Ranges and kernels of derivations

Mohamed ECH-CHAD
Department of Mathematics, Faculty of Sciences Kénitra, Kénitra, Morocco

Abstract: In this paper we establish some properties concerning the class of operators $A \in \mathcal{L}(\mathcal{H})$ that satisfy $\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}$, where $\overline{\mathcal{R}(\delta_A)}$ is the norm closure of the range of the inner derivation δ_A, defined on $\mathcal{L}(\mathcal{H})$ by $\delta_A(X) = AX -XA$. Here \mathcal{H} stands for a Hilbert space; as a consequence, we show that the set $\{A \in \mathcal{L}(\mathcal{H}) \mid \overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}\}$ is norm-dense. We also describe some classes of operators A, B for which we have $\overline{\mathcal{R}(\delta_{A,B})} \cap \ker(\delta_{A^*,B^*}) = \{0\}$, and many of their problems remain also open (see [2, 5, 8, 9, 15, 27]).

Key words: Generalized derivation, p-hyponormal operator, log-hyponormal operator, range and kernel

1. Introduction

Let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded operators acting on a complexe infinite dimensional Hilbert space \mathcal{H}. For A, $B \in \mathcal{L}(\mathcal{H})$ we define the generalized derivation $\delta_{A,B}$ associated with (A, B) by $\delta_{A,B}(X) = AX -XB$ for $X \in \mathcal{L}(\mathcal{H})$. If $A = B$, then $\delta_{A,A} = \delta_A$ is called the inner derivation implemented by $A \in \mathcal{L}(\mathcal{H})$. These concrete operators on $\mathcal{L}(\mathcal{H})$ occur in many settings in mathematical analysis and application, their properties, spectrum (see [7, 13, 20]), norm (see [23]), ranges, and kernels (see [4, 5, 8, 9, 15, 27]) have been much studied, and many of their problems remain also open (see [3, 18, 26]).

Let $\mathcal{N} = \bigcup_{A \in \mathcal{L}(\mathcal{H})} \mathcal{R}(\delta_A) \cap \{A\}'$, where $\mathcal{R}(\delta_A)$ denotes the range of δ_A and $\{A\}'$ is the commutant of A. In finite dimension, it is known that \mathcal{N} is exactly the set of nilpotent operators. In infinite dimension the theorem of Kleinecke–Shirokov [19] confirms that any operator in \mathcal{N} is quasinilpotent. However, an operator in $\overline{\mathcal{R}(\delta_A)} \cap \{A\}'$ is not necessarily quasinilpotent (Anderson [1] proved that there exists an operator A in $\mathcal{L}(\mathcal{H})$ such that $I \in \overline{\mathcal{R}(\delta_A)}$, where $\overline{\mathcal{R}(\delta_A)}$ is the normal closure of $\mathcal{R}(\delta_A)$).

In [2] Anderson proved the remarkable result that $\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}$ if A is normal or isometric. In the same direction, it should be noted that Bouali and Bouhafsi [6] showed that if A is a cyclic subnormal operator then $\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}$.

The purpose of the first section is to establish some properties of the class of operators $A \in \mathcal{L}(\mathcal{H})$ that satisfy $\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}$. As a consequence, we give a large class of operators $A \oplus B$ verifying $\overline{\mathcal{R}(\delta_{A,B})} \cap \{A \oplus B\}' = \{0\}$, and we prove that the set $\{A \in \mathcal{L}(\mathcal{H}) \mid \overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}\}$ is norm-dense in $\mathcal{L}(\mathcal{H})$.

*Correspondence: m.echchad@yahoo.fr
2010 AMS Mathematics Subject Classification: 47B47, secondary 47A30.
If H is a finite dimensional Hilbert space $<X,Y> = tr(XY^*)$ is an inner product on $L(H)$ and we have the orthogonal direct sum decomposition $L(H) = R(\delta_A) \bigoplus \{A^*\}'$. However, when H is infinite dimensional we do not have $\overline{R}(\delta_A) \cap \{A^*\}' = \{0\}$ in general. The class of operators A that have the property $\overline{R}(\delta_A) \cap \{A^*\}' = \{0\}$ includes the normal operators [2], isometries [25], the cyclic subnormal operators [16], the class of operators A such that $P(A)$ is normal for some quadratic polynomial P [16], and Jordan operators [22].

