Approximate duals and nearly Parseval frames

Morteza MIRZAEE AZANDARYANI
Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran

Abstract: In this paper we introduce approximate duality of g-frames in Hilbert C^*-modules and we show that approximate duals of g-frames in Hilbert C^*-modules share many useful properties with those in Hilbert spaces. Moreover, we obtain some new results for approximate duality of frames and g-frames in Hilbert spaces; in particular, we consider approximate duals of ε-nearly Parseval and ε-close frames.

Key words: Hilbert C^*-module, g-frame, frame, approximate duality, ε-nearly Parseval frame

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [10] in 1952 to study some problems in nonharmonic Fourier series, and they were reintroduced in 1986 by Daubechies et al. [9]. Frames have important applications in signal and image processing, wireless communications, and many other fields. There exist various generalizations of frames. A recent and general one is called g-frame [26].

As we know, duals play an important role in frame theory, especially they are used in the reconstruction of signals. It is well known that every frame in a Hilbert space has at least one dual (see [7]), and if a dual of a frame is found, then each signal can be reconstructed easily. However, it is usually difficult to calculate a dual. Here, approximate duals can be useful. Approximate duals in frame theory have important applications (see [4, 12, 27]). Approximate duality of frames in Hilbert spaces was recently investigated in [8]. Khosravi and Mirzaee Azandaryani (the present author) also introduced approximate duality of g-frames in Hilbert spaces and obtained some properties and applications of approximate duals (see [20]). In particular, it was shown that approximate duals are stable under small perturbations and they are useful for erasures (see [20, Section 3]).

Hilbert C^*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C^*-algebra rather than in the field of complex numbers.

Frank and Larson presented a general approach to the frame theory in Hilbert C^*-modules (see [11]). They showed that every countably generated Hilbert C^*-module over a unital C^*-algebra admits a frame. It was also shown in [25] that every Hilbert C^*-module that is countably generated in the set of adjointable operators admits a frame of multipliers. Furthermore, g-frames in Hilbert C^*-modules were introduced in [16].

Frames in Hilbert C^*-modules are not trivial generalizations of Hilbert space frames due to the complex structure of C^*-algebras. Since there are important differences between the theory of Hilbert C^*-modules
and Hilbert spaces (see Chapter 1 in [21]), it is expected that problems about frames in Hilbert C^*-modules are more complicated than those in Hilbert spaces.

In this paper we generalize the concept of approximate duality of g-frames to Hilbert C^*-modules and we get some results for approximate duals of frames and g-frames in Hilbert spaces. In particular, approximate duals of ε-nearly Parseval and ε-close frames are studied.

First, in the following section, we have a brief review of the definitions and basic properties of frames and g-frames in Hilbert C^*-modules.

In this note, all index sets are finite or countable subsets of \mathbb{Z}.

2. Frames and g-frames in Hilbert C^*-modules

Suppose that \mathfrak{A} is a unital C^*-algebra and E is a left \mathfrak{A}-module such that the linear structures of \mathfrak{A} and E are compatible. E is a pre-Hilbert \mathfrak{A}-module if E is equipped with an \mathfrak{A}-valued inner product $\langle \cdot, \cdot \rangle : E \times E \rightarrow \mathfrak{A}$, such that

(i) $\langle ax + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$, for each $\alpha, \beta \in \mathbb{C}$ and $x, y, z \in E$;

(ii) $\langle ax, y \rangle = a \langle x, y \rangle$, for each $a \in \mathfrak{A}$ and $x, y \in E$;

(iii) $\langle x, y \rangle = \langle y, x \rangle^*$, for each $x, y \in E$;

(iv) $\langle x, x \rangle \geq 0$, for each $x \in E$ and if $\langle x, x \rangle = 0$, then $x = 0$.

For each $x \in E$, we define $\|x\| = \|\langle x, x \rangle\|^\frac{1}{2}$ and $|x| = \langle x, x \rangle^\frac{1}{2}$. If E is complete with $\|\cdot\|$, it is called a Hilbert \mathfrak{A}-module or a Hilbert C^*-module over \mathfrak{A}. Let E and F be Hilbert \mathfrak{A}-modules. An operator $T : E \rightarrow F$ is called adjointable if there exists an operator $T^* : F \rightarrow E$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$, for each $x \in E$ and $y \in F$. Every adjointable operator T is bounded and \mathfrak{A}-linear (that is, $T(ax) = aT(x)$ for each $x \in E$ and $a \in \mathfrak{A}$). We denote the set of all adjointable operators from E into F by $\mathbb{L}(E,F)$. $\mathbb{L}(E,F)$ is a C^*-algebra and we denote it by $\mathbb{L}(E)$. Note that if $\{E_i : i \in I\}$ is a sequence of Hilbert \mathfrak{A}-modules, then $\oplus_{i \in I} E_i$, which is the set

$$\oplus_{i \in I} E_i = \left\{ \{x_i\}_{i \in I} : x_i \in E_i \text{ and } \sum_{i \in I} \langle x_i, x_i \rangle \text{ is norm convergent in } \mathfrak{A} \right\},$$

is a Hilbert \mathfrak{A}-module with pointwise operations and \mathfrak{A}-valued inner product $\langle x, y \rangle = \sum_{i \in I} \langle x_i, y_i \rangle$, where $x = \{x_i\}_{i \in I}$ and $y = \{y_i\}_{i \in I}$. For each $x = \{x_i\}_{i \in I} \in \oplus_{i \in I} E_i$, we define $\|\cdot\|_2$ by $\|x\|_2 = \|\sum_{i \in I} \langle x_i, x_i \rangle\|^\frac{1}{2}$. For more details about Hilbert C^*-modules, see [21].

