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Abstract: The Randić index (R) and the geometric–arithmetic index (GA) are found to be useful tools in QSPR and

QSAR studies. In the Journal of Inequalities and Applications 180, 1-7, Lokesha, Shwetha Shetty, Ranjini, Cangul, and

Cevik gave ”New bounds for Randić and GA indices.” In the paper, we first point out that Theorems 1, 2, and 4 are

incorrect and in this short note we present the correct inequalities for Randić and GA indices. In the same paper, we

provide the equality cases for Theorems 3, 5, and 6.
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1. Introduction

Let G be a simple graph with n vertices and m edges. The degree of a vertex is denoted by d(vi), for

i = 1, 2, . . . , n such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vn), with the maximum and the minimum vertex degree of G

denoted by ∆ = ∆(G) and δ = δ(G), respectively. A vertex v ∈ V (G) is said to be pendant if its neighborhood

contains exactly one vertex, i.e. d(v) = 1. Moreover, p and δ1 = δ1(G) denotes the number of pendant vertices

and minimum nonpendant vertex degree in G , respectively. A graph G is called bidegreed if its vertex degree

is either ∆ or δ with ∆ > δ ≥ 1 and Kr,n−r (1 ≤ r ≤ n − 1) denotes the bidegreed bipartite graph with r

vertices of degree ∆ and n− r vertices of degree δ.

Molecular descriptors play a remarkable role in mathematical chemistry especially in QSPR/QSAR

investigations. Out of them, a special place is reserved for topological descriptors. Nowadays, there exists

hundreds of such topological descriptors in the literature. Among the oldest and the most famous and successful

topological indices are the Randić and Zagreb indices.

In 1972, Gutman and Trinajstić [3] explored the study of total π -electron energy on the molecular

structure and introduced two vertex degree-based graph invariants. These invariants are defined as

M1(G) =
∑

v∈V (G)

d(v)
2
, M2(G) =

∑
uv∈E(G)

d(u)d(v).

In 1975, Randić [5] proposed a topological index R under the name branching index, suitable for
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measuring the extent of branching of the carbon-atom skeleton of saturated hydrocarbons, defined by

R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

.

In 2009, Vukičević and Furtula [6] introduced a new class of topological index named the geometric-

arithmetic index, defined by

GA(G) =
∑

uv∈E(G)

2
√
d(u)d(v)

d(u) + d(v)
.

Subsequently two of these present authors together with Gutman [2] introduced the second general Zagreb

index are defined for α ∈ R as

Mα
2 (G) =

∑
uv∈E(G)

[d(u)d(v)]
α
.

In 2013, Lokesha et al. [4] considered inequalities that determine the bounds for the Randić and

geometric–arithmetic indices in terms of m , p , ∆, δ1 , and M−1
2 (G). The authors presented six theorems,

where the equality cases are missed out. Unfortunately, Theorems 1, 2, and 4 seem to be incorrect, leading to

the present short note.

In order to study and investigate the graph-theoretical properties of these topological indices, we use the

software GraphTea [1]. GraphTea is an interactive graph-editing framework to extract information from graphs.

There is a module in GraphTea designed specifically for topological indices.

2. Main errors and equality cases

The main results of the paper [4] deal with the bounds for the Randić and geometric–arithmetic indices, where

Theorems 1 and 4 give the inequality for the lower bounds and Theorem 2 gives the upper bound of the above-

mentioned indices. We point out the major errors and give our counterexamples, comments, and corrections.

2.1. Theorem 1 of [4]

In Theorem 1 of [4] the following lower bound has been allegedly proved for the Randić index:

R(G) ≥ p√
∆

+
2
√
(m− p)∆δ1
∆+ δ1

√
M−1

2 (G)− p

∆
. (2.1)

Firstly, we comment that the inequality (2.1) is wrong. Consider the molecular graph 2,2-dimethyl butane (see

Figure 1), for which the inequality (2.1) is not true. (Refer to the Table for the total number of counterexamples

up to 9 vertex connected graphs.)

