The generalized reciprocal super Catalan matrix

Emrah KILIC1, Talha ARIKAN2,*

1Department of Mathematics, TOBB Economics and Technology University, Ankara, Turkey
2Department of Mathematics, Hacettepe University, Ankara, Turkey

Received: 30.04.2015 \hspace{1em} Accepted/Published Online: 20.01.2016 \hspace{1em} Final Version: 21.10.2016

Abstract: The reciprocal super Catalan matrix studied by Prodinger is further generalized, introducing two additional parameters. Explicit formulae are derived for the LU-decomposition and their inverses, as well as the Cholesky decomposition. The approach is to use q-analysis and to leave the justification of the necessary identities to the q-version of Zeilberger’s celebrated algorithm.

Key words: Determinant, inverse matrix, LU factorization, Gaussian q-binomial coefficient, Zeilberger’s algorithm

1. Introduction

As mentioned in [8], there are many combinatorial matrices defined by a given sequence $\{a_n\}$. One of them is known as the Hankel matrix and is defined as follows:

\[
\begin{bmatrix}
a_0 & a_1 & a_2 & \cdots \\
a_1 & a_2 & a_3 & \cdots \\
a_2 & a_3 & a_4 & \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

for more details see [6]. Considering some special number sequences instead of $\{a_n\}$, there are many special matrices with nice algebraic properties. Moreover, some authors, such as [10], studied the Hankel matrix considering the reciprocal sequence of $\{a_n\}$

\[
\begin{bmatrix}
\frac{1}{a_0} & \frac{1}{a_1} & \frac{1}{a_2} & \cdots \\
\frac{1}{a_1} & \frac{1}{a_2} & \frac{1}{a_3} & \cdots \\
\frac{1}{a_2} & \frac{1}{a_3} & \frac{1}{a_4} & \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

For the sequence $\{a_{i,j}\}$, a matrix can be defined by taking (i,j)th entries $a_{i,j}$. Well-known types of these sequences typically include binomial coefficients. As examples, we give the family of Pascal matrices whose entries are defined via the usual binomial coefficients [2, 3]. The Pascal matrices are mainly two kinds: the first is the left adjusted Pascal matrix $P_n = (p_{ij})$ and the second is the right adjusted Pascal matrix $Q_n = (m_{ij})$.

*Correspondence: tarikan@hacettepe.edu.tr

2010 \textit{AMS Mathematics Subject Classification}: 15B36, 15A15, 15A23, 11B65.
where
\[
p_{ij} = \binom{i}{j} \quad \text{and} \quad m_{ij} = \binom{i}{n-1-j}, \quad 0 \leq i, j < n.
\]

The Gaussian q-binomial coefficients are defined by
\[
\binom{n}{k}_q = \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}},
\]
where $(x; q)_n$ is the q-Pochhammer symbol defined by
\[
(x; q)_n = (1 - x) (1 - xq) \ldots (1 - xq^{n-1}).
\]

Note that
\[
\lim_{q \to 1} \binom{n}{k}_q = \binom{n}{k},
\]
where $\binom{n}{k}$ is the usual binomial coefficient.

We recall that one version of the **Cauchy binomial theorem** is given by
\[
\sum_{k=0}^{n} q^{k+1} \binom{n}{k}_q x^k = \prod_{k=1}^{n} (1 + xq^k),
\]
and **Rothe’s formula** [1] is
\[
\sum_{k=0}^{n} (-1)^k q^{\binom{k}{2}} \binom{n}{k}_q x^k = (x; q)_n = \prod_{k=0}^{n-1} (1 - xq^k).
\]

Recently, Prodinger [8] defined a matrix whose entries consist of super Catalan numbers. He also defined its reciprocal analogue as well as its q-versions whose (i, j)th entries are defined for $0 \leq i, j < n$
\[
\binom{2i}{i}^{-1} \binom{2j}{j}^{-1} \binom{i+j}{i},
\]
\[
\binom{2i}{i} \binom{2j}{j} \binom{i+j}{i}^{-1},
\]
\[
\binom{2i}{i} q^{\binom{2j}{j}} \binom{i+j}{i}_q,
\]
and
\[
\binom{2i}{i}_q \binom{2j}{j}_q \binom{i+j}{i}_q^{-1},
\]
respectively. Then he gave some algebraic properties of these matrices.

