Permutation groups with cyclic-block property and $MNFC$-groups

Ali Osman ASAR*
Yargıç Sokak 11/6 Cebeci, Ankara, Turkey

Received: 20.08.2015 • Accepted/Published Online: 07.10.2016 • Final Version: 25.07.2017

Abstract: This work continues the investigation of perfect locally finite minimal non-FC-groups in totally imprimitive permutation p-groups. At present, the class of totally imprimitive permutation p-groups satisfying the cyclic-block property is known to be the only class of p-groups having common properties with a hypothetical minimal non-FC-group, because a totally imprimitive permutation p-group satisfying the cyclic-block property cannot be generated by a subset of finite exponent and every non-FC-subgroup of it is transitive, which are the properties satisfied by a minimal non-FC-group. Here a sufficient condition is given for the nonexistence of minimal non-FC-groups in this class of permutation groups. In particular, it is shown that the totally imprimitive permutation p-group satisfying the cyclic-block property that was constructed earlier and its commutator subgroup cannot be minimal non-FC-groups. Furthermore, some properties of a maximal p-subgroup of the finitary symmetric group on N^* are obtained.

Key words: Finitary permutation, totally imprimitive, cyclic-block property, homogeneous permutation, FC-group

1. Introduction

Let Ω be a nonempty (infinite) set. A permutation g on Ω is called finitary if its support $supp(g)$ is finite. The set of all the finitary permutations on Ω forms a normal subgroup of the symmetric group $Sym(\Omega)$ and is called the restricted symmetric group on Ω. It is denoted by $FSym(\Omega)$. A subgroup of $FSym(\Omega)$ is called a finitary permutation group on Ω. Let G be a transitive finitary permutation group on Ω, where Ω is infinite. If G has no proper blocks or has a maximal proper block, then G is called primitive or almost primitive, respectively, and then G has a homomorphic image that is isomorphic to one of $Alt(\Omega)$ or $Fsym(\Omega)$ by [10, p.261] (see also [9, Corollary 6.9]). Note that if Δ is a proper block for G, then there exists a $g \in G$ with $g(\Delta) \cap \Delta = \emptyset$ since two blocks are either equal or disjoint and then Δ must be finite since $supp(g)$ is finite. In the remaining case G is called totally imprimitive. In this case, G has an infinite ascending chain of proper blocks and their union is an infinite block for G, which must be equal to Ω since G is transitive. Thus, Ω and G are countably infinite. It is well known that a finitary permutation group G has only finite orbits if and only if one of the following holds:

G is solvable, hypercentral, an FC-group, or residually finite by [23, Theorems 1,2] or [10, Lemma 8.3D]. If G is locally solvable, then G is totally imprimitive and hyperabelian of height at most ω by [18, Theorem 2].

Let G be a totally imprimitive subgroup of $FSym(\Omega)$, where Ω is infinite. It is well known that set-wise stabilizers of finite sets are FC-groups and they are hypercentral when G is a p-group by [23, Theorem 1] or

*Correspondence: aliasar@gazi.edu.tr

2010 AMS Mathematics Subject Classification: 20B 07 20B 35 20E 25 20F 15.
Subgroups having infinite orbits of G are non-FC-subgroups $(NFC$-subgroups for short). In general an NFC-group is called a minimal NFC-group $(MNFC$-group for short) if every proper subgroup of this group is an FC-group.

The structure of an imperfect $MNFC$-group was determined in [6, 7] (see also [22, Theorem 8.13]). In this group the commutator subgroup is a divisible abelian q-group of finite rank (Chernikov q-group) and the commutator quotient is a finite p-group, where p, q are primes. On the other hand, it is still unknown whether or not a perfect $MNFC$-group exists. If a perfect MNF-group exists, then it is a p-group for a prime p by [7, Theorem 2] and [14, Theorem], and it has a nontrivial representation in the group of finitary permutations on some infinite set by the characterizations given in [8, 15]. (Some partial results in this direction are contained in [1–5].)

Let G be a totally imprimitive p-subgroup of $FSym(\Omega)$, where Ω is infinite. An element g of G is said to satisfy the cyclic-block property if the support of each cycle in the cycle decomposition of g is a block for G, and a subset Y of G satisfies the cyclic-block property if every element of Y satisfies this property. Now suppose in addition that G satisfies the cyclic-block property. By [4, Lemma 2.2] two blocks for G are either disjoint or one is contained in the other one. This implies that G must be a p-group for a prime p. Furthermore, every NFC-group of G is transitive and a subset of finite exponent of G generates a subgroup of finite exponent and so cannot be equal to G (see Lemma 3.1(b) below). These are properties satisfied by a perfect $MNFC$-group. (A perfect $MNFC$-group cannot be generated by a subset of finite exponent (see [1, Remark 1.10]).) There are no known other types of p-groups that share common properties with a perfect $MNFC$-group. For this reason it is a rather crucial step to settle the existence problem of $MNFC$-groups in the class of permutation groups satisfying the cyclic-block property. In this work a new result (Theorem 1.1) is obtained in this direction. This result is a considerable generalization of [1, Theorem 1.5] (see below). In particular, if a group in this class is generated by homogeneous elements and satisfies (\ast) (see below), then the group cannot be $MNFC$ (Corollary 1.2). Furthermore, Theorem 1.1 provides a short proof for [4, Theorem 1.2] (Corollary 1.3). (Another proof of [4, Theorem 1.2] is contained in [5, Theorem 1.6].) The group given in [4, Theorem 1.1] satisfies the cyclic-block property, it has an easily defined generating set, and all of its blocks of p-power size are easily described, but it is not known whether or not it contains an $MNFC$-subgroup. (This group satisfying the cyclic-block property is a transitive subgroup of the maximal p-subgroup, denoted by W here, of $FSym(\mathbb{N}^\ast)$ constructed in [22]; see Proposition 2.1 for some properties of W.) [5] contains new properties of NFC-subgroups of a perfect totally imprimitive p-subgroup of $FSym(\Omega)$. Among other things it is shown there that the normalizer of an NFC-subgroup is self-normalizing and a self-normalizing subgroup is closed in the topology of point-wise convergence (see also [15]). It follows from [5] that a group of finitary permutations contains an $MNFC$-subgroup if and only if the set of self-normalizing subgroups contains minimal elements.

Let G be a subgroup of $FSym(\Omega)$ and let $g \in G$. The minimum of the lengths of the cycles in the cycle decomposition of g is denoted by $m(g)$. g is called homogeneous if every cycle of g has equal length. An infinite subset Y of G is called ascending if Y has an infinite exponent and is not contained in a set stabilizer of a finite set. We say that Y satisfies the property (\ast) if for every $y, z \in Y$, and for all cycles c_y, c_z in the cycle decompositions of y and z, respectively, the following holds. Put $\text{supp}(c_y) = \Delta$ and suppose that $\Delta \subseteq \text{supp}(c_z)$. Then
\[[c_z^{s(c_z, \Delta)}|_{\Delta}, c_y] = 1 \]

where \(s(c_z, \Delta) \) is the smallest positive integer such that \(c_z^{s(c_z, \Delta)} \in G(\Delta) \).

It is well known that this condition is equivalent to
\[c_z^{s(c_z, \Delta)}|_{\Delta} = c_y^k \]
for a \(k \geq 1 \) by [13, Lemma 1]. (The centralizer of a cycle is generated by the cycle itself and permutations disjoint with it.)

Let \(\Delta \) be a block for \(G \) and put \(\Sigma = \{ x(\Delta) : x \in G \} \). Then the kernel of the natural permutation representation of \(G \) into \(Sym(\Sigma) \) is denoted by \(Ker_G(\Delta) \) and is called the kernel subgroup of \(G \) with respect to \(\Delta \). Since \(Ker_G(\Delta) \) fixes \(x(\Delta) \) for every \(x \in G \) it follows that \(Ker_G(\Delta) \) is isomorphic to a subgroup of the direct product of copies of a finite group, and so \(Ker_G(\Delta) \) is an FC-group of finite exponent.