In this paper we focus on finitely and countably generated Hilbert C^*-modules over unital C^*-algebras. A Hilbert \mathfrak{A}-module E is finitely generated if there exists a finite set $\{x_1, \ldots, x_n\} \subseteq E$ such that every element $x \in E$ can be expressed as an \mathfrak{A}-linear combination $x = \sum_{i=1}^n a_i x_i, a_i \in \mathfrak{A}$. A Hilbert \mathfrak{A}-module E is countably generated if there exists a countable set $\{x_i\}_{i \in I} \subseteq E$ such that E equals the norm-closure of the \mathfrak{A}-linear hull of $\{x_i\}_{i \in I}$.

Let E be a Hilbert \mathfrak{A}-module. A family $\{f_i\}_{i \in I} \subseteq E$ is a frame for E, if there exist real constants $0 < A \leq B < \infty$, such that for each $x \in E$,

$$A \langle x, x \rangle \leq \sum_{i \in I} \langle x, f_i \rangle \langle f_i, x \rangle \leq B \langle x, x \rangle. \quad (1)$$
The numbers A and B are called the lower and upper bound of the frame, respectively. In this case we call it an (A, B) frame. The optimal lower frame bound is the supremum over all lower frame bounds and the optimal upper frame bound is the infimum over all upper frame bounds. If $A = B$, the frame is called tight (A-tight) and if $A = B = 1$, the frame is Parseval. If only the second inequality is required, we call it a Bessel sequence. If the sum in (1) converges in norm, the frame is called standard.

Let $\{E_i\}_{i \in I}$ be a sequence of Hilbert \mathfrak{A}-modules. A sequence $\Lambda = \{\Lambda_i \in \mathfrak{L}(E, E_i) : i \in I\}$ is called a g-frame for E with respect to $\{E_i : i \in I\}$ if there exist real constants $A, B > 0$ such that for each $x \in E$,

$$A \langle x, x \rangle \leq \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x \rangle \leq B \langle x, x \rangle.$$

A and B are g-frame bounds of Λ. In this case we call it an (A, B) g-frame. The optimal bounds and tight and Parseval g-frames are defined similarly to frames. The g-frame is standard if for each $x \in E$, the sum converges in norm. If only the second-hand inequality is required, then Λ is called a g-Bessel sequence.

For a standard g-Bessel sequence Λ, the operator $T_{\Lambda} : \oplus_{i \in I} E_i \longrightarrow E$ defined by $T_{\Lambda}(\{x_i\}_{i \in I}) = \sum_{i \in I} \Lambda_i^* x_i$ is called the synthesis operator of Λ. T_{Λ} is adjointable and $T_{\Lambda}^* (x) = \{\Lambda_i x\}_{i \in I}$. Now we define the operator S_{Λ} on E by $S_{\Lambda} x = T_{\Lambda} T_{\Lambda}^* (x) = \sum_{i \in I} \Lambda_i^* \Lambda_i (x)$. If Λ is a standard (A, B) g-frame, then $A Id_E \leq S_{\Lambda} \leq B Id_E$.

Note that $\mathcal{F} = \{f_i\}_{i \in I}$ is a standard Bessel sequence (resp. frame) if and only if $\Lambda_{\mathcal{F}} = \{\Lambda_{f_i}\}_{i \in I}$ is a standard g-Bessel sequence (resp. g-frame), where $\Lambda_{f_i} (x) = \langle x, f_i \rangle$, for each $x \in E$ (see [16, Example 3.2]). This shows that each Bessel sequence (resp. frame) generates a g-Bessel sequence (resp. g-frame). For a standard Bessel sequence $\mathcal{F} = \{f_i\}_{i \in I}$, we denote $S_{\Lambda_{\mathcal{F}}}$ by $S_{\mathcal{F}}$.

Let $\Lambda = \{\Lambda_i\}_{i \in I}$ be an (A,B) standard g-frame. We call $\Lambda^* = \{\Lambda_i S_{\Lambda}^{-1}\}_{i \in I}$ the canonical g-dual of Λ, which is a $(\frac{1}{B}, \frac{1}{A})$ standard g-frame. We denote the canonical dual of a standard frame $\mathcal{F} = \{f_i\}_{i \in I}$ by $\widehat{\mathcal{F}} = \{f_i\}_{i \in I}$, where $\tilde{f}_i = S_{\mathcal{F}}^{-1} f_i$. Recall that if $\Lambda = \{\Lambda_i\}_{i \in I}$ and $\Gamma = \{\Gamma_i\}_{i \in I}$ are standard g-Bessel sequences such that $\sum_{i \in I} \Gamma_i^* \Lambda_i x = x$ or equivalently $\sum_{i \in I} \Lambda_i^* \Gamma_i x = x$, for each $x \in E$, then Γ (resp. Λ) is called a g-

dual of Λ (resp. Γ). Also, duals for two standard Bessel sequences $\mathcal{F} = \{f_i\}_{i \in I}$ and $\mathcal{G} = \{g_i\}_{i \in I}$ can be defined by using the generated g-Bessel sequences, so \mathcal{G} (resp. \mathcal{F}) is a dual of \mathcal{F} (resp. \mathcal{G}) if $x = \sum_{i \in I} \langle x, f_i \rangle g_i$ or equivalently $x = \sum_{i \in I} \langle x, g_i \rangle f_i$, for each $x \in E$ (see [11, 13]). For more details about frames and g-frames in Hilbert C^*-modules, see [11, 2, 16, 28].

3. Approximate duals of g-frames in Hilbert C^*-modules

In this section all C^*-algebras are unital and all Hilbert C^*-modules are finitely or countably generated. All frames, g-frames, Bessel sequences, and g-Bessel sequences are standard. Λ and Γ denote $\{\Lambda_i \in \mathfrak{L}(E, E_i) : i \in I\}$ and $\{\Gamma_i \in \mathfrak{L}(E, E_i) : i \in I\}$, respectively. Also, $\mathcal{F} = \{f_i\}_{i \in I}$ and $\mathcal{G} = \{g_i\}_{i \in I}$ are subsets of a Hilbert C^*-module E.