Recently, Kılıç et al. [4] defined and studied a variant of the reciprocal super Catalan matrix with two additional parameters whose entries are defined as
\[
\binom{2i+r}{i}^{-1} \binom{2j+s}{j}^{-1} \binom{i+j}{i}^{-1}.
\]
Explicit formulae for its LU-decomposition, LU decomposition of its inverse, and the Cholesky decomposition are obtained. For all results, \(q \)-analogues are also presented.

In this paper, for nonnegative integers \(r \) and \(s \), we define two \(n \times n \) matrices \(M = [M_{kj}] \) and \(T = [T_{kj}] \) with entries

\[
M_{kj} = \binom{k+j}{k} \binom{2k+r}{k}^{-1} \binom{2j+s}{j}^{-1}
\]

and

\[
T_{kj} = \binom{2k+r}{k} \binom{2j+s}{j} \binom{k+j}{k}^{-1}
\]

for \(0 \leq k, j < n \), respectively.

First, we give the matrices \(\mathcal{M} \) and \(\mathcal{T} \) which are the \(q \)-analogues of the matrices \(M \) and \(T \), respectively. For both matrices, we derive explicit expressions for the LU-decomposition, which leads to a formula for the determinant via \(\prod_{0 \leq i < n} U_{i,i} \). Further, we have expressions for \(L_1 \) and \(U_1 \), for LU-decomposition of the inverse matrix and their inverses, and for the Cholesky decomposition when the matrix is symmetric, that is, the case \(r = s \). Afterwards, when \(q \to 1 \), we get the results for the matrices \(M \) and \(T \). Our results generalize the results of [8] for the case \(r = s = 0 \).

Firstly, we list the result related to the matrix \(\mathcal{M} \) in the next section and secondly prove them in Section 3. Then we list results related to the matrix \(\mathcal{T} \) and then give related proofs in the next section. Finally, we give the results related to the matrices \(M \) and \(T \) as special cases of the results related to the matrices \(\mathcal{M} \) and \(\mathcal{T} \). To prove the claimed results, our main tool is to guess relevant quantities and then we will use the \(q \)-version of Zeilberger’s celebrated algorithm (for more details see [7, 9]) and Rothe’s formula to justify relevant equalities. All identities we will obtain hold for general \(q \) and generalized Fibonomial analogue of our results could be obtained by using the application of \(q \)-identities for Fibonacci numbers. We refer to [5] to give an idea.

2. The matrix \(\mathcal{M} \)

We denote matrices \(L \) and \(U \) by \(A \) and \(B \) in LU-decomposition of any inverse matrix, respectively, that is, \(\mathcal{M}^{-1} = AB \). For the Cholesky decomposition of a matrix \(G \), we will use the letter \(C \) such that \(G = CC^T \).

The matrix \(\mathcal{M} \) is defined with entries for \(0 \leq k, j < n \),

\[
\mathcal{M}_{kj} = \binom{k+j}{k} \left[\frac{2k+r}{k} \right]^{-1} \left[\frac{2j+s}{j} \right]^{-1}_q.
\]

Firstly, we list here the formulae related to matrix \(\mathcal{M} \) that were found for \(0 \leq k, j < n \):

\[
L_{kj} = \left[\frac{2k+r}{k} \right]^{-1}_q \left[\frac{2j+s}{j} \right]^{-1}_q \binom{k}{j}_q,
\]

\[
L_{kj}^{-1} = (-1)^{k+j} q^{k+j} \left[\frac{2k+r}{k} \right]^{-1}_q \left[\frac{2j+s}{j} \right]^{-1}_q \binom{k}{j}_q,
\]

\[
U_{kj} = q^{k+j} \left[\frac{2k+r}{k} \right]^{-1}_q \left[\frac{2j+s}{j} \right]^{-1}_q \binom{j}{k}_q.
\]
\[U_{kj}^{-1} = (-1)^{k+j} q^{k(k+1)/2-j(j+1)/2-kj} \left[\begin{array}{c} 2k+s \\ k' \end{array} \right]_q \left[\begin{array}{c} 2j+r \\ j' \end{array} \right]_q \left[\begin{array}{c} j \\ k \end{array} \right]_q , \]

\[A_{kj} = (-1)^{k+j} q^{k(k+3)/2-j(j+3)/2-n(k-j)} \frac{1 - q^{2j+1}}{1 - q^{k+j+1}} \left[\begin{array}{c} n-j-1 \\ k-j \end{array} \right]_q \left[\begin{array}{c} 2k+s \\ k \end{array} \right]_q \]