For a nonempty subset \(X \) of \(G \), \(\exp(X) \) denotes the maximum of the set \(\{ m(x) : x \in X \} \) if it exists; otherwise, it is equal to \(\infty \).

Theorem 1.1 Let \(G \) be a perfect totally imprimitive \(p \)-subgroup of \(FSym(\Omega) \), where \(\Omega \) is infinite. Suppose that \(G \) contains an ascending subset \(X \) satisfying the cyclic-block property such that the following properties hold.

(a) \(X \) satisfies \((*)\). Thus for all \(x, y \in X \) and for all cycles \(c_x, c_y \) in the cycle decompositions of \(x \) and \(y \), respectively, the following holds. If \(supp(c_x) \subseteq supp(c_y) \), then
\[[c_y^{s(c_y, supp(c_x))}|_{supp(c_x)}, c_x] = 1, \]

where \(supp(c_x) \) and \(supp(c_y) \) are blocks for \(G \), which is equivalent to
\[c_y^{s(c_y, supp(c_x))}|_{supp(c_x)} = c_x^q \]
for a \(q(c_x) \geq 1 \).

(b) For every \(x \in X \) there exists a \(y \in X \) so that \(m(x) < m(y) \).

Then \(G \) cannot be an MNFC-group.

Theorem 1.1 is a considerable generalization of [1, Theorem 1.5]. In [1, Theorem 1.5] if \(F \) is a finite subgroup of \(G \) and \(supp(F) \subseteq \Delta \) for a finite block \(\Delta \), then there exists \(y \in G \setminus G(\Delta) \) so that \(y^{s(y, \Delta)} \in C_G(F) \). In particular \([F^y, F] = 1 \) since \(supp(F^y) \cap \Delta = 1 \). This leads to the existence of an ascending subgroup \(H \) of \(G \) for a given \(a \in G \) with \(\langle a^G \rangle \) nonabelian so that \(\langle a^H \rangle \) is abelian, which gives a contradiction. On the other hand, in Theorem 1.1, there is information only about the centralizer of a cycle, namely \(c_x \) of \(x \in X \), but \(X \) is required to satisfy the additional property called the cyclic-block property. (Also in the proof of Theorem 1.1 \(\langle c_x^G \rangle \) is not abelian, but there will exist an ascending subgroup, say \(X^* \) of \(G \), so that \(\langle c_x^{X^*} \rangle \) is abelian, which gives a contradiction.) It is not known yet whether condition (b) of Theorem 1.1 is indispensable.
Corollary 1.2 Let G be a perfect totally imprimitive p-subgroup of $FSym(\Omega)$, where Ω is infinite. Suppose that G contains an ascending subset X of homogeneous elements satisfying the cyclic-block property and the (\ast) condition. Then G cannot be an MNFC-group.

Corollary 1.3 The totally imprimitive p-subgroup of $FSym(\mathbb{N}^*)$ given in [4, Theorem 1.1] and its commutator subgroup cannot be MNFC-groups.

For definitions, notations, and basic properties the reader is referred to [9, 10, 21, 22].

Question. Let G be a totally imprimitive p-subgroup of $FSym(\Omega)$ satisfying the cyclic-block property where Ω is infinite. Does G contain a minimal non-FC subgroup?

2. A finitary permutation group with cyclic-block property

In this section the finitary permutation p-group given in [4] and satisfying the cyclic-block property is described briefly for the convenience of the reader. This group is a subgroup of the example given in [23] by Wiegold.

For each $k, n \geq 1$ define

$$x_{k,n} = \prod_{i=1}^{p-1} (i + (n-1)p^k, i + (n-1)p^k + p^k, \ldots, i + (n-1)p^k + (p-1)p^k).$$

Each $x_{k,n}$ is a disjoint product of p^{k-1} cycles, each of which has length p.

For each $k \geq 1$ define

$$T_k = \{x_{k,n} : n \geq 1\} \text{ and } T_k^* = \langle T_i : 1 \leq i \leq k \rangle.$$

Wiegold’s group, denoted here by W, is defined as $W = \langle T_k : k \geq 1 \rangle$. T_k is a set of pairwise disjoint permutations of order p and it is easy to check that $T_k^* \triangleleft W$ and T_{k+1}^*/T_k^* is elementary abelian for every $k \geq 0$, where $T_0 = 1$. W is a totally imprimitive p-subgroup of $FSym(\mathbb{N}^*)$ since every element of every T_k^* has finite support.

For $p = 2$,

$$T_1 = \{(1,2),(3,4),(5,6),\ldots\}, T_2 = \{(1,3)(2,4),(5,7)(6,8),(9,11)(10,12),\ldots\}$$

$$T_3 = \{(1,5)(2,6)(3,7)(4,8),(9,13)(10,14)(11,15)(12,16),\ldots\}.$$

For all $k, n \geq 1$ the sets

$$\Delta_{k,n} = \{1 + (n-1)p^k, 2 + (n-1)p^k, \ldots, p^k + (n-1)p^k\}$$

are blocks for W and $|\Delta_{k,n}| = p^k$. We may show that each $\Delta_{k,1}$ is a block. We may put $\Delta_k = \Delta_{k,1}$ when no confusion arises. Thus, $\Delta_k = \{1,2,\ldots,p^k\}$ for $k \geq 1$. It suffices to show that $T_k^*(1) = \Delta_k$ for all $k \geq 1$ by [10, Theorem 1.6A(i)]. For $k = 1$ $T_1^*(1) = \{1,2,\ldots,p\} = \Delta_1$. Assume that $T_k^*(1) = \Delta_k$. Now

$$x_{k+1,1} = (1,1+p^k,1+2p^k,\ldots,1+(p-1)p^k)\cdots(p^k,p^k+p^k,p^k+2p^k,\ldots,p^k+(p-1)p^k)$$