For two standard g-Bessel sequences Λ and Γ, the operator $S_{\Gamma \Lambda}$ is defined on E by $S_{\Gamma \Lambda} = T_{\Gamma} T_{\Lambda}^*$. Since $S_{\Gamma \Lambda}^* S_{\Gamma \Lambda} = S_{\Lambda} \Gamma$, we have $\|Id_E - S_{\Gamma \Lambda}\| \leq \|Id_E - S_{\Lambda} \Gamma \|^* = \|Id_E - S_{\Lambda} \Gamma\|$.

Now we introduce approximate duals for g-Bessel sequences (and also for Bessel sequences by using the generated g-Bessel sequences) in Hilbert C^*-modules:
Definition 3.1 (i) Two standard g-Bessel sequences Λ and Γ are approximately dual g-frames if $\|Id_E - S_{\Gamma\Lambda}\| < 1$ or equivalently $\|Id_E - S_{\Lambda\Gamma}\| < 1$. In this case, we say that Γ (resp. Λ) is an approximate g-dual of Λ (resp. Γ).

(ii) Two standard Bessel sequences \mathcal{F} and \mathcal{G} are approximately dual frames if $\Lambda_{\mathcal{F}}$ and $\Lambda_{\mathcal{G}}$ are approximately dual g-frames, i.e. $\|Id_E - S_{\Lambda_{\mathcal{G}}\Lambda_{\mathcal{F}}}\| < 1$ or equivalently $\|Id_E - S_{\Lambda_{\mathcal{F}}\Lambda_{\mathcal{G}}}\| < 1$. In this case, we say that \mathcal{G} (resp. \mathcal{F}) is an approximate dual of \mathcal{F} (resp. \mathcal{G}). We denote $S_{\Lambda_{\mathcal{G}}\Lambda_{\mathcal{F}}}$ and $S_{\Lambda_{\mathcal{F}}\Lambda_{\mathcal{G}}}$ by $S_{\mathcal{G}\mathcal{F}}$ and $S_{\mathcal{F}\mathcal{G}}$, respectively.

It is clear that $S_{\Gamma\Lambda}(x) = \sum_{i \in I} \Gamma_i^* \Lambda_i(x)$ and $S_{\mathcal{G}\mathcal{F}}(x) = \sum_{i \in I} \langle x, f_i \rangle g_i$, for each $x \in E$. If Λ and Γ are g-duals, then they are approximately dual g-frames because $S_{\Lambda\Gamma} = Id_E$. Using the Neumann algorithm, we can see that $S_{\Lambda\Gamma}$ is invertible with $S_{\Lambda\Gamma}^{-1} = \sum_{n=0}^{\infty} (Id_E - S_{\Lambda\Gamma})^n$, so each $x \in E$ can be reconstructed as

$$x = \sum_{n=0}^{\infty} S_{\Lambda\Gamma}(Id_E - S_{\Lambda\Gamma})^n x, \quad x = \sum_{n=0}^{\infty} (Id_E - S_{\Lambda\Gamma})^n S_{\Gamma\Lambda} x.$$

Recall from [17] that a standard g-frame Λ is a modular g-Riesz basis if it has the following property:

if $\sum_{i \in \Omega} \Lambda_i g_i = 0$, where $g_i \in E$ and $\Omega \subseteq I$, then $g_i = 0$, for each $i \in \Omega$.

A standard frame $\{f_i\}_{i \in I}$ for E is a modular Riesz basis if it has the following property: if an \mathcal{A}-linear combination $\sum_{i \in \Omega} a_i f_i$ with coefficients $\{a_i : i \in \Omega\} \subseteq \mathcal{A}$ and $\Omega \subseteq I$ is equal to zero, then $a_i = 0$, for each $i \in \Omega$.

The following result is a generalization of Proposition 2.3 in [20] to Hilbert C^*-modules.

Theorem 3.2 Let Λ and Γ be approximately dual g-frames with upper bounds B and D, respectively. Then:

(i) Λ and Γ are $(\|S_{\Gamma\Lambda}^{-1}\|^{-2}, B)$ and $(\|S_{\Lambda\Gamma}^{-1}\|^{-2}, D)$ g-frames, respectively.

(ii) $\{\Gamma_i + \sum_{n=1}^{\infty} \Gamma_i(Id_E - S_{\Lambda\Gamma})^n\}_{i \in I}$ is a g-dual of Λ.

(iii) For each $N \in \mathbb{N}$, define $\psi_i^N = \Gamma_i + \sum_{n=1}^{N} \Gamma_i(Id_E - S_{\Lambda\Gamma})^n$. Then $\Psi_N = \{\psi_i^N\}_{i \in I}$ is an approximate g-dual of Λ with $\|Id_E - S_{\Lambda\Psi_N}\| \leq \|Id_E - S_{\Lambda\Gamma}\|^{N+1} < 1$.

(iv) If Λ is a modular g-Riesz basis, then $\widetilde{\Lambda}_i = \Gamma_i + \sum_{n=1}^{\infty} \Gamma_i(Id_E - S_{\Lambda\Gamma})^n = \lim_{N \rightarrow \infty} \psi_i^N$, for each $i \in I$.

