On tetravalent normal edge-transitive Cayley graphs on the modular group

Hesam SHARIFI¹*, Mohammad Reza DARAFSHEH²

¹Department of Mathematics, Faculty of Science, Shahed University, Tehran, Iran
²School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran

Received: 27.04.2016 • Accepted/Published Online: 19.12.2016 • Final Version: 28.09.2017

Abstract: A Cayley graph $\Gamma = \text{Cay}(G, S)$ on a group G with respective to a subset $S \subseteq G$, $S = S^{-1}$, $1 \notin S$, is said to be normal edge-transitive if $N_{\text{Aut}(\Gamma)}(\rho(G))$ is transitive on edges of Γ, where $\rho(G)$ is a subgroup of $\text{Aut}(\Gamma)$ isomorphic to G. We determine all connected tetravalent normal edge-transitive Cayley graphs on the modular group of order $8n$ in the case that every element of S is of order $4n$.

Key words: Cayley graph, edge-transitive, modular group

1. Introduction

Let G be a group and S a subset of G such that $1 \notin S$. The Cayley graph $\text{Cay}(G, S)$ is the graph with vertex set $V(\text{Cay}(G, S)) = G$ and edge set $E(\text{Cay}(G, S)) = \{(u, v)|vu^{-1} \in S\}$. The edge set can be identified with set of ordered pairs $\{(g, sg)|g \in G, s \in S\}$. If $S = S^{-1}$, that is, closed under taking the inverse, then $\text{Cay}(G, S)$ is an undirected graph. The degree of each vertex is $|S|$ and it is obvious that $\text{Cay}(G, S)$ is connected if and only if $G = \langle S \rangle$.

A graph Γ is called vertex-transitive or edge-transitive if the automorphism group $\text{Aut}(\Gamma)$ acts transitively on the vertex-set or edge-set of Γ, respectively. Now let $\Gamma = \text{Cay}(G, S)$.

For $g \in G$, let $\rho_g : G \rightarrow G$ given by $\rho_g(x) = xg$. The set of all ρ_g, $g \in G$, forms the subgroup $\rho(G)$ (isomorphic to G) of $\text{Aut}(\Gamma)$. Since $\rho(G) \leq \text{Aut}(\Gamma)$ acts right regularly on the vertices of Γ, by definition, Γ is vertex-transitive, while Γ is not edge-transitive in general.

In 1999, Praeger [9] introduced the concept of normal edge-transitive Cayley graphs, which plays an important role for understanding Cayley graphs. The graph Γ is called normal edge-transitive if $N_{\text{Aut}(\Gamma)}(\rho(G))$ is transitive on the edges of Γ.

The research on edge-transitive Cayley graphs is an active area of research. One of the standard problems in this respect is the study of normal edge-transitive Cayley graphs of small valencies. Here we mention some references on research about edge-transitive Cayley graphs. In [7] the edge-transitive tetravalent Cayley graphs on groups of square-free order are recognized. In [4] the authors characterized all nonnormal Cayley digraphs of outvalency 2 of all nonabelian groups of order $2p^2$, where p is an odd prime. In [1] the author found normal edge-transitive Cayley graphs of abelian groups. In [6] all the tetravalent edge-transitive Cayley graphs on the group $\text{PSL}_2(p)$ and in [2] the normal edge-transitive Cayley graphs of Frobenius groups of order pq, where p
and \(q \) are different primes, are determined. In [3] the authors studied normal edge-transitive Cayley graphs of order \(4p \) where \(p \) is an odd prime.

Our aim in this paper is to study connected tetravalent normal edge-transitive Cayley graphs of a certain group of order \(8n \), \(n \in \mathbb{N} \). According to [8], up to isomorphism there are four nonabelian groups of order \(8n \) with a cyclic subgroup of order \(4n \), if \(n \) is a power of 2. One of these groups is called the modular group, with the following presentation:

\[
M_{8n} = \langle a, b \mid a^{4n} = b^2 = 1, bab = a^{2n+1} \rangle.
\]

In the following we work with the modular group \(M_{8n} \) without assuming that \(n \) is a power 2.