$$= (1,1+p^k,1+2p^k,\ldots,1+(p-1)p^k)\cdots(p^k,2p^k,3p^k,\ldots,p^{k+1}).$$
Hence, it is easy to see that
\[
\langle x_{k+1,1} \rangle (\Delta_k) = \{1, 2, \ldots, p^k\} \cup \{1 + p^k, 2 + p^k, \ldots, 2p^k\} \cup \cdots \cup \{1 + (p - 1)p^k, 2 + (p - 1)p^k, \ldots, p^{k+1}\}
\]
\[
= \Delta_{k+1}
\]
since the sets in the union are pairwise disjoint and are contained in \(\Delta_{k+1} \). In particular, it is easy to see that \(x_{k+1,1} \) permutes the sets
\[
\{1, 2, \ldots, p^k\}, \{1 + p^k, 2 + p^k, \ldots, 2p^k\}, \ldots, \{1 + (p - 1)p^k, 2 + (p - 1)p^k, \ldots, p^{k+1}\}
\]
among themselves. Since \(\langle x_{k+1,1} \rangle (\Delta_k) = \langle x_{k+1,1} \rangle (T_k^*(1)) = ((\langle x_{k+1,1} \rangle T_k^*)(1) = T_{k+1}^*(1) \) it follows that \(T_{k+1}^*(1) = \Delta_{k+1} \), which was to be shown. It can be shown that the finite blocks of \(p \)-power size for \(W \) consist of
\[
\Delta_{k,n} = \{1 + (n - 1)p^k, 2 + (n - 1)p^k, \ldots, p^k + (n - 1)p^k\}
\]
for \(k, n \geq 1 \).
Define
\[
u_k = x_{k,1}x_{k-1,1} \cdots x_{1,1}
\]
for all \(k \geq 1 \). Then \(u_k \in T_k^* \) and \(u_k = (a_1, a_2, \ldots, a_{p^k}) \), where \(1 \leq a_i \leq p^k \) by [4, Lemma 3.2(a)]. Next define
\[
\nu_k = x_{k,x_{k,1}} \cdots x_{k,x_{k,1}}.
\]
Then \(v_k = u_k^{x_{k,1}} \times \ldots \times u_k^{x_{k,1}} \), i.e. a product of disjoint cycles since \(\text{supp}(u_k) = \Delta_k \) and \(x_{k+1,1} \) sends each \(1 \leq i \leq p^{k+1} \) to \(i + p^k \mod (p^{k+1}) \). (Always \(c = a \times b \) means that \(a, b \) are disjoint permutations.) Put \(g_k = u_k \times \nu_k \) for every \(k \geq 1 \) and define \(G = \langle g_k : k \geq 1 \rangle \). Then \(G \) satisfies the cyclic-block property by [4, Theorem 1.1]. We see from the definitions that \(\{g_k : k \geq 1\} \) is an ascending set of homogeneous elements of \(G \). Furthermore, it follows from the definition that
\[
u_k = u_k^{x_{k,1}} \times \ldots \times u_k^{x_{k,1}} = \langle (x_{k+1,1}u_k)^{p^n} = x_{k+1,1}^{x_{k+1,1}} \cdots \times u_k^{x_{k,1}}u_k = u_k \times u_k^{x_{k,1}} \times \ldots \times u_k^{x_{k,1}} = g_k
\]
for every \(k \geq 1 \). Hence, it follows that the \(g_k \) satisfy (\(\ast \)) as can be seen from the proof of Corollary 1.2. It can also be shown easily that \(G \subseteq W' \). Indeed,
\[
g_1 = x_{1,1} \cdots x_{1,1} = x_{1,1}^{x_{1,1}} = x_{1,1}^{x_{1,1}}[x_{1,1}, x_{2,1}] \cdots [x_{1,1}, x_{2,1}^{-1}] \in W'
\]
since \(x_{1,1} = 1 \). Assume that \(g_k \in W' \) for a \(k \geq 1 \). Now
\[
g_{k+1} = u_ku_k^{x_{k,1}} \cdots u_k^{x_{k,1}} = u_k^{x_{k,1}}[u_k, x_{k+1,1}] \cdots [u_k, x_{2,1}^{-1}].
\]
Since \(u_k^{x_{k,1}} = g_{k-1} \in W' \) it follows that \(g_{k+1} \in W' \), which completes the induction, and so \(G \subseteq W' \).
As was indicated above, each \(u_k \) is a cycle of length \(p^k \) with \(\text{supp}(u_k) = \Delta_k \) by [4, Lemma 3.2(a)]. Hence, \(\text{supp}(u_k^{x_{k,1} + 1}) = x_{k,x_{k,1}}^{-1}(\Delta_k) \) for every \(i \geq 1 \) and hence
\[
\text{supp}(v_k) = \bigcup_{i=1}^{p-1} \text{supp}(u_k^{x_{k,1} + 1}) = \Delta_{k+1} \setminus \Delta_k.
\]
For $p = 2$
\[u_1 = (1, 2); u_2 = (1, 4, 2, 3); u_3 = (1, 8, 4, 6, 2, 7, 3, 5) \]
and
\[u_4 = (1, 16, 8, 12, 4, 14, 6, 10, 2, 15, 7, 11, 3, 13, 5, 9). \]

Hence,
\[g_1 = (1, 2)(3, 4); g_2 = (1, 4, 2, 3)(5, 8, 6, 7); g_3 = (1, 8, 4, 6, 2, 7, 3, 5)(9, 16, 12, 14, 10, 15, 11, 13). \]

Finally, it follows from [4, Theorem 1.1, Lemmas 2.2 and 3.4] that G satisfies the cyclic-block property, any two blocks for G are either disjoint or one is contained in the other one, and the blocks for G are the blocks for W. Thus, the set of the blocks of the same p-power size for G form a block system for G and hence also for W.

We end this section with a characterization of W.

Proposition 2.1 W is a transitive maximal p-subgroup of $FSym(N^*)$, $Z(W) = 1$, self-normalizing, and W/W' is infinite elementary abelian.

Proof Put $W = \bigcup_{k=1}^{\infty} W_k$ and also $N^* = \bigcup_{k=1}^{\infty} \Delta_k$, where $\Delta_k = \{1, 2, \ldots, p^k\}$ for every $k \geq 1$. It is easy to see that each W_k is transitive on Δ_k, which implies that W is transitive on Ω, and then $Z(W) = 1$ by [10, Lemma 8.3C(ii)].

First we show that W_k is a Sylow p-subgroup of $Sym(\Delta_k)$ for every $k \geq 1$. Note that $supp(W_k) = \Delta_k$. Put
\[P_k = \langle (x_{1,1}, \ldots, x_{k,1}) \rangle. \]

Then P_k is isomorphic to a Sylow p-subgroup of $Sym(\Delta_k)$ by [11, Proposition 19.10] since each $G_{k,i}$ has order p. It will suffice to show that $W_k \cong P_k$. For $k = 1$ the assertion holds since $\langle x_{1,1} \rangle = \langle (1, 2, \ldots, p) \rangle$ is a Sylow p-subgroup of $Sym\{1, 2, \ldots, p\}$. Suppose that the assertion holds for $k \geq 1$. Then $W_k \cong \langle x_{1,1} \rangle \langle x_{2,1} \rangle \cdots \langle x_{k,1} \rangle$, and by identifying these two groups, W_k becomes a Sylow p-subgroup of $Sym(\Delta_k)$. Thus, we get $W_{k+1} \cong W_k \langle x_{k+1,1} \rangle$. Let B_k be the base subgroup; that is, $B_k = \prod_{b \in \langle x_{k+1,1} \rangle} (W_k)_b$, where each $(W_k)_b$ is equal to W_k. Then P_{k+1} is isomorphic to $B_k \langle x_{k+1,1} \rangle$ and so $|P_{k+1}| = p|B_k| = p|W_k|^p$. However, we have seen above that $x_{k+1,1}$ permutes the sets $\{1, 2, \ldots, p^k\}$, $\{1 + p^k, 2 + p^k, \ldots, 2p^k\}$, $\{1 + (p - 1)p^k, 2 + (p - 1)p^k, \ldots, p^k + 1\}$ among themselves and induces a cycle of length p on them. Also, W_k is a Sylow p-subgroup of $Sym(\Delta_k)$. Clearly then $x_{i,1}^{-1} W_k x_{i,1}^{x_{k+1,1}}$ are Sylow p-subgroups on the corresponding sets $x_{i,1}^{-1} \Delta_k$ for $i = 1, \ldots, p$. Thus, $x_{k+1,1}^{-1} W_k x_{k+1,1}^{x_{k+1,1}}$ and $x_{k+1,1}^{-1} W_k x_{k+1,1}^{x_{k+1,1}}$ have disjoint supports for $i \neq j$ and so they commute. Therefore, we get
\[W_{k+1} = (W_k x_{k+1,1}^{-1} W_k x_{k+1,1} \cdots x_{k+1,1}^{-1}) x_{k+1,1} \]

This gives $|W_{k+1}| = |W_k|^p |x_{k+1,1}| = p|W_k|^p$ and hence $|W_{k+1}| = |P_{k+1}|$. This implies that W_{k+1} is a Sylow p-subgroup of $Sym(\Delta_{k+1})$ since $W_{k+1} \leq Sym(\Delta_{k+1})$, which completes the induction. Clearly it follows from this that W is a Sylow p-subgroup of $FSym(N^*)$ since $FSym(N) = \bigcup_{k=1}^{\infty} Sym(\Delta_k)$.