Since 1 < δ1 ≤ d(vi) ≤ ∆ for i = 1, 2, · · · , n , we have that 1
∆ ≤ 1

d(vi)
≤ 1

δ1
.

M−1
2 (G) =

∑
vivj∈E(G):d(vi),d(vj) ̸=1

1

d(vi)d(vj)
+

∑
vivj∈E(G):d(vj)=1

1

d(vi)

≤
∑

vivj∈E(G):d(vi),d(vj) ̸=1

1

d(vi)d(vj)
+

p

δ1
.
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Table. Number of counter examples for Theorems 1, 2, and 4.

Parameters Counterexamples
n Count Theorem 1 Theorem 2 Theorem 4
3 2 0 0 1
4 6 0 1 5
5 21 2 6 20
6 112 9 36 111
7 853 57 272 851
8 11117 376 3108 11107
9 261080 3675 56407 260995

G1 G2

Figure 1. G1 : 2,2 dimethyl butane and G2 : 1,2,3 trimethyl cyclobutane.

Since M−1
2 (G) is wrongly determined in [4] as

M−1
2 (G) ≤

∑
vivj∈E(G):d(vi),d(vj )̸=1

1

d(vi)d(vj)
+

p

∆
,

this leads to the counterexample from above. The corrected version of the inequality (2.1) is given by

R(G) ≥ p√
∆

+
2
√

(m− p)∆δ1
∆+ δ1

√
M−1

2 (G)− p

δ1
. (2.2)

Secondly, still the inequality (2.2) holds only for the graphs satisfying M−1
2 (G)− p

δ1
≥ 0 and the equality holds

if and only if G is regular or a bidegreed graph with one vertex set of degree one. In analogy, corollary 1 of [4]

is to be changed as follows.

Corollary 2.1 Let T be a tree with n vertices, p pendent vertices, m edges, maximal degree ∆ , and minimal

nonpendent vertex degree δ1 and satisfying the condition M−1
2 (T )− p

δ1
≥ 0 . Then

R(T ) ≥ p√
∆

+
2
√
(n− 1− p)∆δ1

∆+ δ1

√
M−1

2 (T )− p

δ1
(2.3)

equality holds if and only if T is a bidegreed tree.

2.2. Theorem 2 of [4]

In Theorem 2 the following upper bound was allegedly proved for the Randić index:

R(G) ≤ p√
δ1

+

√
(m− p)

(
M−1

2 (G)− p

δ1

)
. (2.4)
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Firstly, we comment that the inequality (2.4) is incorrect. Consider the molecular graph 1,2,3-trimethyl

cyclobutane (see Figure 1), for which the inequality (2.4) fails.

Using similar arguments for the case of Theorem 1, we have

M−1
2 (G) ≥

∑
vivj∈E(G):d(vi),d(vj )̸=1

1

d(vi)d(vj)
+

p

∆
.

However, the wrong assumption in the proof of Theorem 2 leads to the incorrect inequality (2.4). For any

simple graph G , it is obvious that M−1
2 (G)− p

∆ ≥ 0. Therefore, the corrected inequality can be expressed as

R(G) ≤ p√
δ1

+

√
(m− p)

(
M−1

2 (G)− p

∆

)
. (2.5)

Secondly, the equality of (2.5) holds if and only if G is regular or a bidegreed graph with one vertex set of

degree one or Kr,n−r.

2.3. Theorem 3 of [4]

In Theorem 3, a new upper bound for the Randić index was provided without the equality case.

Theorem 2.2 [4] Let G be a simple connected graph of order n with m edges, and let p , ∆ , and δ1 denote the

number of pendant vertices, maximum vertex degree, and minimum nonpendant vertex degree of G , respectively.

Then

R(G) ≤ p√
δ1

+
(m− p)

δ1
(2.6)

G3 G4

Figure 2. G3 : 2,2 dimethyl pentane and G4 : 2,3 dimethyl pentane.