Proof (i) Since Λ and Γ are approximately dual g-frames, $S_{\Gamma\Lambda}$ is invertible, so $\|S_{\Gamma\Lambda}^{-1}\|^{-1} \leq \|S_{\Gamma\Lambda}\|$, for each $x \in E$. Now by using the Cauchy–Schwarz inequality in Hilbert C^*-modules, we have

$$\|S_{\Gamma\Lambda}^{-1}\|^{-1} \|x\| \leq \|S_{\Gamma\Lambda}x\| = \sup_{\|y\| = 1} \|\langle S_{\Gamma\Lambda}x, y \rangle\| = \sup_{\|y\| = 1} \left\| \sum_{i \in I} \langle \Lambda_i x, \Gamma_i y \rangle \right\|$$

$$\leq \sup_{\|y\| = 1} \left\| \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x \rangle \right\|^\frac{1}{2} \left\| \sum_{i \in I} \langle \Gamma_i y, \Gamma_i y \rangle \right\|^\frac{1}{2}$$

$$\leq \sqrt{D} \left\| \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x \rangle \right\|^\frac{1}{2}.$$
Hence:

\[
\frac{\|S_\Gamma^{-1}\|^{-2}}{D} \leq \left\| \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x \rangle \right\|
\]

and so by Theorem 3.1 in [28], \(\Lambda \) is a standard \(g \)-frame with the lower bound \(\frac{\|S_\Gamma^{-1}\|^{-2}}{D} \). Similarly, by considering \(S_\Gamma \) replaced by \(S_{\Gamma'} \) in the above conclusions, we obtain that \(\Gamma \) is a \(\left(\frac{\|S_{\Gamma'}^{-1}\|^{-2}}{B} \right) \) standard \(g \)-frame.

(ii) Since \(S_{\Gamma'}^{-1} = \sum_{n=0}^{\infty} (Id_E - S_{\Gamma'})^n \), we have \(\Gamma_i S_{\Gamma'}^{-1} = \Gamma_i + \sum_{n=1}^{\infty} \Gamma_i (Id_E - S_{\Gamma'})^n \) and it is easy to see that \(\{ \Gamma_i S_{\Gamma'}^{-1} \}_{i \in I} \) is a \(g \)-dual of \(\Lambda \).

(iii) For each \(n = 0, \ldots, N \), we have

\[
\left\| \sum_{i \in I} (\Gamma_i (Id_E - S_{\Gamma'})^n x, \Gamma_i (Id_E - S_{\Gamma'})^n x) \right\| \leq D \left\| (Id_E - S_{\Gamma'})^n \right\|^2 \|x\|^2,
\]

so \(\{ \Gamma_i (Id_E - S_{\Gamma'})^n \}_{i \in I} \) is a standard \(g \)-Bessel sequence by Theorem 3.1 in [28] and consequently \(\Psi_J \) is a standard \(g \)-Bessel sequence. Now the result can be obtained similar to the proof of Proposition 2.3 in [20].

(iv) Since \(\Lambda \) is a modular \(g \)-Riesz basis, Corollary 4.1 in [17] yields that \(\Lambda \) is the unique \(g \)-dual of \(\Lambda \). According to part (ii), \(\{ \Gamma_i + \sum_{n=1}^{\infty} \Gamma_i (Id_E - S_{\Gamma'})^n \}_{i \in I} \) is also a \(g \)-dual of \(\Lambda \), so \(\Lambda_i = \Gamma_i + \sum_{n=1}^{\infty} \Gamma_i (Id_E - S_{\Gamma'})^n = \lim_{N \to \infty} \psi_i^N \). \(\square \)

As a consequence of the above theorem and Example 3.2 in [16], we obtain the following result. Parts (ii) and (iii) of the following corollary are generalizations of Proposition 3.2 in [8] to Hilbert \(C^* \)-modules.

Corollary 3.3 Let \(\mathcal{F} \) and \(\mathcal{G} \) be approximately dual frames with upper bounds \(B \) and \(D \), respectively. Then:

(i) \(\mathcal{F} \) and \(\mathcal{G} \) are \(\left(\frac{\|S_{\mathcal{F}}^{-1}\|^{-2}}{D}, B \right) \) and \(\left(\frac{\|S_{\mathcal{G}}^{-1}\|^{-2}}{B}, D \right) \) frames, respectively.

(ii) \(\{g_i + \sum_{n=1}^{\infty} (Id_E - S_{\mathcal{G}})^n g_i \}_{i \in I} \) is a dual of \(\mathcal{F} \).

(iii) For each \(N \in \mathbb{N} \), define \(h_i^N = g_i + \sum_{n=1}^{N} (Id_E - S_{\mathcal{G}})^n g_i \). Then \(h_N = \{h_i^N \}_{i \in I} \) is an approximate dual of \(\mathcal{F} \) with \(\|Id_E - S_{h_N^N} \| \leq \|Id_E - S_{\mathcal{G}} \|^N < 1 \).

(iv) If \(\mathcal{F} \) is a modular Riesz basis, then \(\tilde{f}_i = g_i + \sum_{n=1}^{\infty} (Id_E - S_{\mathcal{G}})^n g_i = \lim_{N \to \infty} h_i^N \), for each \(i \in I \).

We can get from the above theorem and corollary that a standard \(g \)-Bessel sequence (resp. Bessel sequence) is a standard \(g \)-frame (resp. frame) if and only if it has an approximate \(g \)-dual (resp. approximate dual).

Note that Theorem 2.5 in [20] shows that if \(\Lambda \) and \(\Gamma \) are two \(g \)-Bessel sequences in a Hilbert space \(H \), then a necessary and sufficient condition for \(\Lambda \) and \(\Gamma \) to be approximately dual \(g \)-frames is that there exist two Bessel sequences \(\mathcal{F} \) and \(\mathcal{G} \) in \(H \) that are approximately dual frames with \(S_{\Lambda \Gamma} = S_{\mathcal{F} \mathcal{G}} \). Now we have a similar result for approximate duals in Hilbert \(C^* \)-modules.