We employ the following notation and terminology. The notation \(G = K \rtimes H \) is used to indicate that \(G \) is a semidirect product of \(K \) by \(H \). We denote by \(Aut(G; S) \) the subgroup of \(Aut(G) \) consisting of all \(\sigma \in Aut(G) \) such that \(\sigma(S) = S \). It is easy to see that \(Aut(G; S) \) is a subgroup of the automorphisms group of \(Cay(G, S) \). \(\mathbb{Z}_n \) denotes a cyclic group of order \(n \), and \(S_4 \) denotes for a the symmetric group on four letters. \(D_8 \) is employed to denote the dihedral group of order 8.

The following theorem is the main result of this paper.

Main Theorem Let \(G = M_{8n} \) and \(S \) be a symmetric subset of \(M_{8n} \) with cardinality 4 such that each element of \(S \) has order \(4n \) and \(G = \langle S \rangle \). If \(\Gamma = Cay(G, S) \) is a normal edge-transitive Cayley graph, then \(N_{Aut(\Gamma)}(\rho(G)) \cong \rho(G) \rtimes \mathbb{Z}_2. \)

2. Preliminaries

We start with a famous lemma.

Lemma 2.1 ([5, Lemma 2.1] or [9]) For a Cayley graph \(\Gamma = Cay(G, S) \), we have \(N_{Aut(\Gamma)}(\rho(G)) = \rho(G) \rtimes Aut(G; S) \).

Therefore, \(\Gamma \) is normal edge-transitive when \(\rho(G) \rtimes Aut(G; S) \) is transitive on the edge-set of \(\Gamma \).

Xu in [10] defined a Cayley graph \(\Gamma = Cay(G, S) \) to be normal if \(\rho(G) \) is a normal subgroup of \(Aut(\Gamma) \), i.e. \(N_{Aut(\Gamma)}(\rho(G)) = Aut(\Gamma) \).

The following lemma is very useful in this paper.

Lemma 2.2 ([9, Proposition 1(c)]) Consider the Cayley graph \(\Gamma = Cay(G, S) \). Then the following are equivalent:

(i) \(\Gamma \) is normal edge-transitive;

(ii) \(S = T \cup T^{-1} \), where \(T \) is an \(Aut(G, S) \)-orbit in \(G \);

(iii) There exists \(H \leq Aut(G) \) and \(g \in G \) such that \(S = g^H \cup g^{-H} \), where \(g^H = \{ g^h \mid h \in H \} \).

Moreover, \(\rho(G) \rtimes Aut(G, S) \) is transitive on the arcs of \(\Gamma \) if and only if \(Aut(G, S) \) is transitive on \(S \).

3. Proof of the main theorem

First we are going to specify the automorphism group of \(M_{8n} \).
Elements of M_{8n} are of the form a^k or $a^k b$, $0 \leq k < 4n$. Using the defining relations of M_{8n} we can find the orders of elements in M_{8n} as follows: $o(a^k) = \frac{4n}{(k,4n)}$ and

$$o(a^k b) = \begin{cases} \frac{4n}{(k,2n)}, & \text{if } k \text{ is even,} \\ \frac{4n}{(n+k,2n)}, & \text{if } k \text{ is odd,} \end{cases}$$

where $0 \leq k < 4n$.

Elements of order 2 in M_{8n} are of the form $a^{2n}, a^{2n} b, b$ and if n is odd in addition to the above elements, $a^n b$ and $a^{3n} b$ are also of order 2.

Elements of order $4n$ in M_{8n} are of the form a^k, $(k,4n) = 1$, and $a^k b$, k odd, $(n+k,2n) = 1$, $0 \leq k < 4n$. Of course in the latter case n must be even.

Lemma 3.1 $|\mathbb{A}ut(M_{8n})| = 4\varphi(4n)$, where φ refers to the Euler phi function.

Proof $f \in \mathbb{A}ut(M_{8n})$ is completely ascertained by $f(a)$ and $f(b)$. The elements $f(a)$ and $f(b)$ have orders $4n$ and 2, respectively.

Case(1). n is odd. By what we mentioned earlier we must have $f(a) = a^k, (k,4n) = 1, 1 \leq k < 4n$ and $f(b) \in \{a^{2n}, a^{2n} b, a^n b, a^{3n} b\}$. The case $f(b) = a^{2n}$ is impossible and it verified that all other possibilities can happen. Therefore, $|\mathbb{A}ut(M_{8n})| = 4\varphi(4n)$.