\[A_{kj}^{-1} = q^{(k-j)(k-n+1)} \left[\begin{array}{c} k+j \\ k' \end{array} \right]_q \left[\begin{array}{c} n-j-1 \\ k-j \end{array} \right]_q \left[\begin{array}{c} 2j+s \\ j' \end{array} \right]_q \left[\begin{array}{c} 2k+s \\ s \end{array} \right]_q \left[\begin{array}{c} k+s \\ s \end{array} \right]_q , \]

\[B_{kj} = (-1)^{k+j} q^{(j+1)(j+2)/2-n(k+j+1)+3k(k+1)/2} \left[\begin{array}{c} 2j+r \\ j' \end{array} \right]_q \left[\begin{array}{c} n+k \\ j+k+1 \end{array} \right]_q \left[\begin{array}{c} j \\ k \end{array} \right]_q \]

\[B_{kj}^{-1} = q^{(k+j+1)(n-j-1)} \frac{1 - q^{2j+1}}{1 - q^{n-k}} \left[\begin{array}{c} 2k+r \\ k' \end{array} \right]_q \left[\begin{array}{c} n+j \\ j+k \end{array} \right]_q \left[\begin{array}{c} j \\ k \end{array} \right]_q \]

\[\times \left[\begin{array}{c} 2j+s \\ s \end{array} \right]_q \left[\begin{array}{c} k+s \\ s \end{array} \right]_q , \]

for \(r = s \),

\[C_{kj} = q^{j^2/2} \left[\begin{array}{c} 2k+r \\ k' \end{array} \right]_q \left[\begin{array}{c} j \\ k \end{array} \right]_q \]

and

\[\det \mathcal{M} = q^{n(n-1)(2n-1)/6} \prod_{k=0}^{n-1} \left[\begin{array}{c} 2k+r \\ k' \end{array} \right]_q \left[\begin{array}{c} 2k+s \\ k \end{array} \right]_q^{-1} . \]

3. Proofs related to the matrix \(\mathcal{M} \)

For \(L \) and \(L^{-1} \),

\[\sum_{j \leq d \leq k} L_{kd} L_{dj}^{-1} = \sum_{j \leq d \leq k} (-1)^{d+j} q^{(d-j)/2} \left[\begin{array}{c} 2k+r \\ k' \end{array} \right]_q \left[\begin{array}{c} 2d+r \\ d \end{array} \right]_q \left[\begin{array}{c} k \\ d' \end{array} \right]_q \]

\[\times \left[\begin{array}{c} 2d+r \\ d \end{array} \right]_q \left[\begin{array}{c} j \\ d \end{array} \right]_q \left[\begin{array}{c} 2j+r \\ j \end{array} \right]_q \]

\[= \left[\begin{array}{c} 2k+r \\ k \end{array} \right]_q \left[\begin{array}{c} 2j+r \\ j \end{array} \right]_q \sum_{0 \leq d \leq k-j} \left[\begin{array}{c} k-j \\ d \end{array} \right]_q (-1)^d q^{(d)/2} . \]
By Rothe’s formula, if \(k \neq j \) then we have \((1;q)_{k-j} = 0\), and, if \(k = j \), then the last sum on the RHS of the above equation is equal to 1. Thus we conclude

\[
\sum_{j\leq d\leq k} L_{kd} L_{d-j}^{-1} = \delta_{k,j},
\]

where \(\delta_{k,j} \) is Kronecker delta, as claimed.

For \(U \) and \(U^{-1} \),

\[
\sum_{k\leq d\leq j} U_{kd} U_{d-j}^{-1} = q^{k^2 - \binom{j+1}{2}} \begin{bmatrix} 2k + r \choose k \end{bmatrix}_q^{-1} \begin{bmatrix} 2j + r \choose j \end{bmatrix}_q \begin{bmatrix} j \choose k \end{bmatrix}_q \times q^{2(j+k)/2} (-1)^{k+j} \sum_{0\leq d\leq j-k} \begin{bmatrix} j - k \choose d \end{bmatrix}_q (-1)^d q^{\binom{d+1}{2} + d(k-j)}.
\]

By the Cauchy binomial theorem, if \(k \neq j \), then the last sum on the RHS of the above equation equals \(\prod_{d=1}^{j-k} (1 - q^{(k-j)+d}) = 0 \). Thus we have

\[
\sum_{k\leq d\leq j} U_{kd} U_{d-j}^{-1} = \delta_{k,j},
\]

as desired.

