Abundance of \(E\)-order-preserving transformation semigroups

Lei SUN*, Xuefeng HAN
School of Mathematics and Information Science, Henan Polytechnic University, Henan, Jiaozuo, P.R. China

Received: 15.12.2014 • Accepted/Published Online: 24.06.2015 • Final Version: 01.01.2016

Abstract: Let \(T_X\) be the full transformation semigroup on a finite totally ordered set \(X = \{1 < 2 < \ldots < n\} (n \geq 3)\) and \(E\) be a nontrivial equivalence relation on \(X\). In this paper, we consider a subsemigroup of \(T_X\) defined by

\[
EOP_X = \{ f \in T_X : \forall x, y \in X, (x, y) \in E, x \leq y \Rightarrow (f(x), f(y)) \in E, f(x) \leq f(y) \}
\]

and present a necessary and sufficient condition under which the semigroup \(EOP_X\) is abundant.

Key words: Transformation semigroup, \(L^*\)-relation, \(R^*\)-relation, idempotent, abundance

1. Introduction

Let \(S\) be a semigroup. We say that \(a, b \in S\) are \(L^*\)-related in \(S\) if they are \(L\)-related in a semigroup \(T\) such that \(S\) is a subsemigroup of \(T\) and write \((a, b) \in L^*\). The relation \(R^*\) is defined in the dual way. The equivalence relations \(L^*\) and \(R^*\) have been intensely studied in semigroup theory and have been used to define some important classes of semigroups. For instance, Fountain [3] pointed out that a semigroup \(S\) has the property that for every \(a \in S\) the right ideal \(aS^1\) is projective (as an \(S\)-act) if and only if every \(L^*\)-class of \(S\) contains an idempotent. We call such semigroups right abundant. Left abundant semigroups are defined dually. A semigroup is abundant if it is both left and right abundant; see Fountain [4]. The property of being abundant can be considered as a wide generalization of regularity. (Recall that in a regular semigroup \(L^* = L\) and \(R^* = R\).

Many papers have been written describing the abundances of various transformation semigroups on the nonempty set \(X\) (see [1, 8–12]). For example, Umar [11] observed that the semigroup \(S_n^*\) of nonbijective, order-decreasing transformations on a finite totally ordered set \(X = \{1 < 2 < \ldots < n\}\) is abundant but not regular. Let \(T_X\) be the full transformation semigroup on a set \(X\) and \(E\) be an arbitrary equivalence relation on \(X\). Araujo and Konieczny [1] proved that the semigroup

\[
T_E(X, R) = \{ f \in T_X : f(R) \subseteq R \text{ and } \forall x, y \in X, (x, y) \in E \Rightarrow (f(x), f(y)) \in E \},
\]

where \(R\) is a cross-section of the partition \(X/E\) of \(X\) induced by \(E\), is abundant if and only if it is regular. Pei and Zhou [8] gave a condition under which the semigroup

\[
T_E(X) = \{ f \in T_X : \forall x, y \in X, (x, y) \in E \Rightarrow (f(x), f(y)) \in E \}
\]

*Correspondence: sunlei97@163.com

2010 AMS Mathematics Subject Classification: 20M20.
is abundant. Sun [9] proved that the semigroup
\[T(X,Y) = \{ f \in T_X : f(X) \subseteq Y \} \ (Y \subseteq X) \]
is left abundant but not right abundant if \(|Y| \geq 2\) and \(Y \neq X\). Sun and Wang [10] showed that the semigroup
\[T_3(X) = \{ f \in T_X : \forall x, y \in X, (f(x), f(y)) \in E \Rightarrow (x, y) \in E \} \]
is also left abundant but not right abundant if the partition \(X/E\) of \(X\) is infinite.

Given an arbitrary equivalence relation \(E\) on a finite totally ordered set \(X = \{1 < 2 < \ldots < n\}\), the authors [6] introduced a new family of the subsemigroup of \(T_X\) defined by
\[EOP_X = \{ f \in T_X : \forall x, y \in X, (x, y) \in E, x \leq y \Rightarrow (f(x), f(y)) \in E, f(x) \leq f(y) \}, \]
which is called an \(E\)-order-preserving transformation semigroup, and investigated the properties for \(EOP_X\), such as Green’s relations and the natural partial order on the semigroup \(EOP_X\) in [6] and [7], respectively. In particular, the regularity of the semigroup \(EOP_X\) was described as follows.

Lemma 1.1 ([6]) The \(E\)-order-preserving transformation semigroup \(EOP_X\) is regular if and only if either \(E = X \times X\) or \(E = \{(x, x) : x \in X\}\).