In [12] Elalami proved that $\overline{R}(\delta_{A,B}) \cap \ker(\delta_{A^*,B^*}) = \{0\}$ if A^* and B are hyponormal operators, where $\ker(\delta_{A^*,B^*})$ denotes the kernel of δ_{A^*,B^*}. In the second section we consider this problem; we show that $\overline{R}(\delta_{A,B}) \cap \ker(\delta_{A^*,B^*}) = \{0\}$ if $\langle P(A), P(B) \rangle$ and $(P(B), P(A))$ has the $(F - P)_{L(H)}$ property for some quadratic polynomial P. Consequently, we extend the result of [16] to $\delta_{A,B}$. Using the $(F - P)_{L(H)}$ property we prove that $\overline{R}(\delta_{A,B}) \cap \ker(\delta_{A^*,B^*}) = \{0\}$ in each of the following cases:

(a) B is normal and A^* is p-hyponormal or log-hyponormal, ($0 < p \leq 1$).

(b) A is normal and B is p-hyponormal or log-hyponormal, ($0 < p \leq 1$).

An operator $A \in L(H)$ is p-hyponormal, $0 < p \leq 1$, if $|A|^2p \leq |A|^{2p}$ (a 1-hyponormal operator is hyponormal and a $\frac{1}{2}$-hyponormal operator is semihyponormal). It is an immediate consequence of the Lowner–Heinz inequality that a p-hyponormal operator is q-hyponormal for all $0 < q \leq p$. An invertible operator $A \in L(H)$ is log-hyponormal if $\log|A|^2p \leq \log|A|^{2p}$. An invertible p-hyponormal operator is log-hyponormal, but the converse is false; see [17, p. 169] for a reference. Log-hyponormal and p-hyponormal operators, which share a number of properties with hyponormal operators, have been considered by a number of authors in the recent past; see [11, 17, 24] for further references.

2. Commutants and derivation ranges

Definition 2.1 A vector $x \in H$ is cyclic for $A \in L(H)$ if H is the smallest invariant subspace for A that contains x. The operator A is said to be cyclic if it has a cyclic vector.

Definition 2.2 Let $A \in L(H)$. The operator A is said to be subnormal if there exists a normal operator N on a Hilbert space K such that H is a subspace of K, invariant under the operator N, and the restriction of N to H coincides with A.

Consider the set $\mathcal{M}_C(H) = \{A \in L(H) / \overline{R}(\delta_A) \cap \{A\}' = \{0\}\}$.

Theorem 2.3 Let A and B be in $\mathcal{M}_C(H)$, such that $\sigma(A) \cap \sigma(B) = \emptyset$. Then $A \oplus B \in \mathcal{M}_C(H \oplus H)$.

Proof Assume that $A, B \in \mathcal{M}_C(H)$, and $\sigma(A) \cap \sigma(B) = \emptyset$. Let $C = A \oplus B \in L(H \oplus H)$, and $D = \begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix} \in \overline{R}(\delta_C) \cap \{C\}'$. Then there exists a net $(X_n)_n \subset L(H \oplus H)$ such that $X_n = \begin{pmatrix} X^1_n & X^2_n \\ X^3_n & X^4_n \end{pmatrix}$,

$CX_n - X_nC \xrightarrow{\|\|} D$ and $CD = DC$.