For \(LU \)-decomposition, we have to prove that

\[
\sum_{0\leq d\leq \min\{k,j\}} L_{kd} U_{d-j} = M_{kj}.
\]

Consider

\[
\sum_{0\leq d\leq \min\{k,j\}} L_{kd} U_{d-j} = \begin{bmatrix} 2k + r \choose k \end{bmatrix}_q^{-1} \begin{bmatrix} 2j + r \choose j \end{bmatrix}_q (q; q)_k (q; q)_j \times \sum_{0\leq d\leq k} q^{d^2} \frac{1}{(q; q)_d^2 (q; q)_{k-d} (q; q)_{j-d}}.
\]

Denote the last sum in the equation just above by \(\text{SUM}_k \). The Mathematica version of the \(q \)-Zeilberger algorithm [7] produces the recursion

\[
\text{SUM}_k = \frac{1 - q^{j+k}}{(1 - q^k)^2} \text{SUM}_{k-1}.
\]

Since \(\text{SUM}_0 = (q; q)_k^{-1} (q; q)_{j}^{-1} \), we obtain

\[
\text{SUM}_k = (q; q)_k^{-1} (q; q)_{j}^{-1} \begin{bmatrix} k + j \choose k \end{bmatrix}_q.
\]

Therefore, we get

\[
\sum_{0\leq d\leq \min\{k,j\}} L_{kd} U_{d-j} = M_{kj},
\]
which completes the proof.

For A and A^{-1}, consider

$$
\sum_{j \leq d \leq k} A_{kd} A_{dj}^{-1} = (-1)^k q^{k(k+3)/2-j+n(j-k)} \frac{(q;q)_{n-j-1}}{(q;q)_{n-k-1}}
\times \left[\begin{array}{c}
2k + s \\
k
\end{array} \right]_q \left[\begin{array}{c}
2j + s \\
j
\end{array} \right]_q^{-1} \left[\begin{array}{c}
k \\
j
\end{array} \right]_q
\times \sum_{j \leq d \leq k} \left[\begin{array}{c}
k - j \\
d - j
\end{array} \right]_q \left(\frac{1 - q^{2d+1}}{q; q}_{d-j} \right) \frac{1}{1 - q^{k+1}}.
$$

By the q-Zeilberger algorithm for the second sum in the last equation, we obtain that it is equal to 0 provided that $k \neq j$. If $k = j$, it is obvious that $A_{kk} A_{kk}^{-1} = 1$. Thus

$$
\sum_{j \leq d \leq k} A_{kd} A_{dj}^{-1} = \delta_{k,j},
$$

as claimed.

Similarly, we have

$$
\sum_{k \leq d \leq j} B_{kd} B_{dj}^{-1} = \delta_{k,j}.
$$

For the Cholesky decomposition, we examine the equation

$$
\sum_{0 \leq d \leq \min\{k, j\}} C_{kd} C_{jd} = M_{kj}.
$$

Here

$$
\sum_{0 \leq d \leq \min\{k, j\}} C_{kd} C_{jd} = \left[\begin{array}{c}
2k + r \\
k
\end{array} \right]_q^{-1} \left[\begin{array}{c}
2j + s \\
j
\end{array} \right]_q^{-1} \sum_{0 \leq d \leq \min\{k, j\}} q^{a} \left[\begin{array}{c}
k \\
j
\end{array} \right]_q \left[\begin{array}{c}
d \\
j
\end{array} \right]_q.
$$

Note that the sum on the RHS of the equation just above is the same as the sum in the LU-decomposition, which was proven before.

