^{-1}(G)| = \prod_{v_i \in V(G)} (2^{n_i} - 1)^{\text{outdeg}(v_i)},$$

as shown in the proof of Theorem 2.8 in [3].

Therefore, by the Burnside lemma, we have the following result.

1532
Theorem 3.5 The number of \mathbb{Z}_2^n-equivariant homeomorphism classes of small covers over P with $n_1 = 1$ is

$$
\left(\sum_{(\epsilon_1, \ldots, \epsilon_m) \in \{0,1\}^m} \prod_{i=1}^m \left(\frac{2^{n_1} - 1}{\prod ((n_i + 1)!)} \right)^{\text{outdeg}(v_i)} \right) \prod_{k=1}^n (2^n - 2^{-k-1})
$$

where $G_m(\epsilon_1, \ldots, \epsilon_m)$ is the set of acyclic digraphs with m labeled nodes $\{v_1, \ldots, v_m\}$ such that $\text{indeg}(v_i) = 0$ whenever $\epsilon_i = 1$ for $1 \leq i \leq m$.

Let A_{mr} be the number of acyclic digraphs with m labeled nodes and r edges where the labeled vertex set is $\{v_1, \ldots, v_m\}$. For $\alpha \subseteq \{v_1, \ldots, v_m\}$, let A^{α}_{mr} be the number of acyclic digraphs with m labeled nodes $\{v_1, \ldots, v_m\}$ such that $\text{indeg}(v) = 0$ for all $v \in \alpha$ and A^{α}_{mr} be the number of such acyclic digraphs with r edges.

Corollary 3.6 (Theorem 3.3, [3]) If $P = I^n$ then the number of \mathbb{Z}_2^n-equivariant homeomorphism classes of small covers over P is

$$
\left(\sum_{i=0}^n \binom{n}{i} 2^{i(n-i)} A_i \frac{2^n - 1}{2^m n!} \right) \prod_{k=1}^n (2^n - 2^{-k-1}).
$$

Proof Let $\alpha(\epsilon_1, \cdots, \epsilon_n) = \{v_i | \epsilon_i = 1\}$. Then

$$
|A(P)_{x_1^{\epsilon_1} \cdots x_n^{\epsilon_n}}| = \left(\prod_{k=1}^n (2^n - 2^{-k-1}) \right) A^\alpha_{n}(\epsilon_1, \cdots, \epsilon_n).
$$

By (4) in [8], for any $\alpha \subseteq \{v_1, \cdots, v_n\}$,

$$
A^\alpha_n = \sum_{r \geq 0} \sum_{k=0}^r \binom{|\alpha|}{r-k} A_n - |\alpha|, k.
$$

Therefore, we have

$$
\sum_{(\epsilon_1, \ldots, \epsilon_n) \in \{0,1\}^n} A^\alpha_{n}(\epsilon_1, \cdots, \epsilon_n) = \sum_{\alpha \subseteq \{v_1, \ldots, v_n\}} A^\alpha_n = \sum_{\alpha \subseteq \{v_1, \ldots, v_n\}} \sum_{r \geq 0} \sum_{k=0}^r \binom{|\alpha|}{r-k} A_n - |\alpha|, k
$$

$$
= \sum_{i=0}^n \binom{n}{i} \sum_{r \geq 0} \sum_{k=0}^r \binom{i(n-i)}{r-k} A_i, k
$$

$$
= \sum_{i=0}^n \binom{n}{i} \sum_{k \geq 0} \left(\sum_{r \geq k} \binom{i(n-i)}{r-k} \right) A_i, k
$$

$$
= \sum_{i=0}^n \binom{n}{i} \sum_{k \geq 0} 2^{i(n-i)} A_i, k = \sum_{i=0}^n \binom{n}{i} 2^{i(n-i)} A_i,
$$

as desired. \Box
Let $P = I \times \Delta^n$ with $n \geq 2$. There are three acyclic digraphs with 2 labeled nodes $\{v_1, v_2\}$:

\[G_1 : \bullet \rightarrow \bullet, \quad G_2 : \bullet \rightarrow \bullet, \quad \text{and} \quad G_3 : \bullet \leftarrow \bullet. \]

Since $m_1 = 1$ in the formula of Theorem 3.5, we have $\mathcal{G}(0) = \{G_1, G_2, G_3\}$ and $\mathcal{G}(1) = \{G_1, G_2\}$. Thus, we obtain:

Corollary 3.7 (Theorem 4.2, [2]) If $P = I \times \Delta^n$ with $n \geq 2$, the number of \mathbb{Z}_2^n-equivariant homeomorphism classes of small covers over P is

\[\left(\frac{2^n + 3}{2(n + 1)!} \right) \prod_{i=1}^{n+1} (2^{n+1} - 2^{i-1}). \]

In a similar way, by listing the acyclic digraphs of 3 vertices, one can obtain the following result due to Chen and Wang.