Proposition 3.4 Let \(\Lambda \) and \(\Gamma \) be two \(g \)-Bessel sequences. Then \(\Lambda \) and \(\Gamma \) are approximately dual \(g \)-frames if and only if there exist two Bessel sequences \(\mathcal{F} \) and \(\mathcal{G} \) in \(E \) such that \(\mathcal{F} \) and \(\mathcal{G} \) are approximately dual frames with \(S_{\Lambda \Gamma} = S_{\mathcal{F} \mathcal{G}} \).
Proof Let Λ and Γ be approximately dual g-frames. As a result of Kasparov’s stabilization theorem, every finitely or countably generated Hilbert C^*-module has a standard Parseval frame (see [11, 22]). Let $\{f_{ij}\}_{i \in I}$ be a standard Parseval frame for E_i. It follows from Corollary 3.4 in [16] that $\mathcal{F} = \{\Lambda_i^*(f_{ij})\}_{i \in I, j \in J}$ and $\mathcal{G} = \{\Gamma_i^*(f_{ij})\}_{i \in I, j \in J}$ are standard Bessel sequences. Then for each $x \in E$, we have

$$S_{\mathcal{F}}g(x) = \sum_{i \in I} \sum_{j \in J} (x, \Gamma_i^*(f_{ij}))\Lambda_i^*(f_{ij}) = \sum_{i \in I} \Lambda_i^* \Gamma_i x = S_{\mathcal{G}}x,$$

so $\|S_{\mathcal{F}} - Id_E\| = \|S_{\mathcal{G}} - Id_E\| < 1$, and the result follows. The converse is clear. \hfill \square

Let \mathfrak{A} and \mathfrak{A}' be two C^*-algebras. Then $\mathfrak{A} \otimes \mathfrak{A}'$ is a C^*-algebra with the spatial norm and for each $a \in \mathfrak{A}$ and $a' \in \mathfrak{A}'$, we have $\|a \otimes a'\| = \|a\|\|a'\|$. The multiplication and involution on simple tensors are defined by $(a \otimes a')(b \otimes b') = ab \otimes a'b'$ and $(a \otimes a')^* = a^* \otimes a'^*$, respectively. As we know, if $a, a' \geq 0$, then $a \otimes a' \geq 0$.

Now let E be a Hilbert \mathfrak{A}-module and E' be a Hilbert \mathfrak{A}'-module. Then the (Hilbert C^*-module) tensor product $E \otimes E'$ is a Hilbert $\mathfrak{A} \otimes \mathfrak{A}'$-module. The module action and inner product for simple tensors are defined by $(a \otimes a')(x \otimes x') = (ax) \otimes (a'x')$ and $\langle x \otimes x', y \otimes y' \rangle = \langle x, y \rangle \otimes \langle x', y' \rangle$, respectively. Let U and U' be adjointable operators on E and E', respectively. Then the tensor product $U \otimes U'$ is an adjointable operator on $E \otimes E'$. Also, $(U \otimes U')^* = U^* \otimes U'^*$ and $\|U \otimes U'\| = \|U\|\|U'\|$. For more results about tensor products of C^*-algebras and Hilbert C^*-modules, see [23, 21].

Tensor products of frames and g-frames have been studied by some authors recently; see [15, 6, 16, 18].

It was proved in Proposition 3.2 in [19] that the direct sum of a countable number of g-duals (in Hilbert spaces) is a g-dual in the direct sum space but Example 2.9 in [20] shows that this is not necessarily true for approximate g-duals.

It was also shown in [20, Proposition 2.10] and [18, Corollary 3.8] (by using resolutions of the identity) that the tensor product of two g-duals (in Hilbert spaces) gives a g-dual in the tensor product space. In the following example, we show that the result does not necessarily hold for approximate g-duals:

Example 3.5 Let H be a separable Hilbert space (as a special case of a Hilbert C^*-module) and $\Lambda = \{\Lambda_i\}_{i \in I}$ be an A-tight g-frame with $\sqrt{2} < A < 2$. It is easy to see that Λ is an approximate g-dual of itself. Now the proof of Corollary 2.2 in [18] yields that $\Lambda \otimes \Lambda = \{\Lambda_i \otimes \Lambda_j\}_{i, j \in I}$ is an A^2-tight g-frame, so $S_{(\Lambda \otimes \Lambda)(\Lambda \otimes \Lambda)} = S_{(\Lambda \otimes \Lambda)} = A^2 \text{Id}_{(H \otimes H)}$. Thus, $\|S_{(\Lambda \otimes \Lambda)(\Lambda \otimes \Lambda)} - \text{Id}_{(H \otimes H)}\| = A^2 - 1 > 1$. This means that $\Lambda \otimes \Lambda$ is not an approximate g-dual of itself.

Now we consider tensor products of g-duals and approximate g-duals in Hilbert C^*-modules. In the following proposition $\Lambda' = \{\Lambda'_{i,j} \in \mathcal{L}(E', E'_j) : j \in J\}$, $\Gamma' = \{\Gamma'_{i,j} \in \mathcal{L}(E', E'_j) : j \in J\}$, $\mathcal{F}' = \{f'_{i,j}\}_{i \in I, j \in J}$ and $\mathcal{G}' = \{g'_{i,j}\}_{i \in I, j \in J}$.

Proposition 3.6 (i) Let Γ be an approximate dual g-dual (resp. a g-dual) of Λ. If Γ' is a g-dual of Λ', then $\Gamma \otimes \Gamma' = \{\Gamma_{i,j} \otimes \Gamma'_{i,j}\}_{i \in I, j \in J}$ is an approximate g-dual (resp. a g-dual) of $\Lambda \otimes \Lambda' = \{\Lambda_{i,j}\}_{i \in I, j \in J}$.