Next we show that W is self-normalizing. Assume not. Then there exists a subgroup Y of $FSym(N^*)$ with $W < Y$ and Y/W is abelian. Also, Y is transitive since W is. Moreover, $Y' \leq W$ and so Y' is a p-group, but then Y' is a p-group by [20, Lemma 2.1], which is a contradiction.
Finally, we show that $W/W' = \prod_{k=1}^{\infty} \langle x_{k,1}W' \rangle$, as a direct product. This will be the case if we can show that $W_{k}/W'_{k} = \prod_{i=1}^{k} \langle x_{i,1}W'_{k} \rangle$, as a direct product, for every $k \geq 1$. For $k = 1$ this is trivial. Suppose that the assertion holds for $k \geq 1$. We have seen above that

$$W_{k+1} \cong W_k \triangleright \langle x_{k+1,1} \rangle = (\prod_{b \in \langle x_{k+1,1} \rangle} (W_k)_b) \langle x_{k+1,1} \rangle = B_k \langle x_{k+1,1} \rangle,$$

which implies that $W_{k+1}/W'_{k+1} \cong B_k \langle x_{k+1,1} \rangle/(B_k \langle x_{k+1,1} \rangle)'$. We can now apply [17, Corollary 4.5] to $B_k \langle x_{k+1,1} \rangle$. This gives

$$(B_k \langle x_{k+1,1} \rangle)' = M$$

where $M = \{ f \in B_k : \pi(f) \in W'_{k} \}$ and $\pi(f) = \prod_{b \in \langle x_{k+1,1} \rangle} f(b)$. Next define $x_{i,1}^*(1) = x_{i,1}$ and $x_{i,1}^*(b) = 1$ for $b \neq 1$ for $1 \leq i \leq k$. Each $x_{i,1}^* \in B_k = \prod_{b \in \langle x_{k+1,1} \rangle} (W_k)_b$. We claim that $x_{1,1}^* W \cdots x_{k,1}^* M$ are linearly independent over \mathbb{Z}_p, the field of p elements. Assume if possible that there exists an $f = (x_{1,1}^*)^{s_1} \cdots (x_{r,1}^*)^{s_r}$, where $1 \leq r \leq k$ and $1 \leq s_i < p$ so that $f \in M$. Then $f = (x_{1,1}^{s_1} \cdots x_{r,1}^{s_r}, 1, \ldots, 1)$ and $\pi(f) = x_{1,1}^{s_1} \cdots x_{r,1}^{s_r} \in W'_{k}$, but since $W_k/W'_{k} = \langle x_{1,1}W'_{k} \rangle \cdots \langle x_{k,1}W'_{k} \rangle$ by the induction hypothesis it follows that $x_{1,1}^{s_1} W_k = \cdots = x_{r,1}^{s_r} W_k = 1$, which means that $x_{i,1}^{s_i} \in W_k$ and then $p | s_i$ since $|x_{i,1}| = p$, which is impossible since $1 \leq s_i < p$ for every $i \geq 1$. Consequently it follows that $x_{1,1}^* M, \ldots, x_{k,1}^* M$ are linearly independent in $B_k \langle x_{k+1,1} \rangle/M$. Then also $x_{1,1}^* M, \ldots, x_{k,1}^* M, x_{k+1,1}^* M$ are linearly independent in $B_k \langle x_{k+1,1} \rangle/M$ since $\langle x_{k+1,1} \rangle \cap B_k = 1$. Therefore,

$$B_k \langle x_{k+1,1} \rangle/M = \langle x_{1,1}^* M \rangle \cdots \langle x_{k+1,1}^* M \rangle.$$

Hence, using the above isomorphism, we get

$$W_{k+1}/W'_{k+1} = \langle x_{1,1}W'_{k+1} \rangle \cdots \langle x_{k+1,1}W'_{k+1} \rangle,$$

which completes the induction. Now since $W = \bigcup_{k=1}^{\infty} W_k$ it follows easily that

$$W/W' = \prod_{k=1}^{\infty} \langle x_{k,1}W' \rangle$$

as a direct product. Suppose that $\langle x_{t,1}W' \rangle \cap \langle x_{k,1}W' : k \geq 1, k \neq t \rangle \neq 1$ for a $t \geq 1$. Then $\langle x_{t,1}W' \rangle \leq \langle x_{t,1}W' : k \geq 1, k \neq t \rangle$ since $|x_{t,1}| = p$. Hence, $x_{t,1}$ is a finite product of elements of certain cosets of the right side. Also, $W' = \bigcup_{k=1}^{\infty} W'_k$. Clearly then there exists an $n > t$ so that $x_{t,1} \in \langle x_{k,1}W'_n : 1 \leq k \leq n, k \neq t \rangle$, but since $W_n/W'_n = \langle x_{1,1}W'_n \rangle \cdots \langle x_{n,1}W'_n \rangle$, as was shown above, this is impossible. Therefore, the assumption is false and so W/W' is a direct product of the $\langle x_{k,1}W' \rangle$ as k ranges over the positive integers.

Remark. The commutator subgroup W' of W is perfect and transitive by [19, Theorem 1]. Also, W does not satisfy the normalizer condition by [1, Theorem 1.2(b)] since $G \leq W$ and G' is not an MNFC-group by Corollary 1.3. The reader may observe that W is exactly the same group that is constructed in [12, 18.2.2 Example], where it is shown also that this group does not satisfy the normalizer condition.

3. Proof of Theorem 1.1

We begin with a known result on the cyclic-block property for the convenience of the reader. (See also [5, Proposition 1.7].)
Lemma 3.1 3.1 Let G be a totally imprimitive p-subgroup of $FSym(\Omega)$ satisfying the cyclic-block property, where Ω is infinite. Then the following hold:

(a) Let Δ be a finite block for G and let $\alpha \in \Delta$. Then for every $y \in G \setminus G_{\{\Delta\}}$, $\langle y^{s(y,\Delta)} \rangle(\alpha) = \Delta$.

(b) Let Δ be a finite block for G. Then

$$Ker_G(\Delta) = \{ g \in G : |g| \leq |\Delta| \}.$$

Furthermore, $\exp(G_{\{\Delta\}})$ is infinite.

(c) Any NFC-subgroup of G is transitive on Ω.

Proof (a) (See [4, Lemma 2.1].) Put $H = G_{\{\Delta\}}$ and let $y \in G \setminus H$. Put $t = s(y, \Delta)$. Then t is the smallest number such that $y^t \in H$. Also, $t = p^r$ for an $r \geq 1$. Next put $\langle y \rangle(\alpha) = \Gamma$ and $\langle y^t \rangle(\alpha) = \Lambda$. Then Γ and Λ are blocks for G by the cyclic-block property. Also, $\Delta \subseteq \Gamma$ and $\Lambda \subseteq \Delta$ by [4, Lemma 2.2] since $y \not\in H$ but $y^t \in H$. Clearly $|\Gamma| = p^r|\Delta|$. Assume if possible that there exists a $y^t(\alpha) \in \Delta \setminus \Lambda$. Then $j \nmid p^r$ and so $j < p^r$, but since $\alpha \in \Delta \cap y^{-j}(\Delta)$ and since Δ is a block, it follows that $y^t(\Delta) = \Delta$, which is a contradiction since $t = p^r$ is the smallest number with the property that $y^t(\Delta) = \Delta$. Therefore, the assumption is false and so $\langle y^t \rangle(\alpha) = \Delta$.

