Corrigendum: On density theorems for rings of Krull type with zero divisors

Başak AY SAYLAM

Department of Mathematics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey

Received: 20.10.2016 ● Accepted/Published Online: 18.01.2017 ● Final Version: 23.11.2017

Abstract: This corrigendum is written to correct some parts of the paper “On density theorems for rings of Krull type with zero divisors”. The proofs of Proposition 2.4 and Proposition 4.3 are incorrect and the current note makes the appropriate corrections.

Key words: Krull ring, ring of Krull type, additively regular rings

In [3], for the Marot ring provided in Example 2.5, [2, Proposition 2.4] does not hold. Thus, we change our hypothesis “Marot” to “additively regular” in [2, Proposition 2.4] and reprove it.

Proposition 2.4 Let R be an additively regular ring and P, P_1, \ldots, P_n a collection of prime regular ideals such that $P \not\subseteq P_i$ for any i. Then $\text{Reg}(P) \not\subseteq \bigcup_{i=1}^{n} P_i$.

Proof We have that $P \not\subseteq P_i$ for any i, and hence, by [1, Proposition 1.11], $P \not\subseteq \bigcup_{i=1}^{n} P_i$. Thus, there is $a \in P - \bigcup_{i=1}^{n} P_i$. Since the product of regular elements is regular, there exists a regular element $b \in P \cap P_1 \cap P_2 \cap \ldots \cap P_n$. Thus, there exists a $u \in R$ such that $x = a + ub$ is regular in R, and $x \in \text{Reg}(P) - \bigcup_{i=1}^{n} P_i$. □

This change we make in [2, Proposition 2.4] affects only [2, Lemma 2.5] and [2, Proposition 3.1], where the hypothesis “Marot” is changed to “additively regular”. Furthermore, we note that the 2-generated regular ideal A, found in [2, Theorem 4.2], may not be invertible.

Proposition 4.3 Let R be an additively regular ring of Krull type. Denote by v_i the valuation associated with the valuation ring $R_{(P_i)}$, where P_i is the center of v_i for each i and by G_i the associated value group. For the 2-generated regular ideal A, found in Theorem [2, Theorem 4.2], there exists an ideal I such that $(AI)(P_i) = R_{(P_i)}$ for each center P_i.

Proof The ring R is of finite character, and there are at most finitely many centers P_1, \ldots, P_n with corresponding valuations v_i, $1 \leq i \leq n$, at which A is positive. By [2, Theorem 4.1], we can choose a regular element $x \in R$ such that $v_i(x) = v_i(A)$ for all i. Let Q_1, \ldots, Q_t with corresponding valuations w_j, $1 \leq j \leq t$, be the set of centers, other than P_i, at which $w_j(x)$ is positive. By [2, Theorem 4.1], we can choose a regular element $y \in R$ such that $v_i(y) = 0$, $1 \leq i \leq n$, and $w_j(y) = w_j(x)$, $1 \leq j \leq t$. Let M_1, \ldots, M_l with the corresponding valuations u_k, $1 \leq k \leq l$, be the set of centers, other than P_i and Q_j, at which $u_k(y)$ is positive. Again by [2, Theorem 4.1], there exists a regular element $z \in R$ such that $v_i(z) = 0$, $1 \leq i \leq n$, $u_k(z) = 0$.

*Correspondence: basakay@iyte.edu.tr

2010 AMS Mathematics Subject Classification: 13F05, 13A18

1446
and \(w_j(z) = w_j(x), 1 \leq j \leq t. \) Let \(I = (x^{-1}y, x^{-1}z). \) Consider the ideal \(AI. \) We observe that, locally at each center \(P \) with the corresponding valuation \(v_P, v_P((AI)_P) = 0, \) implying that \((AI)_P = R_P. \)

Finally, the hypothesis that \(R \) be Prüfer should be added to [2, Corollary 4.4].

Acknowledgment

The author would like to thank the anonymous referee for a careful reading and suggestions.

References