Case(2). n is even. In this case $f(a) = a^k, (k,4n) = 1, 1 \leq k < 4n$, or $f(a) = a^l b, l$ odd, $(n+l,2n) = 1, 0 \leq l < 4n$, and $f(b) \in \{a^{2n}, a^{2n} b, b\}$. The automorphisms of M_{8n} are of two kinds. One kind is defined by $f(a) = a^k, (k,4n) = 1, 1 \leq k < 4n$ and $f(b) = a^{2n} b$ or b. The number of these automorphisms is $2\varphi(4n)$.

The other kind of automorphisms of M_{8n} is defined by $f(a) = a^l b, l$ odd, $(n+l,2n) = 1, 0 \leq l < 4n$, and $f(b) \in \{a^{2n}, a^{2n} b, b\}$. However, $Z(M_{8n}) = \langle a^2 \rangle$ and hence $f(a^2) = a^{2l}$ and $f(b) = a^{2n}$ make a contradiction. Therefore, $f(b) = a^{2n} b$ or b.

However, it is easy to see that $(n+l,2n) = 1$ if and only if $(l,n) = 1$ (note that n is even and l is odd), and $(l,n) = 1$ if and only if $(l,4n) = 1$. Therefore, the number of automorphisms f is equal to $2\varphi(4n)$ and altogether we have $4\varphi(4n)$ possibilities for elements of $\mathbb{A}ut(M_{8n})$. This completes the proof.

Let us consider the Cayley graph $\Gamma = Cay(M_{8n}, S)$ where $|S| = 4$ and $M_{8n} = \langle S \rangle$. We are interested in the case where Γ is normal edge-transitive. By Lemma 2.2 elements of S have the same order and $\mathbb{A}ut(M_{8n}, S)$ on S is either transitive or has two orbits, T and T^{-1}.

We are interested in the case where each element of S has order $4n$. Therefore, elements of S are of the form $a^k, (k,4n) = 1, 0 \leq k < 4n$ or $a^l b, (n+l,2n) = 1, l$ odd, $0 \leq k < 4n$. It is obvious that n must be even. Therefore, from now on, we will assume that n is even.

Theorem 3.1 Let n be an even number and $\Gamma = Cay(M_{8n}, S)$ be a normal connected edge-transitive Cayley graph where $|S| = 4$ and each element of S has order $4n$. Then S is of the following form: $\{a, zab, a^{-1}, z^{-1}b^{-1}a^{-1}\}$, where $z \in Z(M_{8n})$.

Proof Elements of order $4n$ in M_{8n}, n even, are of the following types:
Type I: \(a^k, 0 \leq k < 4n, (k, 4n) = 1\).

Type II: \(a^l b, 0 \leq l < n, l \text{ odd}, (n + l, 2n) = 1\).

Let \(S\) be a generating set for \(M_{8n}\) such that \(o(x) = 4n, \forall x \in S, \) and \(|S| = 4, S = S^{-1}\). Since \(a' b a' b = a^{l+t(2n+1)}\) is a central element of \(M_{8n}\), two elements of the same type can not generate \(M_{8n}\). Therefore, we have to choose one element from each type. Let \(S = \{x, y, x^{-1}, y^{-1}\}, M_{8n} = \langle x, y \rangle\).

Let \(x = a^k, 0 \leq k < 4n, (k, 4n) = 1\), and \(y = a^l b, 0 \leq l < 4n, l \text{ odd}, (n + l, 2n) = 1\). From \(a^k \in S\) it is easy to deduce that \(a \in \langle S \rangle\); hence, \(b \in \langle S \rangle\). Therefore, for any \(x\) and \(y\) with the above conditions \(S\) is a generating set for \(M_{8n}\).

If we take the automorphism \(f \in Aut(M_{8n})\) with \(f(a) = a^{k'}, f(b) = b, \) and choose \(k'\) in such a way that \(k k' \equiv 1 (\text{mod} \ 4n)\), then \(f(a^k) = a\) and \(f(a^l b) = a^{k' l} b\). Since \(k'\) and \(l\) are odd, we can write \(k' l = 1 + 2t\), and hence \(a^{k' l} b = a^{1+2t} b = a^{2t} b\). However, \(Z(M_{8n}) = \langle a^2 \rangle\), and we see that \(a^{2t} = z \in Z(M_{8n})\) and \(f(S) = \{a, zab, a^{-1}, z^{-1} b^{-1} a^{-1}\}\), and the theorem is proved.