(b) Put $M = Ker_G(\Delta)$. Then $M < H$ since $H \neq G$ due to the fact that Ω is infinite and G is transitive. Let $y \in G$ and put $|y| = t$. First suppose that $t \leq |\Delta|$. Then we claim that $y \in H$. This is trivial if $\supp(y) \cap \Delta = \emptyset$ since then $y(\Delta) = \Delta$. Suppose that $\langle y \rangle(\alpha) \neq \alpha$ for an $\alpha \in \Delta$. Put $\Gamma = \langle y \rangle(\alpha)$. Then Γ is a block for G by the hypothesis and $|\Gamma| \leq t \leq |\Delta|$. Also, since $\alpha \in \Gamma \cap \Delta$ applying [4, Lemma 2.2], we get $\Gamma \subseteq \Delta$, which implies that $y \in H$. Thus, $\{ g \in G : |g| \leq |\Delta| \} \subseteq M$. Next suppose that $t > |\Delta|$. There exists a $\beta \in \Omega$ so that $t = |\langle y \rangle(\beta)|$. Also, there exists a $g \in G$ so that $g(\beta) = \alpha$. Since $\langle y \rangle(\beta) = \{ \beta, y(\beta), \ldots, y^{t-1}(\beta) \}$, it follows that $\langle g y g^{-1} \rangle(\alpha) = \{ g y(\beta), \ldots, g y^{t-1}(\beta), g(\beta) \}$. Now if $y \in M$ then also $gg^{-1} \in M$, but since $\langle g y g^{-1} \rangle(\alpha)$ is a block containing α and has size greater than $|\Delta|$, this is a contradiction. Therefore, $M = \{ g \in G : |g| \leq |\Delta| \}$. In particular it follows that any subgroup of finite exponent of G is contained in a kernel subgroup which is nilpotent of finite exponent. It is well-known that a transitive subgroup of $FSym(\Omega)$ has infinite exponent if Ω is infinite by [18, Lemma 3.1] or [10, Theorem 8.3A]). Let $\alpha \in \Omega$. We show that G_{α} contains a conjugate of every element of G. Let $g \in G$. There exists a $\beta \in \Omega$ so that $g(\beta) = \beta$ and so $g \in G_{\beta}$. Also, $\beta = x(\alpha)$ for an $x \in G$. Hence, $g \in G_{x(\alpha)} = x G_{\alpha} x^{-1}$ and so $g^x \in G_{\alpha}$, which completes the proof of (b).

(c) Let X be a proper NFC-subgroup of G. Then X cannot be contained in the set-wise stabilizer of a finite block for G since X is not an FC-group. However, if $\exp(X) \leq |\Delta|$ for a finite block Δ, then $X \leq Ker(\Delta) \leq G_{\{\Delta\}}$ by (b), which is impossible. Therefore, $\exp(X) = \infty$. Let $\alpha, \beta \in \Omega$ and let Δ be a finite block for G containing both of them. Then there exists a $g \in X \setminus X_{\{\Delta\}}$ so that $\langle g^p \rangle(\alpha) = \Delta$ by (a), which implies that $\beta = (g^p)^j(\alpha)$ for a $j \geq 1$, and so X is transitive.

Lemma 3.2 Let G be a totally imprimitive p-subgroup of $FSym(\Omega)$ and let c, d be two cycles in G such that $\supp(c), \supp(d)$ are blocks for G and $\supp(c) \subseteq \supp(d)$. Let $|c| = p^a, |d| = p^b$ and put $t = s(d, \supp(c))$. 990
Then \(t = p^{b-a} \). If \(d^{b-a}|_{\text{supp}(c)} = e^k \), then \((p,k) = 1\) and

\[
d^{b-a} = e^k \times (e^k)^d \times \cdots \times (e^k)^{d^{b-a}-1}.
\]

Proof Put \(\Delta = \text{supp}(c) \), \(\Gamma = \text{supp}(d) \). Then \(|\Delta| = p^a\) and \(|\Gamma| = p^b\). Let \(\alpha \in \Delta \). Now \(\Delta \subseteq \Gamma \). Clearly \(\Gamma = \Delta \cup d(\Delta) \cup \cdots \cup d^{t-1}(\Delta) \) as a disjoint union since \(\Delta \) is a block and \(d \) is a cycle. Hence, \(p^b = tp^a \) and hence \(t = p^{b-a} \).

Put \(H = G_{(\Delta)} \). Then \(t \) is the smallest number with \(d^t \in H \). Hence, \(\langle d^{b-a} \rangle(\alpha) \subseteq \Delta \) and \(|d^{b-a}| = |\langle d^{b-a} \rangle(\alpha)| \) since \(d \) is a cycle, which implies that \(|\langle d^{b-a} \rangle(\alpha)| = p^a \). Now suppose that \(d^{b-a} \Delta = e^k \). Then \(p \nmid k \) since \(|c| \) is a cycle of length \(p^a \). Thus, \((p,k) = 1\) and \(e^k \) is a cycle.

Now \(d^{b-a}|_{d^t(\Delta)} = d^e e^k d^{-t} \) for every \(1 \leq i \leq p^{b-a} \) and \(\Gamma = \Delta \cup d(\Delta) \cup \cdots \cup d^{b-a-1}(\Delta) \). Obviously then

\[
d^{b-a} \Gamma = e^k \times (e^k)^d \times \cdots \times (e^k)^{b-a-1}.
\]

\[\square\]

Lemma 3.3 Let \(G \) be a totally imprimitive \(p \)-subgroup of \(\text{FSym}(\Omega) \). Let \(X \) be an ascending subset of \(G \) satisfying the cyclic-block property. Suppose also that \(X \) satisfies \((*)\). Then \(X \) contains an ascending subset \(Y = \{y_i : i \geq 1\} \) of \(G \) such that the following holds. Each \(y_i \) can be expressed as a direct product of cycles as

\[
y_i = c_{i,1} \times \cdots \times c_{i,r(i)}
\]

so that \(\text{supp}(y_i) \subseteq \text{supp}(c_{i+1,1}) \), \(m(y_i) \leq m(y_{i+1}) \), and the following hold. Let \(1 \leq j \leq r(i) \) and \(k \geq i \). Put \(|c_{i,j}| = p^a \) and \(|c_{k,1}| = p^b \). Then

\[
[c_{k,1}^{b-a}|_{\text{supp}(c_{i,j})}, c_{i,j}] = 1.
\]

Proof Choose a \(y_1 \neq 1 \) in \(X \) so that \(m(y_1) \leq m(x) \) for every \(x \in X \) and let

\[
y_1 = c_{1,1} \times \cdots \times c_{1,r(1)}
\]

be the cycle decomposition of \(y_1 \). Let \(\Gamma_1 \) be the smallest block containing \(\text{supp}(y_1) \). Next choose a \(y_2 \) in \(X \setminus G_{(\Gamma_1)} \) so that \(m(y_2) \leq m(x) \) for every \(x \in X \setminus G_{(\Gamma_1)} \). Now \(\langle y_2 \rangle(\Gamma_1) \) is a block by the cyclic-block property and \(\Gamma_1 \supseteq \text{supp}(y_2)(\alpha) \) by [4, Lemma 2.2] since \(y_2 \notin G_{(\Gamma_1)} \). Also, \(m(y_1) \leq m(y_2) \). Put \(c_{2,1} = (\alpha, \ldots, y_{2}^{t-1}(\alpha)) \), where \(t_2 \) is the smallest number such that \(y_{2}^{t_2}(\alpha) = \alpha \). Thus, \(\Gamma_1 \supseteq \text{supp}(c_{2,1}) \). Continuing in this way we obtain an infinite subset \(Y = \{y_i : i \geq 1\} \) of \(X \) such that \(m(y_i) \leq m(y_{i+1}) \) and \(\text{supp}(y_i) \subseteq \text{supp}(c_{i+1,1}) \) for every \(i \geq 1 \), where

\[
y_i = c_{i,1} \times \cdots \times c_{i,r(i)}
\]

is the cycle decomposition of \(y_i \). Let \(1 \leq i < k \) and let \(1 \leq j \leq r(i) \). Then \(\text{supp}(c_{i,j}) \subseteq \text{supp}(c_{k,1}) \). Also, \(Y \) satisfies \((*)\) since \(Y \) is a subset of \(X \). Therefore,

\[
[c_{k,1}^{(c_{i,1}, \text{supp}(c_{i,j}))}|_{\text{supp}(c_{i,j})}, c_{i,j}] = 1.
\]
Let $|c_{i,j}| = p^a$ and $|c_{k,1}| = p^b$. Then since $s(c_{k,1}, \text{supp}(c_{i,j})) = p^{b-a}$ by Lemma 3.2, substituting this value above the desired equality is obtained. Furthermore, Y is ascending since $\text{supp}(c_{i,1})$ is a block and $\text{supp}(c_{i,1}) \subseteq \text{supp}(c_{i+1,1})$ for every $i \geq 1$.