For the LU-decomposition of M^{-1}, we should show that $M^{-1} = AB$, which is same as $M = B^{-1} A^{-1}$. Hence, it is sufficient to show that

$$
\sum_{\max\{k, j\} \leq d \leq n-1} B_{kd}^{-1} A_{dj}^{-1} = M_{kj}.
$$

After some arrangements, we have

$$
\sum_{\max\{k, j\} \leq d \leq n-1} B_{kd}^{-1} A_{dj}^{-1} = \left[\begin{array}{c}
2k + r \\
k
\end{array} \right]_q^{-1} \left[\begin{array}{c}
2j + s \\
j
\end{array} \right]_q^{-1} \sum_{j \leq d \leq n-1} q^{(j+k+1)(n-1-d)}
\times \frac{1 - q^{2d+1}}{1 - q^{n-k}} \left[\begin{array}{c}
k + d \\
k + d
\end{array} \right]_q \left[\begin{array}{c}
j \\
d
\end{array} \right]_q \left[\begin{array}{c}
q^{d-1} \\
d
\end{array} \right]_q.
$$
which, by replacing \((n - 1)\) with \(n\) and apart from the constants factors, equals

\[
\sum_{j \leq d \leq n} q^{(d-k+1)(n-d)} \frac{1-q^{2d+1}}{1-q^{n+1-k}} \left[\begin{array}{c} d \\ j \end{array} \right]_q \left[\begin{array}{c} n+1+d \\ k+d \end{array} \right]^{-1}_q \left[\begin{array}{c} d+j \\ d \end{array} \right]_q \left[\begin{array}{c} n-j \\ d-j \end{array} \right]_q.
\]

Denote this sum by \(\text{SUM}_n\). The \(q\)-Zeilberger algorithm gives the following recursion provided that \(k \neq n\) and \(j \neq n\)

\[
\text{SUM}_n = \text{SUM}_{n-1}.
\]

Therefore, \(\text{SUM}_n = \text{SUM}_j = \left[\begin{array}{c} k+j \\ k \end{array} \right]_q\) which completes the proof except for the case \((k, j) = (n - 1, n - 1)\), which could be easily checked. Thus the proof is complete.

4. The matrix \(T\)

The matrix \(T\) is defined with entries for \(0 \leq k, j < n\),

\[
T_{kj} = \left[\begin{array}{c} 2k+r \\ k \end{array} \right]_q \left[\begin{array}{c} 2j+s \\ j \end{array} \right]_q \left[\begin{array}{c} k+j \\ k \end{array} \right]^{-1}_q.
\]

For \(0 \leq k, j < n\), we have

\[
L_{kj} = \frac{2k+r}{k+j} \left[\begin{array}{c} k \\ j \end{array} \right]_q \left[\begin{array}{c} 2j+r \\ r \end{array} \right]^{-1}_q \left[\begin{array}{c} j+r \\ r \end{array} \right]_q,
\]

\[
L_{kj}^{-1} = (-1)^{k+j} q^{(k-j)/2} \frac{1-q^{2k}}{1-q^{k+j}} \left[\begin{array}{c} k+j \\ k-j \end{array} \right]_q \left[\begin{array}{c} 2k+r \\ r \end{array} \right]_q \left[\begin{array}{c} k+r \\ r \end{array} \right]^{-1}_q \left[\begin{array}{c} j+r \\ r \end{array} \right]^{-1}_q.
\]

\[
\times \left[\begin{array}{c} j+r \\ r \end{array} \right]_q \text{ for } j \geq 1,
\]

\[
L_{k0}^{-1} = (-1)^k (1+q^k) q^{(k+1)/2} \left[\begin{array}{c} 2k+r \\ r \end{array} \right]_q \left[\begin{array}{c} k+r \\ r \end{array} \right]^{-1}_q \text{ and } L_{00}^{-1} = 1,
\]

\[
U_{kj} = (-1)^k q^{k(3k-1)/2} (1+q^k) \left[\begin{array}{c} 2j+s \\ k+j \end{array} \right]_q \left[\begin{array}{c} 2k+r \\ r \end{array} \right]_q \left[\begin{array}{c} j+k+s \\ s \end{array} \right]_q
\]

\[
\times \left[\begin{array}{c} k+r \\ r \end{array} \right]^{-1}_q \left[\begin{array}{c} j+s \\ s \end{array} \right]^{-1}_q \text{ for } k \geq 1, \quad U_{0j} = \left[\begin{array}{c} 2j+s \\ j \end{array} \right]_q,
\]

\[
U_{kj}^{-1} = (-1)^k q^{k(k+1)/2-j(k+j)} \frac{1-q^j}{1-q^{k+j}} \left[\begin{array}{c} k+j \\ j-k \end{array} \right]_q \left[\begin{array}{c} 2j+r \\ r \end{array} \right]^{-1}_q \left[\begin{array}{c} j+r \\ r \end{array} \right]_q
\]