Now we are going to prove the main theorem.

By Theorem 3.1, \(S\) is equivalent to \(\{a, z a b, a^{-1}, (z a b)^{-1}\}\), and by Lemma 2.1 we have \(N_{\text{Aut}(\langle T \rangle)}(\rho(G)) = \rho(G) \rtimes \text{Aut}(G, S)\). It is enough to find \(\text{Aut}(G, S)\). Because of \(G = \langle S \rangle\), we have \(\text{Aut}(G, S) \leq S_4\). The group \(\text{Aut}(G, S)\) does not contain elements of order 3 because if \(\sigma \in \text{Aut}(G, S)\) fixes \(x \in S\), then it will fix \(x^{-1}\) as well. Therefore, \(|\text{Aut}(G, S)| \equiv 8\), and \(\text{Aut}(G, S) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2, D_8\).

We consider the following cases:

Case I. \(\text{Aut}(G, S)\) does not contain elements of order 4.

Let \(\sigma \in \text{Aut}(G, S)\) be of order 4. Then \(\sigma\) induces a cycle of length 4 on \(S\). If \(x \in S\), obviously \(\sigma(x) = x^{-1}\) is impossible because then \(\sigma\) would be the product of two cycles. Therefore, we may assume that \(\sigma = (a, z a b, a^{-1}, (z a b)^{-1})\). Since \(z \in Z(M_{8n}) = \langle a^2 \rangle\), we set \(z = a^{2t}, t \in \mathbb{N}\).

From \(\sigma(a) = z a b, \sigma(z a b) = a^{-1}\) we obtain:

\[a^{-1} = \sigma(z a b) = \sigma(z) \sigma(a) \sigma(b) = \sigma(z) a b \sigma(b) \Rightarrow \sigma(z) = z^{-1} a^{-2} \text{ or } z^{-1} a^{-2-2n}.
\]

However, \(\sigma(a)\) can only be of the form \(\sigma(a) = a^l b\) where \(l\) is odd and hence \(a^l b = z a b, \) from which it follows that \(l = 2t + 1\).

Now:

\[\sigma(z) = \sigma(a^{2t}) = \sigma(a)^{2t} = (a^l b)^{2t} = a^{2(t-1)l} (ab)^{2t} = a^{2((t-1)l) 2^{t}} = a^{2^{l+1} t} = z^{n+l} \]

If \(\sigma(z) = z^{-1} a^{-2} = z^{n+l}, \) then \(z^{n+l+1} a^{-2} = 1, \) from which we obtain \(2t(n + l + 1) + 2 = 4mn\) for some \(m \in \mathbb{N}\). It follows that \(t(n + l + 1) = 2mn - 1, \) but the left-hand side of the last equality is even whereas its right-hand side is odd, a contradiction.

Similarly, the case \(\sigma(z) = z^{-1} a^{-2-2n}\) results in a contradiction. Therefore, \(\text{Aut}(G, S)\) cannot be isomorphic to \(\mathbb{Z}_4, D_8\).
Case II. $\text{Aut}(G, S)$ does not contain a subgroup isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

It is enough to prove that $\text{Aut}(G, S)$ does not contain an element σ with $\sigma(a) = zab$ and $\sigma(zab) = a$.

From the form of the automorphism of $\text{Aut}(G)$ we have $\sigma(a) = a^k$ for some k, $(k, 4n) = 1$. If $\sigma(a) = zab$, then $a^k = zab$, from which we obtain $b = a^{-2t+k-1}$, which is not the case because a and b are independent generators of G.

Case III. $\text{Aut}(G, S)$ contains an element of order 2.

If we define $\sigma(a) = a^{-1}$, $\sigma(b) = a^{2nb}$, we see that the cycle structure of $\sigma \in \text{Aut}(G, S)$ on S is $(a, a^{-1})(zab, (zab)^{-1})$.

Therefore, $\text{Aut}(G, S)$ is isomorphic to \mathbb{Z}_2. This completes the proof.

Acknowledgment

The authors express their deep gratitude to the referees for their extensive comments leading to a much clearer presentation.

References