\textbf{Lemma 3.4} Let G be a totally imprimitive p-subgroup of $FSym(\Omega)$. Let X be an ascending subset of G satisfying the cyclic-block property and (\ast). Let $Y = \{y_i : i \geq 1\}$ be the subset of X obtained in Lemma 3.3. Thus, for each $i \geq 1$, the cycle decomposition of y_i can be written as \[y_i = c_{i,1} \times \cdots \times c_{i,r(i)} \] such that $\text{supp}(y_i) \subseteq \text{supp}(c_{i+1,1})$ and $m_1(y_i) \leq m_1(y_{i+1})$ for every $i \geq 1$. Moreover, if we put $|c_{i,j}| = p^{a_{i,j}}$, for every $i \geq 1$ and $1 \leq j \leq r(i)$, then for $1 \leq i \leq k$ the equality \[c_{k,1}^{p^{a_{(k,1)-a_{(i,j)}}}}|_{\text{supp}(c_{i,j})} = c_{i,j}^{q_{(i,j)}} \] holds for a $q(i,j) \geq 1$ with $(p,q(i,j)) = 1$ by Lemma 3.3.

Now let $j, k, t \geq 1$ be integers with $j \leq k, t$ and suppose that $|y_j| \leq \min\{m(y_k), m(y_t)\}$. Let $m, n \geq 1$. Then \[c_{j,1}^{y_j^m} y_j^n = c_{j,1}^{y_j^m} y_j^n \] for an $r \in \{k, t\}$ and $s \geq 1$.

\textbf{Proof} Put $c_i = c_{i,1}$ and let $|\text{supp}(c_i)| = p^{a(i)}$ for $i = j, k, t$. Then c_i is a factor of the cycle decomposition of y_i for $i = j, k, t$ and $\text{supp}(y_u) \subseteq \text{supp}(c_i)$ for every $1 \leq u < v$. We may suppose that $j < k, t$.

\textbf{Case 1} $j < k < t$. Now \[c_{j,1}^{y_j^m} y_j^n = c_{j,1}^{y_j^m} y_j^n \] since $\text{supp}(c_j) \subseteq \text{supp}(c_k)$. On the other hand, \[c_{i}^{a_{(i)-a(k)}} = c_{k}^{a_{(k,1)}} \times \cdots \times (c_{k}^{a_{(k,1)}} c_{i}^{a_{(i)-a(k)}} - 1) = c_{k}^{a_{(k,1)}} \times v_k \] by (1) and Lemma 3.2, where $\text{supp}(v_k) \cap \text{supp}(c_k) = \emptyset$. Also, $bq(k,1) \equiv 1 \mod (p^{a(k)})$ for an integer b since $(q(k,1), p) = 1$ by Lemma 3.2. Using this above gives \[c_{k}^{a_{(k,1)-a(k)}} = c_{k}^{a_{(k,1)}} \times c_{k}^{a_{(k,1)-a(k)} - 1} = c_{k} \times v_k. \]

Hence, $c_{k}^{m} = c_{i}^{mbp^{a_{(i)-a(k)}} v_k^{-b}}$. Substituting this in (2) gives \[c_{j}^{v_k^{-b}} y_j^n = c_{j}^{v_k^{-b}} c_{j}^{bmbp^{a_{(i)-a(k)} - n}} y_j^n = c_{j}^{v_k^{-b}} c_{j}^{bmbp^{a_{(i)-a(k)} + n}} y_j^n = c_{j}^{v_k^{-b}} c_{j}^{bmbp^{a_{(i)-a(k)} + n}} y_j^n \] since $\text{supp}(c_j) \subseteq \text{supp}(c_k)$.

\textbf{Case 2} $k > t > j$. We may suppose that $\text{supp}(c_{j,1}^m) \cap \text{supp}(y_t^n) \neq \emptyset$; otherwise, $c_{j,1}^{m} y_t^n = c_{j,1}^{m}$ and we are done. Then there exists a cycle $c_{t,1}$ in the cycle decomposition of y_t so that $\text{supp}(c_{j,1}^m) \subseteq \text{supp}(c_{t,1})$ by...
the cyclic-block property since \(|y_j| < m(y_1)| by the hypothesis. For simplicity, put \(u_t = c_{t,r}\) and \(q(t) = q(t,r)\). Clearly now \(c_j^{c_k y_t^p} = c_j^{y_t^p u_t^q}\). Let \(|u_t| = p^z\). Then
\[
e^p_{(k)} = u_t^{q(t)} \times \cdots \times (u_t^{q(t)})^k = u_t^{q(t)} \times v_t
\]
where \((q(t), p) = 1\) by (1). Then, as in Case 1, there exists an integer \(b\) so that
\[
\epsilon^p_{(k)} = u_t \times v_t^b
\]
where \(\text{supp}(u_t) \cap \text{supp}(v_t) = \emptyset\). Hence \(u_t^n = v_t^{-bn} \epsilon^p_{(k)} u_t^b\). Substituting this above gives
\[
\epsilon^m_{(k)} u_t^n = c_j^{c_k y_t^p u_t^n} = c_j^{c_k y_t^p u_t^b} = c_j^{y_t^p u_t^b} c_j^{c_k y_t^p b^+(k) - z}
\]
where \(\text{supp}(c_j^m) \subseteq \text{supp}(u_t)\) and \(\text{supp}(u_t) \cap \text{supp}(v_t) = \emptyset\), which completes the proof of the lemma.

\textbf{Lemma 3.5} Let \(G\) be a totally imprimitive \(p\)-subgroup of \(FSym(\Omega)\). Let \(X\) be an ascending subset of \(G\) satisfying the cyclic-block property and (\(\ast\)). Let \(Y = \{y_i : i \geq 1\}\) be the subset of \(X\) obtained in Lemma 3.3 and suppose that \(|y_i| < m(y_{i+1})\) for every \(i \geq 1\). Let \(j \geq 1\) and put \(Y^*_j = \langle y_i : i \geq j \rangle\). Let \(y = y_{k_1} m_1 \cdots y_{k_r} m_r \in Y^*_j\), where \(k_i \geq j\), \(r \geq 1\), \(m_i \geq 1\), and \(k_u \neq k_{u+1}\). Then \(c_{j,1}^y = c_{j,1}^y a \) for every \(a \in \{k_1, \ldots, k_r\}\) and \(s \geq 1\).

\textbf{Proof} We may use induction on \(r \geq 1\). For \(r = 1\) the assertion is obvious. Suppose that \(r > 1\) and the assertion holds for numbers less than \(r\). Note that \(|y_j| < m(y_{k_1})\) for \(i = 1, \ldots, q\) by the hypothesis. Hence, applying Lemma 3.4 we obtain a \(k \in \{k_1, k_2\}\) and an \(m \geq 1\) so that \(c_{j,1}^{y_{k_1} m_1 m_2 \cdots y_{k_r} m_r} = c_{j,1}^{y_{k_1} m_1 m_2 \cdots y_{k_r} m_r}\). Then the induction hypothesis applies to the right side of the preceding equality. Therefore, there exist a \(u \in \{k, k_3, \ldots, k_r\}\) and an \(s \geq 1\) so that \(c_{j,1}^{y_{k_1} m_1 m_2 \cdots y_{k_r} m_r} = c_{j,1}^{y_{k_1} m_1 m_2 \cdots y_{k_r} m_r}\). Then since \(c_{j,1}^y = c_{j,1}^y a \) the induction and the proof of the lemma are complete.