In this paper our aim is to investigate the abundance of the semigroup \(EOP_X\). Note that if \(E = X \times X\) or \(E = \{(x, x) : x \in X\}\) then \(EOP_X\) is abundant. Thus, for the remainder of the paper, we assume that \(E\) is nontrivial on the finite totally ordered set \(X = \{1 < 2 < \ldots < n\}\) \((n \geq 3)\); that is, both \(E \neq X \times X\) and \(E \neq \{(x, x) : x \in X\}\). Under the assumption, we first characterize the relations \(L^*\) and \(R^*\) on the semigroup \(EOP_X\) and then present a necessary and sufficient condition under which the semigroup \(EOP_X\) is abundant. Throughout this paper, we apply transformations on the left so that for \(f, g \in EOP_X\), their product \(fg\) is the transformation obtained by performing first \(g\) and then \(f\).

2. The main result
The following lemma gives a characterization of \(L^*\) and \(R^*\) that can be found, for instance, in [5, Sect. X.1].

Lemma 2.1 Let \(S\) be a semigroup. Then
\[L^* = \{(a, b) \in S \times S : (\forall s, t \in S^1) as = at \iff bs = bt\} \]
and
\[R^* = \{(a, b) \in S \times S : (\forall s, t \in S^1) sa = ta \iff sb = tb\}. \]

We begin with the \(L^*\)-relation.

Lemma 2.2 Let \(f, g \in EOP_X\). Then \((f, g) \in L^*\) if and only if \(kerf = kerg\).

Proof For the ‘if’ part, suppose that \(kerf = kerg\), and then \(f\) and \(g\) are known to be \(L\)-related in the full transformation semigroup \(T_X\); see, for instance, [2, Sect. 2.2]. Hence, \(f\) and \(g\) are \(L^*\)-related in \(EOP_X\).

\(^1\)In order to prevent any chance of confusion, recall that in [2] transformations are written on the right of their arguments, while the description of Green’s relations in [2, Section 2.2] should be left-right dualized to be applied in the present paper’s setting.
For the ‘only if’ part, suppose that \((f, g) \in \mathcal{L}^*\). For \(x \in X\), let \(\langle x \rangle\) be the constant transformation with the range \(\{x\}\); this transformation clearly belongs to \(EOP_X\). Take \((x, y) \in \ker f\) for \(x, y \in X\). Then \(f(x) = \{f(x)\} = \{f(y)\} = \{f(y)\}\). Applying the characterization of \(\mathcal{L}^*\) from Lemma 2.1, we have \(g(x) = g(y)\). This means \(g(x) = g(y)\) and \((x, y) \in \ker g\). Thus, \(\ker f \subseteq \ker g\) and by symmetry \(\ker g \subseteq \ker f\). Hence, \(\ker f = \ker g\).

In what follows we consider the \(\mathcal{R}^\ast\)-relation.

Lemma 2.3 Let \(f, g \in EOP_X\). Then \((f, g) \in \mathcal{R}^\ast\) if and only if \(f(X) = g(X)\).

Proof For the ‘if’ part, suppose that \(f(X) = g(X)\), and then \(f\) and \(g\) are known to be \(\mathcal{R}\)-related in the full transformation semigroup \(T_X\). Hence, \(f\) and \(g\) are \(\mathcal{R}^\ast\)-related in \(EOP_X\).

For the ‘only if’ part, suppose that \((f, g) \in \mathcal{R}^\ast\) and \(a \notin f(X)\). Let

\[
A = \{A \in X/E : A \cap f(X) \neq \emptyset\}.
\]

For each \(A \in A\), let \(A \cap f(X) = \{a_1 < a_2 < \ldots < a_s\}\). Write \(a_0 = \min A\) and \(a_s = \max A\). Define \(h_s : A \to A\) by

\[
h_s(x) = \begin{cases}
a_1 & \text{if } x \in [a_0, a_1]
\quad \quad a_t & \text{if } x \in (a_{t-1}, a_t)(2 \leq t \leq s)
\quad \quad a_s & \text{if } x \in (a_s, a_s].
\end{cases}
\]

Clearly, \(h_s(A) = \{a_1, a_2, \ldots, a_s\} = A \cap f(X)\). Now we define \(h : X \to X\). There are two cases to consider.