Remark 2.3 The equality of (2.6) holds if and only if G is regular or a bidegreed graph with one vertex set

of degree one. The bounds in (2.5) and (2.6) are incomparable. For the molecular graph 2,3 dimethyl pentane

(refer to Figure 2) (2.5) is better than (2.6) and for the molecular graph 2,2 dimethyl pentane (2.6) is better

than (2.5).

2.4. Theorem 4 of [4]

In Theorem 4, the lower bound for the geometric–arithmetic index was provided without the equality case.

GA(G) ≥ 2p
√
δ1

∆+ 1
+ 2

√
2

δ1∆

(∆2 + δ21)

√
(m− p)

∆
(M1

2 (G)− pδ1). (2.7)

First, we comment that the inequality (2.7) is incorrect and we give a corrected version of it.
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Theorem 2.4 Let G be a simple connected graph of order n with m edges and let p , ∆ , and δ1 denote the

number of pendant vertices, maximum vertex degree, and minimum nonpendant vertex degree of G , respectively.

Then

GA(G) ≥ 2p
√
δ1

∆+ 1
+

2δ1
(∆2 + δ21)

√
(m− p) (M1

2 (G)− p∆) (2.8)

equality holds if and only if G is regular or a bidegreed graph with one vertex set of degree one.

Proof For 2 ≤ δ1 ≤ d(vi) ≤ ∆, we get
δ1
∆

≤
2
√
d(vi)d(vj)

d(vi) + d(vj)
≤ ∆

δ1
.

Using the Pólya–Szegö inequality, we have

 ∑
vivj∈E(G):d(vi),d(vj )̸=1

2
√
d(vi)d(vj)

(d(vi) + d(vj))

2

≥ 4∆2δ21(m− p)

(∆2 + δ21)
2

 ∑
vivj∈E(G):d(vi),d(vj) ̸=1

4d(vi)d(vj)

(d(vi) + d(vj))
2


≥ 4∆2δ21(m− p)

(∆2 + δ21)
2

 ∑
vivj∈E(G):d(vi),d(vj) ̸=1

4d(vi)d(vj)

4∆2


=

4δ21(m− p)

(∆2 + δ21)
2

 ∑
vivj∈E(G):d(vi),d(vj )̸=1

d(vi)d(vj)


≥ 4δ21(m− p)

(∆2 + δ21)
2

(
M1

2 (G)− p∆
)

It is easy to see that

GA(G) =
∑

vivj∈E(G):d(vi),d(vj )̸=1

2
√
d(vi)d(vj)

(d(vi) + d(vj))
+

∑
vivj∈E(G):d(vj)=1

2
√

d(vi)

(d(vi) + 1)

≥
∑

vivj∈E(G):d(vi),d(vj )̸=1

2
√
d(vi)d(vj)

(d(vi) + d(vj))
+

2p
√
δ1

∆+ 1

completes the proof. 2

Corollary 2.5 Let T be a tree of order n and with the assumptions in Theorem 2.4 one has the inequality

GA(T ) ≥ 2p
√
δ1

∆+ 1
+

2δ1
(∆2 + δ21)

√
(n− 1− p) (M1

2 (T )− p∆) (2.9)

and the equality holds if and only if T is a bidegreed tree.
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2.5. Theorems 5 and 6 of [4]

Theorems 5 and 6 give the upper bounds for the geometric–arithmetic index and the equality cases are missing

for both the inequalities

GA(G) ≤ 2p
√
∆

1 + δ1
+

1

δ1

√
(m− p) (M1

2 (G)− p∆), (2.10)

GA(G) ≤ 2p
√
∆

1 + δ1
+

(m− p)∆

δ1
. (2.11)

Note that equality holds in the above inequalities if and only if G is regular or a bidegreed graph with one

vertex set of degree one.

2.6. Computational results

In the Table, we present the computational results for the connected graphs on n = 3 to n = 9 vertices using

GraphTea [1]. The first two columns contain n and the number of connected graphs of order n . The next

three columns contain the number of graphs, for which the inequalities of Theorems 1, 2, and 4 are incorrect,

respectively.
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