\textbf{Lemma 3.6} Let the hypothesis and the notation be as in Lemma 3.5. Let \(j \geq 1\). Then \([c_{j,1}^y, c_{j,1}] = 1\) for every \(y \in Y^*_j\).

\textbf{Proof} Put \(c_j = c_{j,1}\). Let \(y \in Y^*_j\). We have \(c_j^y = c_j^{y_k^1}\) for a \(k \geq j\) and an \(s \geq 1\) by Lemma 3.5. Let \(\text{supp}(c_j) = \Gamma_j\) and put \(H = G(\Gamma_j)\). If \(y_k \not\in H\), then \(y_k(G_j) \cap \Gamma_j = \emptyset\) and since \(\text{supp}(c_j^{y_k}) = y_k^s(\Gamma_j)\) it follows that \([c_j^{y_k}, c_j] = 1\), and the assertion holds in this case since \(c_j^y = c_j^{y_k}\).

Next suppose that \(y_k \in H\). Let \(c_{k,1} = c_k\), \(\text{supp}(c_k) = \Gamma_k\), \(|\Gamma_j| = p^a(\Gamma_j)\), and \(|\Gamma_k| = p^b(\Gamma_k)\). Then \(p^a(\Gamma_k - a(\Gamma_j))s\) by Lemma 3.2 and hence \(s = p^a(\Gamma_k - a(\Gamma_j))t\) for \(a \geq 1\). Also, \(\text{supp}(y_j) \subseteq \Gamma_k\) and \(c_j^{p^a(\Gamma_k - a(\Gamma_j))} = c_j^{y_j} c_j^{v_k}\) for a \(v_k \in FSym(\Omega)\) and \(q(j) \geq 1\) by (1) in Lemma 3.4. Hence, \(c_j^y = c_j^{y_j} v_k^t\), but also \(y_k = c_k \times z_k\) for a
$z_k \in FSym(\Omega)$. Combining these values we get $y^i_k = c_j^{\nu(j)(v_k^i z_k^i)}$, where $supp(v_k z_k) \cap \Gamma_k = \emptyset$. Using this last equality we get

$$c_j y^i_k = c_j^{\nu(j)(v_k^i z_k^i)} = c_j z_k^i = c_j$$

and hence

$$[c_j y^i_k, c_j] = [c_j, c_j] = 1,$$

which was to be shown.

\[\square\]

Lemma 3.7 Let G be a totally imprimitive p-subgroup of $FSym(\Omega)$, where Ω is infinite. Let $y \in G$ and let $j > 1$ so that $\alpha \in supp(y) \subset \langle c_j^p \rangle(\alpha)$ and $|c_j, 1| = p^t$ for $t \geq 4$. Then $[c_j^{p^t}, c_j, 1] \neq 1$.

Proof Put $c = c_{j, 1}$. Then $supp(y) \subseteq \{\alpha, c^{p^t} \alpha, \ldots, (c^{p^t})^{p^{t-1}} \alpha\}$ by the hypothesis. This means that if y moves an element of Ω, then it must be of the form $(c^{p^t})^k(\alpha)$ for $0 \leq k \leq p^{t-2} - 1$.

Assume if possible that $c^y c = c e^y$. Then

$$y c y^{-1} c(\alpha) = c y c y^{-1}(\alpha). \quad (1)$$

Now

$$y c y^{-1} c(\alpha) = yc(\alpha) = y(c^2(\alpha))$$

since y cannot move $c(\alpha)$ and

$$c y c y^{-1}(\alpha) = c y (c^{kp^2}(\alpha)) = c y(c^{kp^2+1}(\alpha)) = c^{kp^2+2}(\alpha)$$

since y cannot move $c^{kp^2+1}(\alpha)$, where $y^{-1}(\alpha) = (c^{p^t})^k(\alpha)$ and $1 \leq k \leq p^{t-2} - 1$ since $y(\alpha) \neq \alpha$. Thus the equality (1) takes the form

$$y(c^2(\alpha)) = c^{kp^2+2}(\alpha).$$

Now if $p > 2$, then $y(c^2(\alpha)) = c^2(\alpha)$ since $c^2(\alpha)$ is not of the form $(c^{p^t})^k(\alpha)$. Indeed, if $c^2(\alpha) = (c^{p^t})^k(\alpha)$, then $c^{kp^2-2}(\alpha) = \alpha$, which implies that $p^t k p^2 - 2$ since $|c| = p^t$, which is impossible. Therefore, $c^2(\alpha) = c^{kp^2+2}(\alpha)$ and hence $\alpha = c^{kp^2}(\alpha)$, which is a contradiction since $1 \leq k \leq p^{t-2} - 1$, c is a cycle, $|c| = p^t$, and $t \geq 4$. Next suppose that $p = 2$. Again since y can move only elements of the form $(c^{p^t})^k(\alpha) = c^{k}(\alpha)$ and since $c^2(\alpha)$ is not of this form, we get $y(c^2(\alpha)) = c^2(\alpha)$ and hence $c^2(\alpha) = c^{k+2}(\alpha)$. Hence, $c^{k}(\alpha) = \alpha$, which is another contradiction since $|c| = 2^t$, $t \geq 4$, and $1 \leq k \leq 2^{t-2} - 1$. \[\square\]

Lemma 3.8 Let G be a totally imprimitive p-subgroup of $FSym(\Omega)$, where Ω is infinite. Let X be the ascending subset of G satisfying the cyclic-block property such that for every $x \in X$ there exists a $y \in X$ such that $m(x) < m(y)$. Then there exists an ascending subset $Z = \{z_i : i \geq 1\}$ of G so that $m(z_i) < m(z_{i+1})$ for every $i \geq 1$. 994
Proof By the hypothesis we can obtain easily an infinite subset \(X^* = \{ x_i : i \geq 1 \} \) of \(X \) so that \(m(x_i) < m(x_{i+1}) \) for every \(i \geq 1 \). We may suppose that \(x_1 \neq 1 \). Let \(d_i \) be a cycle of \(x_i \) of the smallest length, that is, of length \(m(x_i) \) for every \(i \geq 1 \). Then \(|d_i| < |d_{i+1}| \) for every \(i \geq 1 \). Choose an \(\alpha \in \text{supp}(d_1) \). By the transitivity of \(G \) for every \(i \geq 1 \) there exists an \(a_i \in G \) so that \(\alpha \in \text{supp}(d_i^a) \). Then \(\text{supp}(d_i^a) \subseteq \text{supp}(d_{i+1}^{a_i}) \) by [4, Lemma 2.2] since \(\alpha \in \text{supp}(d_i^a) \cap \text{supp}(d_{i+1}^{a_i}) \) for every \(i \geq 1 \). Put \(z_i = x_i^{a_i} \) for every \(i \geq 1 \) and define \(Z = \{ z_i : i \geq 1 \} \). Since \(\text{supp}(d_i^a) \subseteq \text{supp}(d_{i+1}^{a_i}) \) and since each \(\text{supp}(d_i^a) \) is a block for \(G \) it follows that \(\bigcup_{i=1}^{\infty} \text{supp}(d_i^a) = \Omega \) due to the fact that every proper block is finite by the transitivity of \(G \) on \(\Omega \). Hence, it follows that \(Z \) cannot be contained in the set stabilizer of a finite subset of \(G \) and also \(\exp(Z) \) is infinite. Therefore, \(Z \) is an ascending subset of \(G \). □