(ii) Let \mathcal{G} be an approximate dual (resp. a dual) of \mathcal{F}. If \mathcal{G}' is a dual of \mathcal{F}', then $\mathcal{G} \otimes \mathcal{G}' = \{g_i \otimes g'_{i,j}\}_{i \in I, j \in J}$ is an approximate dual (resp. a dual) of $\mathcal{F} \otimes \mathcal{F}' = \{f_i \otimes f'_{i,j}\}_{i \in I, j \in J}$.
Hence, the **Hilbert Schwarz inequality** in the above proposition.

Note that Proposition 2.10, Corollary 2.11 in [23] imply that \(0 \leq \langle (S_A \otimes S_{A'})z, z \rangle \leq BB'(z, z), \) for each \(z \in E \otimes E' \). Now it is easy to obtain that \(\sum_{(i,j) \in I \times J} \|((A_i \otimes A'_j)z, (A_i \otimes A'_j)z)\| \) converges in norm and

\[
\left\| \sum_{(i,j) \in I \times J} \|((A_i \otimes A'_j)z, (A_i \otimes A'_j)z)\| \right\| \leq BB\|z\|^2.
\]

so \(A \otimes A' \) is a standard g-Bessel sequence by Theorem 3.1 in [28] (also, see [16, Section 5]). Similarly, we can get that \(\Gamma \otimes \Gamma' \) is a standard **g-Bessel sequence**. It is also easy to see that

\[
S_{(\Gamma \otimes \Gamma')/(A \otimes A')}((x \otimes x')) = (S_{(\Gamma \otimes \Gamma')}(x) \otimes S_{(\Gamma \otimes \Gamma')}(x')) = (S_{(\Gamma \otimes \Gamma')} \otimes I_d)(x \otimes x'),
\]

for each \(x \otimes x' \in E \otimes E' \), and since the operators are bounded, we have \(S_{(\Gamma \otimes \Gamma')/(A \otimes A')} = S_{(\Gamma \otimes \Gamma')} \otimes I_d \). Therefore

\[
\|S_{(\Gamma \otimes \Gamma')/(A \otimes A')} - I_d\| = \|(S_{(\Gamma \otimes \Gamma')} - I_d) \otimes I_d\| = \|S_{(\Gamma \otimes \Gamma')} - I_d\| < 1.
\]

This means that \(\Gamma \otimes \Gamma' \) is an approximate g-dual of \(A \otimes A' \). It is clear that if \(\Gamma \) and \(\Gamma' \) are g-duals of \(A \) and \(A' \), respectively, then \(S_{(\Gamma \otimes \Gamma')/(A \otimes A')} = I_d(E \otimes E') \), so \(\Gamma \otimes \Gamma' \) is a g-dual of \(A \otimes A' \).

(ii) We can get the result by using Example 3.2 in [16] and part (i). \(\square \)

Note that Proposition 2.10, Corollary 2.11 in [20], and part (ii) of Corollary 3.8 in [18] are special cases of the above proposition.

Now we show that approximate duals in Hilbert \(C^* \)-modules are stable under small perturbations. The following result is analogous to part (i) of Theorem 3.1 in [20] that we need in the next section.

Proposition 3.7 Let \(A \) be a g-Bessel sequence and \(\Psi = \{\psi_i\}_{i \in I} \) be an approximate g-dual (resp. a g-dual) of \(A \) with upper bound \(C \). If \(\Gamma \) is a sequence such that \(\Gamma - \Lambda \) is a g-Bessel sequence with upper bound \(K \) and \(CK < (1 - \|I_d - S_{\Psi(A)}\|)^2 \) (resp. \(CK < 1 \)), then \(\Gamma \) and \(\Psi \) are approximately dual g-frames.

Proof Let \(\Omega \) be a finite subset of \(I \) and \(B \) be an upper bound for \(A \). Then

\[
\left\| \sum_{i \in I} \langle \Gamma_i x, \Gamma_i x \rangle \right\| \leq \left\| \{\Gamma_i x\}_{i \in \Omega} \right\|_2 + \left\| \{\Gamma_i x - \Lambda_i x\}_{i \in \Omega} \right\|_2 \leq (\sqrt{B} + \sqrt{K})\|x\|,
\]

for each \(x \in E \). Thus, by Theorem 3.1 in [28], \(\Gamma \) is a standard g-Bessel sequence. Now by using the Cauchy–Schwarz inequality in Hilbert \(C^* \)-modules, for each \(x \in E \), we have

\[
\| (I_d - S_{\Psi(A)} x) \| \leq \| (I_d - S_{\Psi(A)} x) \| + \| (S_{\Psi(A)} - S_{\Psi}) x) \|
\]

\[
\leq \| (I_d - S_{\Psi(A)} x) \| + \sup_{\|y\| = 1} \left\{ \left\| \sum_{i \in I} \langle \Lambda_i - \Gamma_i \rangle x \| \right\|^2 \left\| \sum_{i \in I} |\psi_i y|\|^2 \right\} \right\}
\]

\[
\leq \| (I_d - S_{\Psi(A)} x) \| + \sqrt{CK} \|x\| \leq (\|I_d - S_{\Psi(A)}\| + \sqrt{CK})\|x\|.
\]

Hence, \(\|I_d - S_{\Psi(A)}\| \leq \|I_d - S_{\Psi(A)}\| + \sqrt{CK} < 1 \). Also, if \(A \) and \(\Psi \) are g-duals, then \(S_{\Psi(A)} = I_d \) and we have

\[
\|I_d - S_{\Psi(A)}\| \leq \sqrt{CK} < 1.
\] \(\square \)

521
The following result is a generalization of Proposition 3.10 in [20] to Hilbert C^*-modules.

Proposition 3.8 Let $0 \leq \lambda_1, \lambda_2 < 1$, $A, B, \varepsilon > 0$, and $K = \lambda_1 + \frac{\varepsilon}{\sqrt{\lambda_1}} + \frac{\lambda_2(1+\lambda_1)\sqrt{\lambda_1+\varepsilon}}{\sqrt{\lambda_1(1-\lambda_2)}}$.