\[
\times \left[\begin{array}{c} 2k+s \\ s \end{array} \right]^{-1}_q \left[\begin{array}{c} k+s \\ s \end{array} \right]_q.
\]
\[A_{kj} = (-1)^{k+j} q^{(k+1)(k+2)/2-(j+1)(j+2)/2+n(j-k)} \binom{k}{j} q^{n+k-1} \binom{n+k-1}{2k} q \times \binom{n+j-1}{2j} q^{k+s} \binom{2k+s}{2j} q^{j+s} \binom{2j+s}{s} q, \]

\[A_{kj}^{-1} = q^{(k-j)(k-n+1)} \binom{k}{j} q^{n+k-1} \binom{n+j-1}{2j} q^{k+s} \binom{2k+s}{2j} q^{j+s} \binom{2j+s}{s} q, \]

\[B_{kj} = q^{(j+1)(j+2)/2-(n-1)/2-jn+k^2-1} \binom{n+j-1}{2j} q^{k} \binom{2k+s}{k} q \]

\[B_{kj}^{-1} = (-1)^{n+j+1} q^{k-kj-j(j+1)/2+kn+n(n-1)/2} \binom{j}{k} q^{n+k-1} \binom{2j+s}{s} q, \]

for \(r = s \) and \(j \geq 1, \)

\[C_{kj} = i^{(1+q)j/2} q^{j(3j-1)/4} \binom{2k+r}{k+j} q^{k+r} \binom{k+r}{r} q^{k-j+r} q, \]

where \(i = \sqrt{-1} \) and for \(j = 0, \)

\[C_{k0} = \binom{2k+r}{k} q \]

and

\[\det \mathcal{T} = (-1)^{\binom{d}{2}} \prod_{k=1}^{n-1} q^{k(3k-1)/2} \binom{2k+s}{2k} q^{2k+r} \binom{k+r}{r} q^{k+s} q^{-1}. \]

5. Proofs related to the matrix \(\mathcal{T} \)

For \(L \) and \(L^{-1} \), it should be shown

\[\sum_{j \leq d \leq k} L_{kd} L_{d,j}^{-1} = \delta_{k,j}. \]

By the definitions of the matrices \(L \) and \(L^{-1} \), for the case \(j = 0 \), we have

\[\sum_{0 \leq d \leq k} L_{k,d} L_{d,0}^{-1} = L_{k0} L_{0,0}^{-1} + \sum_{1 \leq d \leq k} L_{k,d} L_{d,0}^{-1}. \]
If $k = 0$, we get 1 as $(0, 0)$th entry of matrix LL^{-1}. If $k > 0$, after some rearrangements we have

$$
\sum_{1 \leq d \leq k} L_{kd} L_{d0}^{-1} = \sum_{0 \leq d \leq k-1} L_{k,d+1} L_{d+1,0}^{-1} = \sum_{0 \leq d \leq n} L_{n+1,d+1} L_{d+1,0}^{-1}
$$

$$
= \sum_{0 \leq d \leq n} (-1)^{d+1} (1 + q^{d+1}) q^{(d^2+d)/2} \left[\begin{array}{c}
2n + 2 + r \\
n + d + 2
\end{array} \right]_q
$$

$$
\times \left[\begin{array}{c}
\frac{n+1}{d+1} q - 1 \\
\frac{n+1}{d+1}
\end{array} \right]_q^{-1}
$$

which, by using the q-Zeilberger algorithm, equals $-\left[\begin{array}{c}
2n + 2 + r \\
n + 1
\end{array} \right]_q$. By changing $n + 1$ with k again, we get $-\left[\begin{array}{c}
2k + r \\
k
\end{array} \right]_q$. Finally if $k > 0$,

$$
\sum_{0 \leq d \leq k} L_{kd} L_{d0}^{-1} = \left[\begin{array}{c}
2k + r \\
k
\end{array} \right]_q + \sum_{1 \leq d \leq k} L_{kd} L_{d0}^{-1}
$$

$$
= \left[\begin{array}{c}
2k + r \\
k
\end{array} \right]_q - \left[\begin{array}{c}
2k + r \\
k
\end{array} \right]_q = 0,
$$

as desired. For the case $j > 0$, we have

$$
\sum_{j \leq d \leq k} L_{kd} L_{dj}^{-1} = \sum_{j \leq d \leq k} (-1)^{d+j} q^{(d-j)} \left[\begin{array}{c}
1 - q^{2d} \\
1 - q^{d+j}
\end{array} \right]_q \left[\begin{array}{c}
2k + r \\
k + d
\end{array} \right]_q^{-1} \left[\begin{array}{c}
k \\
d
\end{array} \right]_q
$$

$$
\times \left[\begin{array}{c}
k + r \\
d + j
\end{array} \right]_q^{-1} \left[\begin{array}{c}
j + r \\
r
\end{array} \right]_q.
$$