A simple calculation shows that

$AX^1_n - X^1_nA \xrightarrow{\|\|} D_1$ and $AD_1 = D_1A$,
ECH-CHAD/Turk J Math

\[BX_4 - X_4B \parallel D_4 \quad \text{and} \quad BD_4 = D_4B, \]
\[BX_3 - X_3A \parallel D_3 \quad \text{and} \quad BD_3 = D_3A, \]
\[AX_2 - X_2B \parallel D_2 \quad \text{and} \quad AD_2 = D_2B. \]

Hence \(D_1 \in \mathcal{R}(\delta_A) \cap \{A\}' = \{0\}, \quad D_4 \in \mathcal{R}(\delta_B) \cap \{B\}' = \{0\}, \quad D_3 \in \mathcal{R}(\delta_{B,A}) \cap \ker(\delta_{B,A}), \) and \(D_2 \in \mathcal{R}(\delta_{A,B}) \cap \ker(\delta_{A,B}). \) Since \(\sigma(A) \cap \sigma(B) = \emptyset, \) it follows from Rosemblem’s theorem [21] that \(D_2 = D_3 = 0. \) Thus \(A \oplus B \in \mathcal{M}_C(\mathcal{H} \oplus \mathcal{H}). \)

Theorem 2.4 Let \(A, B \in \mathcal{L}(\mathcal{H}), \) with \(B \) similar to \(A \) and \(A \in \mathcal{M}_C(\mathcal{H}). \) Then \(B \in \mathcal{M}_C(\mathcal{H}). \)

Proof Let \(A, B \in \mathcal{L}(\mathcal{H}), \) such that \(A \in \mathcal{M}_C(\mathcal{H}) \) and there exists an invertible operator \(S \in \mathcal{L}(\mathcal{H}) \) verifying \(B = S^{-1}AS. \) Then for all \(X \in \mathcal{L}(\mathcal{H}), \)

\[S^{-1}(AX - XA)S = B(S^{-1}XS) - (S^{-1}XS)B. \]

Thus \(S^{-1}\mathcal{R}(\delta_A)S = \mathcal{R}(\delta_B). \) Hence

\[
\mathcal{R}(\delta_B) \cap \{B\}' = S^{-1}\left[\mathcal{R}(\delta_A) \cap \{A\}'\right]S = S^{-1}\left[\mathcal{R}(\delta_A) \cap \{A\}'\right]S = \{0\}.
\]

This completes the proof.

Corollary 2.5 Let \(A \in \mathcal{L}(\mathcal{H}). \) If \(A \) is similar to a normal, isometric, or cyclic subnormal operator then

\[\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}. \]

Proof Anderson proved that \(\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\} \) if \(A \) is normal or isometric [2], and in [6] Bouali and Bouhafsi showed that if \(A \) is cyclic subnormal then \(\overline{\mathcal{R}(\delta_A)} \cap \{A\}' = \{0\}. \)

Corollary 2.6 Let \(A, B \in \mathcal{L}(\mathcal{H}), \) with \(\sigma(A) \cap \sigma(B) = \emptyset. \) If \(A \) and \(B \) are similar to normal, isometric, or cyclic subnormal operators, all combinations are allowed; then

\[\mathcal{R}(\delta_{A \oplus B}) \cap \{A \oplus B\}' = \{0\}. \]

Definition 2.7 [14] we shall say that a certain property \((P) \) of operators acting on a Hilbert space \(\mathcal{H} \) is a bad-property, or \(b \)-property, if:

(i) Whenever \(A \) satisfies \((P), \) then for \(\alpha \in \mathcal{C}, \) with \(\alpha \neq 0, \) and \(\beta \in \mathcal{C}, \) the operator \(\alpha A + \beta \) satisfies \((P); \)

(ii) If \(B \) is similar to \(A, \) and \(A \) satisfies \((P), \) then \(B \) also satisfies \((P); \)
(iii) If A and B satisfy (P), such that $\sigma(A) \cap \sigma(B) = \emptyset$, then $A \oplus B$ satisfies (P).

Theorem 2.8 $\mathcal{M}_C(\mathcal{H})$ is norm-dense in $\mathcal{L}(\mathcal{H})$.

Proof Using [14], theorem 3.5.1, it is sufficient to establish that the property $A \in \mathcal{M}_C(\mathcal{H})$ is a b-property.

(i) If $A \in \mathcal{M}_C(\mathcal{H})$, then for $\alpha \in \mathcal{G}$, with $\alpha \neq 0$, and $\beta \in \mathcal{G}$,
\[\mathcal{R}(\delta_{\alpha A + \beta}) \cap \{\alpha A + \beta\}' = \mathcal{R}(\delta_A) \cap \{A\}' = \{0\}. \]

Thus $\alpha A + \beta \in \mathcal{M}_C(\mathcal{H})$. This proves the first condition.