Case 1. \(\overline{a} \notin A\) where \(\overline{a}\) is the \(E\)-class containing \(a\). Fix \(A_0 \in A\) and \(b \in A_0 \cap f(X)\). For each \(A \in X/E\), define \(h : X \to X\) by

\[
h(x) = \begin{cases}
h_s(x) & \text{if } x \in A \text{ where } A \in A
\quad \quad x & \text{if } x \in A \text{ where } A \notin A \text{ and } A \neq \overline{a}
b & \text{if } x \in \overline{a}.
\end{cases}
\]

Case 2. \(\overline{a} \in A\). For each \(A \in X/E\), define \(h : X \to X\) by

\[
h(x) = \begin{cases}
h_s(x) & \text{if } x \in A \text{ where } A \in \mathcal{A}
\quad \quad x & \text{if } x \in A \text{ where } A \notin \mathcal{A} \text{ and } A \notin \overline{A}.
\end{cases}
\]

It is routine to show \(h \in EOP_X\), \(f \neq \text{id}_X\), and \(hf = \text{id}_X f\), where \(\text{id}_X\) is the identity transformation on \(X\). We assert that \(a \notin g(X)\). Indeed, if \(g(x') = a\) for some \(x' \in X\), then applying the characterization of \(\mathcal{R}^\ast\) from Lemma 2.1, we have \(hg = \text{id}_X g\) and \(hg(x') = \text{id}_X g(x')\). If \(\overline{a} \notin A\), then

\[
b = h(\overline{a}) = hg(x') = \text{id}_X g(x') = a,
\]

a contradiction. If \(\overline{a} \in A\), then

\[
h_s g(x') = hg(x') = \text{id}_X g(x') = a \in f(X),
\]

a contradiction. It follows readily that \(a \notin g(X)\). This means that \(g(X) \subseteq f(X)\). By symmetry, \(f(X) \subseteq g(X)\). Consequently, \(f(X) = g(X)\), as required.

Let \(Y, Z \subseteq X\) and \(Y \cap Z = \emptyset\). \(Y < Z\) means that \(y < z\) for any \(y \in Y\) and \(z \in Z\).
Lemma 2.4 Let \(f \in EOP_X \). Then \((f, e) \in R^*\) for some idempotent \(e \in EOP_X \). Consequently, the semigroup \(EOP_X \) is left abundant.

Proof Assume that

\[
\{ A \in X/E : A \cap f(X) \neq \emptyset \} = \{ A_1 < A_2 < \ldots < A_t \}.
\]

For each \(A_i (1 \leq i \leq t) \), let \(A_i \cap f(X) = \{ a_{i1} < a_{i2} < \ldots < a_{is} \} \). Write \(a_{i0} = \min A_i \) and \(a_{is} = \max A_i \) and then define \(e_i : A_i \to A_i \) by

\[
e_i(x) = \begin{cases} a_{i1} & \text{if } x \in [a_{i0}, a_{i1}] \\ a_{il} & \text{if } x \in (a_{il-1}, a_{il}) (2 \leq l \leq s) \\ a_{is} & \text{if } x \in (a_{is}, a_{is}].
\end{cases}
\]

For every \(A \in X/E \), define \(e : X \to X \) by

\[
e(x) = \begin{cases} e_i(x) & \text{if } x \in A_i \ (1 \leq i \leq t) \\ a_{i1} & \text{if } x \in A \text{ where } \overline{A} < A_1 \\ a_{i1} & \text{if } x \in A \text{ where } A_{i-1} < A < A_i \ (2 \leq i \leq t) \\ a_{ts} & \text{if } x \in A \text{ where } A_i < \overline{A} \leq \overline{A}.
\end{cases}
\]

It is routine to show \(e \in EOP_X \), \(e^2 = e \), and \(e(X) = f(X) \). By Lemma 2.3, we have \((e, f) \in R^*\). \(\square \)

In general, the semigroup \(EOP_X \) is not right abundant; that is, there may be no idempotents in some \(L^* \)-class of \(EOP_X \). In what follows we pursue a necessary and sufficient condition under which the semigroup \(EOP_X \) is abundant. For \(f \in T_X \), let \(\pi(f) \) be the partition of \(X \) induced by \(kerf \), namely

\[
\pi(f) = \{ f^{-1}(y) : y \in f(X) \},
\]

and call \(f^{-1}(y) \) a kerf-class. For each \(f \in T_E(X) \), let \(E_f = E \lor kerf \). Then \(E_f \) is the smallest equivalence relation on \(X \) containing both \(E \) and \(kerf \) and each \(E_f \)-class is a union of \(E \)-classes as well as a union of kerf-classes. Moreover, \(f(F) \subseteq A \in X/E \) for each \(E_f \)-class \(F \).

Recall that, in [1], a transformation \(f \) is said to be normal if for each \(E_f \) class \(F \), there is some \(E \)-class \(A \subseteq F \) such that \(A \cap K \neq \emptyset \) for each kerf-class \(K \subseteq F \).

Lemma 2.5 Let \(e \in EOP_X \) be an idempotent. Then \(e \) is normal.

Proof The proof is similar to that of [8, Lemma 2.8] and it is omitted. \(\square \)

Lemma 2.6 Let \(f \in EOP_X \). Then the following statements hold.

1. \(f \) is normal if and only if there is an idempotent \(e \in EOP_X \) such that \(kerf = ker \).