By the q-Zeilberger algorithm, we obtain that it is equal to 0 provided that $k \neq j$. The case $k = j$ could be easily checked. Thus

$$
\sum_{j \leq d \leq k} L_{kd} L_{dj}^{-1} = \delta_{k,j},
$$

which completes the proof.

Verification of the inverse of U could be similarly done. Inverses of the matrices A and B could be shown as in Section 3.

For LU-decomposition, we have to prove that

$$
\sum_{0 \leq d \leq \min\{k, j\}} L_{kd} U_{dj} = T_{kj}.
$$
Without loss of generality, we may consider \(k \leq j \). Hence, consider the sum

\[
\sum_{-k \leq d \leq k} (-1)^d \left(1 + q^d\right) q^{(3d-1)d/2} \binom{2k}{k+d} q^{d-j} \binom{2j}{j+d}\frac{1}{q}.
\]

The \(q \)-Zeilberger algorithm gives the recurrence relation

\[
\sum_k = \frac{(1 + q^k) \left(1 - q^{2k-1}\right)}{(1 - q^{2k+1})} \sum_{k-1}.
\]

Since \(\sum_0 = 2 \binom{2k}{k} q^k \), we obtain

\[
\sum_k = 2 \binom{2k}{k} q^k \binom{2j}{j} q^{-j} \binom{k+j}{k}^{-1}.
\]

Since the summand of the \(\sum_k \) is symmetric with respect to \(k \) and \(-k \), we have

\[
\sum_{1 \leq d \leq k} (-1)^d \left(1 + q^d\right) q^{(3d-1)d/2} \binom{2k}{k+d} q^{d-j} \binom{2j}{j+d} = \frac{1}{2} \sum_k - \binom{2k}{k} q^j \frac{2j}{j} q.
\]

Finally consider

\[
\sum_{0 \leq d \leq k} L_{kd} U_{dj} = \binom{2k+r}{k} q^{j+s} \binom{2k+r}{j} q^{j+s} + \binom{2k+r}{k} q^{j+s} \binom{2k+r}{j} q^{j+s}
\]

\[
\times \left[\binom{2k-r}{k} q^{j-s} \left(\frac{1}{2} \sum_k - \binom{2k}{k} q^j \frac{2j}{j} q \right) \right]^{-1} = \binom{2k+r}{k} q^{j+s} \binom{2k+r}{j} q^{j+s} = T_{kj},
\]

as desired.

For \(LU \)-decomposition of the inverse of the matrix \(T \), the argument in Section 3 could be similarly used. We omit it here.
6. The matrix M

Recall that the $n \times n$ matrix $M = [M_{kj}]$ is defined for $0 \leq k, j < n$ and nonnegative integers r and $s,$

$$M_{kj} = \binom{k+j}{k}^{-1} \binom{2k+r}{k}^{-1} \binom{2j+s}{j}^{-1}.$$

In Section 2, by taking $q \rightarrow 1,$ we get the following results for $0 \leq k, j < n$:

$$L_{kj} = \binom{2k+r}{k}^{-1} \binom{2j+r}{j}^{-1} \binom{k}{k},$$

$$L_{kj}^{-1} = (-1)^{k+j} \binom{2k+r}{k}^{-1} \binom{2j+r}{j}^{-1} \binom{k}{k},$$

$$U_{kj} = \binom{2k+r}{k}^{-1} \binom{2j+s}{j}^{-1} \binom{j}{k},$$

$$U_{kj}^{-1} = (-1)^{k+j} \binom{2k+s}{k} \binom{2j+r}{j} \binom{j}{k},$$

$$A_{kj} = (-1)^{k+j} \binom{2j+s}{j}^{-1} \binom{k+j}{k}^{-1} \binom{n-j-1}{k-j} \binom{2k+s}{k} \binom{k+j}{k}^{-1} \times \binom{2j+s}{s}^{-1} \binom{j+s}{s},$$