(ii) By theorem 2.4, $A \in \mathcal{M}_C(\mathcal{H})$ is invariant for similarity. The second condition is then verified.

(iii) By theorem 2.3, the third condition of the b-property is fulfilled. This completes the proof.

\[\square \]

Remark 2.9 In [16], theorem 2, Ho shows that $N = \{A \in \mathcal{L}(\mathcal{H}) \mid I \notin \mathcal{R}(\delta_A)\}$ is norm-dense in $\mathcal{L}(\mathcal{H})$. Clearly $\mathcal{M}_C(\mathcal{H}) \subset N$. Theorem 2.8 generalizes Ho’s result.

3. Ranges and kernels of generalized derivations

Definition 3.1 Let A, B be in $\mathcal{L}(\mathcal{H})$. The pair (A, B) is said to possess the Fuglede–Putnam property $(F - P)_{\mathcal{L}(\mathcal{H})}$ if $AT = TB$ and $T \in \mathcal{L}(\mathcal{H})$ implies $A^*T = TB^*$.

Lemma 3.2 Let $A, X \in \mathcal{L}(\mathcal{H})$ such that $P \geq 0$ and $PX + XP = 0$. Then $PX = XP = 0$.

Proof Assume that $PX + XP = 0$. Then $P^2X = XP^2$, and since $P \in \{P^2\}''$ ($\{P^2\}''$ is the bicommutant of P^2), it follows that $PX = XP$. Thus $PX = XP = 0$.

Lemma 3.3 Let $A, B \in \mathcal{L}(\mathcal{H})$. If (A, B) has the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property, then
\[\mathcal{R}(\delta_{A,B}) \cap \ker(\delta_{A,B}) = \{0\}. \]

Proof In the proof of theorem 1 [27], Yusun shows that $\|\delta_{A,B}(X) + T\| \geq \|T\|$ for all $X \in \mathcal{L}(\mathcal{H})$ and $T \in \ker(\delta_{A,B})$, if (A, B) has the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property.

Theorem 3.4 Let A, B be in $\mathcal{L}(\mathcal{H})$. If $(P(A), P(B))$ and $(P(B), P(A))$ have the $(F - P)_{\mathcal{L}(\mathcal{H})}$ property for some quadratic polynomial P then
\[\mathcal{R}(\delta_{A,B}) \cap \ker(\delta_{A,B}) = \{0\}. \]

Proof Since for all $(\alpha, \beta) \in \mathcal{G}^2$, with $\alpha \neq 0$,
\[\mathcal{R}(\delta_{\alpha A + \beta, aB + \beta}) = \mathcal{R}(\delta_{A,B}) \quad \text{and} \quad \ker(\delta_{\alpha A + \beta, aB + \beta}) = \ker(\delta_{A,B}) \]
we may assume without loss of generality that (A^2, B^2) and (B^2, A^2) have the $(F - P)_{L(H)}$ property. Let $T^* \in \overline{R}(\delta_{A, B}) \cap \ker(\delta_{A^*, B^*})$. Then there exists a sequence $(X_n)_n$ in $L(H)$ such that:

$$AX_n - X_n B \xrightarrow{\| \cdot \|} T^* \quad \text{and} \quad TA = BT.$$

This implies that

$$A^2 X_n - X_n B^2 \xrightarrow{\| \cdot \|} AT^* + T^* B \quad \text{and} \quad TA^2 = B^2 T.$$

Since (B^2, A^2) has the $(F - P)_{L(H)}$ property, it follows that $A^2 T^* = T^* B^2$. Hence $A^2 (AT^* + T^* B) = (AT^* + T^* B) B^2$. Consequently,

$$AT^* + T^* B \in \overline{R}(\delta_{A^2, B^2}) \cap \ker(\delta_{A^2, B^2}).$$