(i) If Λ is an (A, B) g-frame and Γ is a sequence satisfying

$$\left\| \sum_{i \in \Omega} (\Lambda_i^* - \Gamma_i^*) f_i \right\| \leq \lambda_1 \left\| \sum_{i \in \Omega} \Lambda_i^* f_i \right\| + \lambda_2 \left\| \sum_{i \in \Omega} \Gamma_i^* f_i \right\| + \varepsilon \left\| \sum_{i \in \Omega} |f_i|^2 \right\|^{\frac{1}{2}}, \tag{2}$$

for each finite subset $\Omega \subseteq I$, $f_i \in E_i$ with $K < 1$, then $\bar{\Lambda}$ is an approximate g-dual of Γ and Γ is a g-frame.

(ii) If $\mathcal{F} = \{f_i\}_{i \in I}$ is an (A, B) frame and $\mathcal{G} = \{g_i\}_{i \in I}$ is a sequence satisfying

$$\left\| \sum_{i \in \Omega} a_i f_i - \sum_{i \in \Omega} a_i g_i \right\| \leq \lambda_1 \left\| \sum_{i \in \Omega} a_i f_i \right\| + \lambda_2 \left\| \sum_{i \in \Omega} a_i g_i \right\| + \varepsilon \left\| \sum_{i \in \Omega} |a_i|^2 \right\|^{\frac{1}{2}},$$

for each finite subset $\Omega \subseteq I$, $a_i \in E_i \subseteq A$ with $K < 1$, then $\bar{\mathcal{F}}$ is an approximate dual of \mathcal{G} and \mathcal{G} is a frame.

Proof

(i) Suppose that $\{e_{i,k}\}_{k \in J_i}$ is a Parseval frame for E_i and $\{e_{i,k}\}_{i \in \Omega, k \in J_i}$ is a finite subset of \mathbb{A}, where Ω and Ω_i's are finite index sets. Since Λ is an (A, B) standard g-frame, Corollary 3.4 in [16] yields that $\{u_{i,k} = \Lambda_i^*(e_{i,k}) : i \in I, k \in J_i\}$ is an (A, B) standard frame. Now for $v_{i,k} = \Gamma_i^*(e_{i,k})$, we have

$$\left\| \sum_{i \in \Omega} \sum_{k \in J_i} c_{i,k} (u_{i,k} - v_{i,k}) \right\| = \left\| \sum_{i \in \Omega} \sum_{k \in J_i} (\Lambda_i^* - \Gamma_i^*)(c_{i,k} e_{i,k}) \right\| \leq \lambda_1 \left\| \sum_{i \in \Omega} \sum_{k \in J_i} c_{i,k} u_{i,k} \right\| + \lambda_2 \left\| \sum_{i \in \Omega} \sum_{k \in J_i} c_{i,k} v_{i,k} \right\| + \varepsilon \left\| \sum_{i \in \Omega} \sum_{k \in J_i} |c_{i,k}|^2 \right\|^{\frac{1}{2}}.$$

Hence, Theorem 3.2 in [14] implies that $\{v_{i,k} = \Gamma_i^*(e_{i,k}) : i \in I, k \in J_i\}$ is a standard Bessel sequence with upper bound $\frac{[(1+\lambda_1)\sqrt{\lambda_1+\varepsilon}]}{(1-\lambda_2)^2}$, so (by [16, Theorem 3.3]) Γ is a standard g-Bessel sequence with upper bound $\frac{[(1+\lambda_1)\sqrt{\lambda_1+\varepsilon}]}{(1-\lambda_2)^2}$. Thus, for each $\{f_i\}_{i \in I} \in \oplus_{i \in I} E_i$, the series $\sum_{i \in I} \Gamma_i^* f_i$ converges in E and from (2), we can get

$$\left\| \sum_{i \in I} (\Lambda_i^* - \Gamma_i^*) f_i \right\| \leq \lambda_1 \left\| \sum_{i \in I} \Lambda_i^* f_i \right\| + \lambda_2 \left\| \sum_{i \in I} \Gamma_i^* f_i \right\| + \varepsilon \left\| \sum_{i \in I} |f_i|^2 \right\|^{\frac{1}{2}}. \tag{3}$$

Since for each $x \in E$, $\{f_i = \bar{\Lambda}_i x\}_{i \in I} \in \oplus_{i \in I} E_i$ and $\frac{1}{A}$ is an upper bound for $\bar{\Lambda}$, by using (3), we have

$$\|S_\Lambda x - \bar{x} - x\| \leq \|S_\Lambda x - \bar{x}\| \leq (\lambda_1 + \frac{\varepsilon}{\sqrt{A}}) \|x\| + \lambda_2 \|S_\Gamma x\|.$$

Now we can obtain a result similar to the proof of Proposition 3.10 in [20].
(ii) Since $A_f^*(a) = af_i$ and $A_g^*(a) = ag_i$, for each $a \in \mathfrak{A}$, the result follows from part (i) for $A_i = A_{f_i}$ and $\Gamma_i = A_{g_i}$.

4. Approximate duals and ε-nearly Parseval frames

In this section, we consider ε-nearly Parseval frames in Hilbert spaces, which are useful in applications (see [5]). We obtain some results for approximate duals of ε-nearly Parseval and ε-close frames (since Hilbert spaces are special cases of Hilbert C^*-modules, we do not state the definitions of frames, g-frames, and approximate duals in Hilbert spaces separately).

ε-nearly Parseval frames were defined in [5] and we have the following definition:

Definition 4.1 Suppose that H is a separable Hilbert space and $\{H_i\}_{i \in I}$ is a sequence of separable Hilbert spaces.