2. The semigroup \(EOP_X \) is abundant if and only if \(f \) is normal.

Proof (1) For the ‘if’ part, suppose that \(kerf = ker e \) for some idempotent \(e \in EOP_X \). It is clear that \(E_f = E_e \) and \(f \) is normal.

For the ‘only if’ part, suppose that \(f \) is normal. For each \(E_f \)-class \(F \), there is some \(E \)-class \(A \) such that \(A \cap K \neq \emptyset \) for each kerf-class contained in \(F \). Take \(k \in A \cap K \) and define \(e : K \to K \) by \(e(K) = k \). To see \(e \in EOP_X \), take \(E \)-class \(B \subseteq F \) and \(x, y \in B, x \leq y \). Obviously, \(e(B) \subseteq e(F) \subseteq A \), which implies that \((e(x), e(y)) \in E \). Now assume that \(x \in K_x \) and \(y \in K_y \) where \(K_x, K_y \in \pi(f) \). If \(K_x = K_y \), then
\[e(x) = e(y). \] If \(K_x \neq K_y \), then \(x \neq y \) and \(f(x) < f(y) \). By the definition of \(e \), we have \(e(x) = k_x \) and \(e(y) = k_y \) where \(k_x \in A \cap K_x \) and \(k_y \in A \cap K_y \). Now we assert that \(k_x < k_y \). Indeed, if \(k_x > k_y \), then \(f(x) = f(k_x) > f(k_y) = f(y) \), which leads to a contradiction. Hence, \(k_x < k_y \) and \(e \in EOP_X \). It is routine to show that \(e^2 = e \) and \(\ker e = \ker f \).

(2) The proof is similar to that of [8, Theorem 2.10] and it is also omitted. \(\Box \)

Recall that, in [1], an equivalence relation \(E \) on \(X \) is said to be \textit{simple} if there is exactly one \(E \)-class \((\neq X)\) containing more than one point and the other \(E \)-classes are singletons, and \(E \) is said to be \textit{n-bounded} if the cardinality of each \(E \)-class is not more than \(n \).

Lemma 2.7 Let \(E \) be an equivalence relation on \(X \). Then the following statements hold.

(1) If \(E \) is either simple or 2-bounded, then each \(f \in EOP_X \) is normal.

(2) If \(E \) is neither simple nor 2-bounded, then \(EOP_X \) is not abundant.

Proof (1) The proof is similar to that of Lemmas 2.12 and 2.13 of [8].

(2) Assume that \(A = \{a_1 < a_2 < \ldots < a_s\} \in X/E \) and \(B = \{b_1 < b_2 < \ldots < b_t\} \in X/E \) for \(s \geq 3, t \geq 2 \). Now define \(f : X \to X \) by

\[
 f(x) = \begin{cases}
 a_1 & \text{if } x = a_1 \\
 a_2 & \text{if } x \in \{a_2, a_3, \ldots, a_s, b_1\} \\
 a_3 & \text{if } x \in \{b_2, b_3, \ldots, b_t\} \\
 x & \text{otherwise.}
\end{cases}
\]

It is clear that \(f \in EOP_X \) and all \(E_f \)-class are \(F = A \cup B \) and \(C \in X/E \) with \(C \neq A, C \neq B \). Moreover, there are exactly three \(\ker f \)-classes \(K_1, K_2, \) and \(K_3 \) contained in \(F \), where

\[
 K_1 = \{a_1\}, \ K_2 = \{a_2, a_3, \ldots, a_s, b_1\}, \ K_3 = \{b_2, b_3, \ldots, b_t\}.
\]

However, there is no \(E \)-class \(D \subseteq F \) such that \(D \cap K_i \neq \emptyset \) for \(i = 1, 2, 3 \), so \(f \) is not normal. Therefore, \(EOP_X \) is not abundant. \(\Box \)

Clearly, if \(|X| = 3 \), then \(E \) is both simple and 2-bounded, so the semigroup \(EOP_X \) is abundant. If \(|X| = 4 \), then \(E \) is either simple or 2-bounded and the semigroup \(EOP_X \) is also abundant. Thus, we have the main result in this paper.

Theorem 2.8 Let \(E \) be a nontrivial equivalence on the finite totally ordered set \(X = \{1 < 2 < \ldots < n\} \) \((n \geq 3)\). Then the following statements hold.

(1) If \(|X| = 3 \) or \(|X| = 4 \), then the semigroup \(EOP_X \) is abundant.

(2) If \(|X| \geq 5 \), then the semigroup \(EOP_X \) is abundant if and only if \(E \) is either simple or 2-bounded.

Acknowledgments

We would like to thank the referee for his/her valuable suggestions and comments, which helped to improve the presentation of this paper. This paper was supported by National Natural Science Foundation of China (Nos. U1404101, 11261018, 11426092).
References