Proof of Theorem 1.1 Let \(G \) be a totally imprimitive \(p \)-subgroup of \(\text{FSym}(\Omega) \), where \(\Omega \) is infinite. Let \(X \) be an ascending subset of \(G \) satisfying the cyclic-block property so that conditions (a) and (b) are satisfied. Then applying Lemma 3.8 we obtain an ascending subset \(Z = \{ z_i : i \geq 1 \} \) of \(G \) so that \(m(z_i) < m(z_{i+1}) \) for every \(i \geq 1 \). Next we can choose an infinite subset \(U = \{ u_i : i \geq 1 \} \) of \(Z \) so that \(|u_i| < m(u_{i+1}) \) for every \(i \geq 1 \) since the numbers \(m(z_i) \) are increasing without bound. We now substitute \(U \) in place of \(X \) in Lemma 3.3. This gives an ascending subset \(Y = \{ y_i : i \geq 1 \} \) of \(G \) so that the following hold. The cycle decomposition of each \(y_i \) can be expressed as

\[
y_i = c_{i,1} \times \cdots \times c_{i,r(i)}
\]

so that \(\text{supp}(y_i) \subseteq \text{supp}(c_{i+1,1}) \) and if \(1 \leq j \leq r(i) \), \(k \geq i \), \(|c_{i,j}| = p^a \), \(|c_{k,1}| = p^b \), then

\[
c_{k,1}^{b-a} | \text{supp}(c_{i,j}) = c_{i,j}^{q(i,j)}
\]

for a \(q(i,j) \geq 1 \). Furthermore, for each \(i \geq 1 \), the inequality \(|y_i| < m(y_{i+1}) \) is satisfied by definition of \(U \). Thus, Lemmas 3.4, 3.5, and 3.6 can be applied to \(Y \).

Next we may suppose that \(y_1 \neq 1 \). Choose an \(\alpha \in \text{supp}(y_1) \). Let \(\Delta \) be the smallest block such that \(\text{supp}(y_1) \subseteq \Delta \) and let \(|\Delta| \leq p^t \), for a \(t \geq 4 \). There exists a \(j > 1 \) so that \(|c_{j,1}| \geq p^{2t} \) and \(\Delta \subseteq \text{supp}(c_{j,1}) \). Put \(c_j = c_{j,1} \). Then \(c_j = (c_{j,1}(\alpha), \ldots, c_{j,r(j)-1}(\alpha)) \). Now \(c_j^2 \) is a product of \(p^2 \) cycles each of length \(\geq p^{2(t-2)} = p^{2(t-1)} \geq p^t \) since \(t \geq 4 \). Then it is easy to see that \(\Delta \subseteq \langle c_j^2 \rangle(\alpha) \) by the cyclic-block property since \(\langle c_j^2 \rangle(\alpha) \) is a block and \(\alpha \in \Delta \cap \langle c_j^2 \rangle(\alpha) \).

Put \(Y_j^* = \langle y_i : i \geq j \rangle \). Then the application of Lemmas 3.4, 3.5, and 3.6 gives \([c_{j,1}^p, c_{j,1}] = 1 \) for every \(y \in Y^* \), but application of Lemma 3.7 gives \([c_{j,1}^{y_1}, c_j] \neq 1 \), which implies that \(y_1 \notin Y^* \) and so \(Y^* \neq G \). However, since \(\{ y_i : i \geq j \} \) is ascending by definition of \(Y \), the subgroup \(Y^* \) cannot be an \(FC \)-subgroup of \(G \). Therefore, \(G \) cannot be an \(MNFC \)-group and so the proof of the theorem is complete. □

Proof of Corollary 1.2 Let \(G \) be a totally imprimitive \(p \)-subgroup of \(\text{FSym}(\Omega) \), where \(\Omega \) is infinite. Let \(X \) be an ascending subset of homogeneous elements of \(G \) satisfying the cyclic-block property so that \(X \) satisfies the (a) condition. Then condition (a) of Theorem 1.1 is satisfied. Therefore, we need only show that condition (b) of Theorem 1.1 is satisfied. Since \(X \) is ascending by the hypothesis, \(\exp(X) \) is infinite and \(\langle X \rangle \) is a non-\(FC \)-subgroup of \(G \). Also, since \(G \) is locally finite, it follows that for every \(x \in X \) there exists a \(y \in X \) so that
Proof of Theorem 1.1

Let G be a subgroup of $FSym(N^*)$ satisfying the cyclic-block property. Let p be the smallest prime dividing the order of G. Then G contains a subgroup G' isomorphic to $FSym(N^*)$, which is also cyclic-block, and G' contains a subgroup isomorphic to $FSym(N^*)$. By the classification of finitary permutation groups, G' is isomorphic to $FSym(N^*)$. Thus, G' is also cyclic-block.

Proof of Corollary 1.3

Let G be the p-subgroup of $FSym(N^*)$ described in Section 2. Then G satisfies the cyclic-block property by [4, Theorem 1.1]. We have $G = \langle g_k : k \geq 1 \rangle$, where $g_k = u_k \times v_k$, $u_k = (a_1, \ldots, a_{p^k})$, $v_k = u_k \times \cdots \times u_k^{p^{k+1}}$, $supp(u_k) = \Delta_k$, and $supp(v_k) = \Delta_{k+1} \setminus \Delta_k$. Hence, it follows that each g_k is homogeneous; that is, $|g_k| = m(g_k) = p^k$ for every $k \geq 1$. Furthermore,

$$g_k^{p^k} \Delta_k = g_k$$

since $u_k^{p^k} = g_k$ as was shown in Section 2. Thus, G satisfies the hypothesis of Corollary 1.2 and therefore G cannot be $MNFC$.

Next we show that G' cannot be $MNFC$. For each $s \geq 2$ let $Y_s = \{g_k^{-1} g_k^{p^s} : 1 \leq k < s\}$ and put $Y = \bigcup_{s \geq 2} Y_s$. Then Y is an ascending subset of homogeneous elements of G'. To see this let $1 \leq k < s$. Then $g_k^{-1} g_k^{p^s} = g_k^{-1} g_k^{p^s}$ since $supp(g_k) = \Delta_{k+1} = supp(u_{k+1}) \subseteq supp(u_s)$. Also $u_{k+1}^p = g_k$ (see Section 2). Hence $g_k^{-1} g_k^{p^s} = g_k^{-1} g_k^{p^{k+1}} = 1$. So suppose that $s > k + 1$. Then $u_s(\Delta_{k+1}) \cap \Delta_{k+1} = \emptyset$. Also,

$$supp(g_k^{p^s}) = u_s^{-1}(supp(g_k)) = u_s^{-1}(\Delta_{k+1}).$$

Clearly it follows from this that $g_k^{-1} g_k^{p^s} = g_k^{-1} \times g_k^{p^s}$ and so $g_k^{-1} g_k^{p^s}$ is homogeneous since g_k is homogeneous. Furthermore, $g_k \notin G_{\Delta_{k-1}}$ since $g_k = u_k \times v_k$, $supp(u_k) = \Delta_k$ and $\Delta_{k-1} \subseteq \Delta_k$. Now suppose that $s > k + 1$. Then also $g_k^{-1} g_k^{p^s} \notin G_{\Delta_{k-1}}$ since $\Delta_{k-1} \subset supp(g_k)$ and $g_k^{p^s} \in G_{\Delta_{k-1}}$. In particular, (b) of Theorem 1.1 is satisfied.

Finally, let $1 \leq k + 1 < s$. Then

$$(g_k^{-1} g_k^{p^s})^p |_{\Delta_k} = g_k^{-p^s} |_{\Delta_k} = u_k^{-p^s} |_{\Delta_k} = u_k^{-p^s} |_{\Delta_k} = g_k^{-p^s} \times g_k^{p^s} |_{\Delta_k}$$

and so (a) of Theorem 1.1 is satisfied. Therefore, G' cannot be $MNFC$ by Theorem 1.1. (A different proof of this result is given in [5, Theorem 1.6].)

Acknowledgment

The author is very grateful to the editor and the referee(s) for accepting this work for publication in Turkish Journal of Mathematics.

References