Using lemma 3.3 we have $AT^* + T^* B = 0$. By multiplication right by T, and using $BT = TA$, we obtain $AP + PA = 0$ with $P = T^* T$. It follows from lemma 3.2 that $AP = PA = 0$. On the other hand, $A(X_n T) - (X_n T) A \xrightarrow{\| \cdot \|} T^* T = P$; and by multiplication of right and left by P, we get $P^3 = 0$. Since P is self-adjoint, then $P = 0$, and this necessarily implies $T = 0$. Thus $\overline{R}(\delta_{A, B}) \cap \ker(\delta_{A^*, B^*}) = \{0\}$. \hfill \Box

Corollary 3.5 [16] Let $A \in L(H)$. If $P(A)$ is normal for some quadratic polynomial P, then $\overline{R}(\delta A) \cap \{A^*\}' = \{0\}$.

Corollary 3.6 Let $A, B \in L(H)$. If $P(A)$ and $P(B)$ are normal operators for some quadratic polynomial P, then $\overline{R}(\delta_{A, B}) \cap \ker(\delta_{A^*, B^*}) = \{0\}$.

Proposition 3.7 Let A, B be in $L(H)$, such that (B, A) has the $(F - P)_{L(H)}$ property. If $T \in \overline{R}(\delta_{A, B}) \cap \ker(\delta_{A^*, B^*})$, then $T^* T \in \overline{R}(\delta_B) \cap \{B\}'$ and $TT^* \in \overline{R}(\delta_A) \cap \{A\}'$.

Proof Assume that $T \in \overline{R}(\delta_{A, B}) \cap \ker(\delta_{A^*, B^*})$. Then there exists a sequence $(X_n)_n$ of elements of $L(H)$ such that

$$AX_n - X_n B \xrightarrow{\| \cdot \|} T \quad \text{and} \quad BT^* = T^* A.$$

Since right and left multiplication are continuous with respect to the norm topology, it follows that

$$B(T^* X_n) - (T^* X_n) B = T^* (AX_n - X_n B) \xrightarrow{\| \cdot \|} T^* T,$$

and

$$A(X_n T^*) - (X_n T^*) A = (AX_n - X_n B) T^* \xrightarrow{\| \cdot \|} TT^*.$$

Hence $T^* T \in \overline{R}(\delta_B)$ and $TT^* \in \overline{R}(\delta_A)$. On the other hand, (B, A) has the $(F - P)_{L(H)}$ property; then $TB = AT$. Consequently we get $T^* T \in \overline{R}(\delta_B) \cap \{B\}'$ and $TT^* \in \overline{R}(\delta_A) \cap \{A\}'$. \hfill \Box
Corollary 3.8 Let A, B be in $\mathcal{L}(\mathcal{H})$, such that (B, A) has the \((F-P)\) property. If $A \in \mathcal{M}_\mathcal{L}(\mathcal{H})$ or $B \in \mathcal{M}_\mathcal{L}(\mathcal{H})$, then $\overline{\mathcal{R}(\delta_{A,B}) \cap \ker(\delta_{A^*,B^*})} = \{0\}$.

Corollary 3.9 Let A, B in $\mathcal{L}(\mathcal{H})$, then $\overline{\mathcal{R}(\delta_{A,B}) \cap \ker(\delta_{A^*,B^*})} = \{0\}$ in one of the following conditions:

1. B is normal and A^* is p-hyponormal or log-hyponormal, $(0 < p \leq 1)$.
2. A is normal and B is p-hyponormal or log-hyponormal, $(0 < p \leq 1)$.

Proof (1). Assume that B is normal and A^* is p-hyponormal or log-hyponormal. Then B is p-hyponormal and A^* is p-hyponormal or log-hyponormal. It follows from lemma 2.1 [10] that (B, A) has the \((F-P)\) property. Since B is normal, $B \in \mathcal{M}_\mathcal{L}(\mathcal{H})$ [2]. Using the corollary 3.8 we obtain $\overline{\mathcal{R}(\delta_{A,B}) \cap \ker(\delta_{A^*,B^*})} = \{0\}$. We obtain (2) in the same way. \hfill \Box

Acknowledgment

It is our great pleasure to thank the referee for his careful reading of the paper and for several helpful suggestions.

References