Corollary 3.8 (Theorem 4.1, [2]) If $P = I \times \Delta^n \times \Delta^m$ then the number of \mathbb{Z}_2^n-equivariant homeomorphism classes of small covers over P is

1. \[\frac{\prod_{i=1}^{n+m+1} (2^{n+m+1} - 2^{i-1})}{2(n + 1)!} \left(2^{2n+m} + 2^{n+2m} + 2^{2n} + 2^{2m} + 3 \cdot 2^{n+1} + 3 \cdot 2^{m+1} - 2^{n+m} - 7 \right) \text{ if } 1 < n < m, \]

2. \[\frac{\prod_{i=1}^{n+m+1} (2^{n+m+1} - 2^{i-1})}{4(n + 1)!} \left(2^{3n+1} + 2^{2n} + 3 \cdot 2^{n+2} - 7 \right) \text{ if } 1 < n = m, \]

3. \[\frac{\prod_{i=1}^{n+2} (2^{n+2} - 2^{i-1})}{8(m + 1)!} \left(3 \cdot 2^{2m} + 3 \cdot 2^{m+2} + 8 \right) \text{ if } 1 = n < m. \]

4. The number of weakly equivariant homeomorphism classes

By Theorem 2.4 the number of weakly \mathbb{Z}_2^n-equivariant homeomorphism classes of small covers over a simple polytope P is equal to the size of the double coset on $\Lambda(P)$ by $\text{GL}(n,\mathbb{Z}_2)$ and $\text{Aut}(\mathcal{F}(P))$. Therefore, the number of weakly \mathbb{Z}_2^n-equivariant homeomorphism classes of small covers over $P = \prod_{i=1}^{l} P_i$, where $P_i = \Delta_{n_i} \times \cdots \times \Delta_{n_i}$ with $1 \leq n_1 < n_2 < \cdots < n_l$, $\sum_{i=1}^{l} m_i = m$ and $\sum_{i=1}^{l} n_i m_i = n$, is

\[|A(P)/\prod_{i=1}^{l} (S_{n_{i+1}} \wr S_{m_i})| \]

where $A(P) = A(0, \cdots, 0)$.

Consider the subgroup $H = \prod_{i=1}^{l} S_{m_i} \leq \text{Aut}(\mathcal{F}(P))$. Note that an element $\mu \in S_{m_i}$ acts on $A(P)$ by $\lambda \cdot \mu = \lambda_\mu$ where $\lambda_\mu \in A(P)$ corresponds to a class represented by the characteristic function that sends $F_{q,r}^p$ to $\lambda(P_{(q,r)})$ if $p = i$ and to $\lambda(F_{q,r}^p)$ otherwise. Let $\varpi \in S_{n_i}$ be the permutation that sends
\[m_1^n + \cdots + m_{i-1}^n + (j-1)n_i + k \] to \[m_1^n + \cdots + m_{i-1}^n + (\mu(j) - 1)n_i + k \] for \(1 \leq j \leq m_i \), \(1 \leq k \leq n_i \) and fixes other elements. Then the matrix \(\Lambda_\mu \) corresponding to \(\lambda_\mu \) is

\[P(\overline{\sigma})^{-1} \Lambda P(\mu) \]

where \(P(\sigma) \) denotes the permutation matrix corresponding to a permutation \(\sigma \). This is the conjugation action of \(H = \prod_{i=1}^l S_{m_i} \leq S_m \) on the set of \((m \times m)\)-vector matrices. It corresponds to an action of \(H \leq S_m \) on the acyclic digraph with \(m \)-labeled nodes \(\{v_1, \ldots, v_m\} \) given by

\[\mu \cdot v_j = \begin{cases} v_{\mu(j)} & \text{if } m_1 + \cdots + m_{i-1} + 1 \leq j \leq m_1 + \cdots + m_i \\ v_j & \text{otherwise} \end{cases} \]

for any \(\mu \in S_{m_i} \). Therefore, when \(l = 1 \), we have the following generalization of Theorem 4.1 in [3].

Theorem 4.1 The number of weakly \(\mathbb{Z}_2^n \)-equivariant homeomorphism classes of small covers over \(P = \Delta_1^k \times \cdots \times \Delta_m^k \) with \(mk = n \) is less than or equal to

\[\sum_{G \in \mathcal{G}_m} (2^k - 1)^{|E(G)|} \]

where \(\mathcal{G}_m \) is the set of acyclic digraphs with \(m \) unlabeled nodes and \(E(G) \) is the set of edges of the graph \(G \).

Corollary 4.2 The number of homeomorphism classes of small covers over \(P = \Delta_1^k \times \cdots \times \Delta_m^k \) with \(mk = n \) is less than or equal to

\[\sum_{G \in \mathcal{G}_m} (2^k - 1)^{|E(G)|} \]

where \(\mathcal{G}_m \) is the set of acyclic digraphs with \(m \) unlabeled nodes.

References