$$A_{kj}^{-1} = \binom{k+j}{k} \binom{n-j-1}{k-j} \binom{2j+s}{j}^{-1} \binom{2k+s}{s} \binom{k+j}{k}^{-1} \binom{2k+s}{s} \binom{k+j}{k}^{-1},$$

$$B_{kj} = (-1)^{k+j} \binom{2j+r}{j} \binom{n+k}{k+j+1} \binom{j}{k} \binom{2k+s}{s} \binom{k+s}{s}^{-1},$$

$$B_{kj}^{-1} = \frac{2j+1}{n-k} \binom{2k+r}{k}^{-1} \binom{n+j}{k+j} \binom{j}{k}^{-1} \binom{2j+s}{s} \binom{j+s}{s}^{-1},$$

for $r = s,$

$$C_{kj} = \binom{2k+r}{k}^{-1} \binom{k}{j}$$

and

$$\det M = \prod_{k=0}^{n-1} \binom{2k+r}{k}^{-1} \binom{2k+s}{k}^{-1}.$$
7. The matrix T
Recall that the $n \times n$ matrix $T = [T_{kj}]$ is defined for $0 \leq k, j < n$, and nonnegative integers r and s,

$$T_{kj} = \binom{2k+r}{k} \binom{2j+s}{j} \binom{k+j}{r}^{-1}.$$

In the Section 4, by taking $q \to 1$, we obtain the following results. For $0 \leq k, j < n$,

$$L_{kj} = \binom{2k+r}{k+j} \binom{k+r}{j} \binom{k+j}{r}^{-1} \binom{2j+r}{j} \binom{j+r}{r},$$

for $j \geq 1$,

$$L_{kj}^{-1} = (-1)^{k+j} \frac{2k}{k+j} \binom{k+j}{k-j} \binom{2k+r}{k-r} \binom{k+r}{r}^{-1} \binom{2j+r}{j} \binom{j+r}{r},$$

$L_{k0}^{-1} = 2(-1)^k \binom{2k+r}{k+r} \binom{k+r}{r}^{-1}$ and $L_{00}^{-1} = 1$,

for $k \geq 1$,

$$U_{kj} = (-1)^k 2 \binom{2j+s}{k+j} \binom{2k+r}{k-r} \binom{j-k+s}{s} \binom{k+r}{r}^{-1} \binom{j+s}{s}^{-1}$$

and $U_{0j} = \binom{2j+s}{j}$,

$$U_{kj}^{-1} = (-1)^k \frac{j}{k+j} \binom{k+j}{j-k} \binom{2j+r}{j-r} \binom{k+r}{r}^{-1} \binom{2k+s}{s} \binom{k+s}{s},$$

$$A_{kj} = (-1)^{k+j} \binom{k}{j} \binom{n+k-1}{2k} \binom{n+j-1}{2j} \binom{2k+s}{s}^{-1} \binom{k+s}{s} \binom{j+s}{s}^{-1}$$

$$\times \binom{2j+s}{s} \binom{j+s}{s}^{-1},$$

$$A_{kj}^{-1} = \binom{k}{j} \binom{n+k-1}{2k} \binom{n+j-1}{2j} \binom{2k+s}{s}^{-1} \binom{k+s}{s} \binom{j+s}{s}^{-1}$$

$$\times \binom{2j+s}{s} \binom{j+s}{s}^{-1},$$

$$B_{kj} = \binom{n+j-1}{2j} \binom{j}{k} \binom{2k+s}{s} \binom{k+r}{r} \binom{2j+r}{j}^{-1},$$

$$B_{kj}^{-1} = (-1)^{n+j+1} \binom{j}{k} \binom{n+k-1}{2k} \binom{2j+s}{s} \binom{2k+r}{r} \binom{k+r}{r}^{-1},$$

for $r = s$ and $j \geq 1$,

$$C_{kj} = (-2)^{j/2} \binom{2k+r}{k+j} \binom{k+r}{r}^{-1} \binom{k-j+r}{r},$$

971
for \(j = 0 \),

\[
C_{k0} = \binom{2k + r}{k}.
\]

Thus

\[
\det T = (-1)^{\binom{n}{2}} \prod_{k=1}^{n-1} \binom{2k + s}{2k} \binom{2k + r}{r} \binom{k + r}{s}^{-1}.
\]

References