(i) Let A_i be a bounded operator from H into H_i and $\varepsilon < 1$. We say that $\Lambda = \{A_i\}_{i \in I}$ is an ε-nearly Parseval g-frame if for each $f \in H$

$$(1 - \varepsilon)\|f\|^2 \leq \sum_{i \in I} \|A_if\|^2 \leq (1 + \varepsilon)\|f\|^2.$$

(ii) Let $\{f_i\}_{i \in I}$ be a sequence in H and $\varepsilon < 1$. We say that $\{f_i\}_{i \in I}$ is an ε-nearly Parseval frame if for each $f \in H$

$$(1 - \varepsilon)\|f\|^2 \leq \sum_{i \in I} |\langle f, f_i \rangle|^2 \leq (1 + \varepsilon)\|f\|^2.$$

It is clear that if $\varepsilon = 0$, then an ε-nearly Parseval g-frame is a Parseval g-frame and so it is a g-dual of itself. Now we have the following result for approximate duals:

Theorem 4.2

(i) If Λ is an ε-nearly Parseval g-frame, then it is an approximate g-dual of itself.

(ii) If $\{f_i\}_{i \in I}$ is an ε-nearly Parseval frame, then it is an approximate dual of itself.

Proof

(i) Since Λ is an ε-nearly Parseval g-frame, we have $(1 - \varepsilon).Id_H \leq S_\Lambda \leq (1 + \varepsilon).Id_H$, so $-\varepsilon.Id_H \leq (S_\Lambda - Id_H) \leq \varepsilon.Id_H$. Because $S_{\Lambda \Lambda} = S_\Lambda$, we obtain that $\|S_{\Lambda \Lambda} - Id_H\| \leq \varepsilon < 1$. This means that Λ is an approximate g-dual of itself.

(ii) Since frames are special cases of g-frames, we get the result from part (i). \qed

Note that if $\{A_i\}_{i \in I}$ is a g-Bessel sequence and $J \subset I$, then we denote the optimal upper bound of $\{A_i\}_{i \in J^c}$ by $B(J^c)$.

It was shown in Theorem 3.1 in [20] that if $\{A_i\}_{i \in I}$ is a Parseval g-frame and $B(J^c) < 1$, then $\{A_i\}_{i \in J}$ is an approximate g-dual of itself. Now we have the following result for ε-nearly Parseval g-frames:

Proposition 4.3

(i) Let Λ be an ε-nearly Parseval g-frame and $J \subset I$ such that $B(J^c) < 1 - \varepsilon$. Then $\{A_i\}_{i \in J}$ is an approximate g-dual of itself.
(ii) Let \(\{f_i\}_{i \in I} \) be an \(\varepsilon \)-nearly Parseval frame and \(J \subset I \) such that \(B(J^c) < 1 - \varepsilon \). Then \(\{f_i\}_{i \in J} \) is an approximate dual of itself.

Proof
(i) We have

\[
\sum_{i \in J} \|A_i f\|^2 = \sum_{i \in I} \|A_i f\|^2 - \sum_{i \notin J} \|A_i f\|^2 \\
\geq \sum_{i \in I} \|A_i f\|^2 - B(J^c)\|f\|^2 \geq (1 - \varepsilon - B(J^c))\|f\|^2.
\]

Hence, \((1 - (\varepsilon + B(J^c))) \) is a lower bound for \(\{A_i\}_{i \in J} \). Therefore, \(\{A_i\}_{i \in J} \) is an \(\varepsilon' \)-nearly Parseval frame, where \(\varepsilon' = (\varepsilon + B(J^c)) \). Now by Theorem 4.2, \(\{A_i\}_{i \in J} \) is an approximate g-dual of itself.

(ii) The result follows from part (i).

Recall that two sequences \(\{f_i\}_{i \in I} \) and \(\{g_i\}_{i \in I} \) in \(H \) are \(\varepsilon \)-close if \(\sum_{i \in I} \|f_i - g_i\|^2 \leq \varepsilon^2 \) (see [5, Definition 2.4]).

Example 4.4 Let \(H = \mathbb{C}^2 \), \(\{e_1, e_2\} \) be the standard orthonormal basis for \(H \) and \(\frac{2}{3} < \varepsilon < 1 \). For \(F = \{\sqrt{2}e_1, e_2\} \) and \(G = \{0, e_2\} \), it is easy to see that \(F \) is an \(\varepsilon \)-nearly Parseval frame that is \(\varepsilon \)-close to \(G \), but \(F \) and \(G \) are not approximately dual frames because \(G \) is not a frame.

Now we have the following result:

Proposition 4.5
(i) Let \(F = \{f_i\}_{i \in I} \) be an \(\varepsilon \)-nearly Parseval frame with upper bound \(A \). If \(\{g_i\}_{i \in I} \) and \(\{f_i\}_{i \in I} \) are \(\varepsilon \)-close with \(\sqrt{A}\varepsilon < 1 - \|\text{Id}_H - S_F\| \), then \(F \) is an approximate dual of \(\{g_i\}_{i \in I} \).

(ii) If \(F \) in part (i) is also an \(A \)-tight frame with \(\sqrt{A}\varepsilon < 1 - |1 - A| \), then \(F \) is an approximate dual of \(\{g_i\}_{i \in I} \).

Proof
(i) Since \(F \) is an \(\varepsilon \)-nearly Parseval frame, it is an approximate dual of itself by Theorem 4.2. Also, for each \(f \in H \), we have

\[
\sum_{i \in I} |\langle f, f_i - g_i \rangle|^2 \leq \|f\|^2 \sum_{i \in I} \|f_i - g_i\|^2 \leq \varepsilon^2 \|f\|^2.
\]

By considering \(C = A \) and \(K = \varepsilon^2 \), we obtain that \(\{f_i - g_i\}_{i \in I} \) is a Bessel sequence with upper bound \(K \) and \(\sqrt{CK} = \varepsilon \sqrt{A} < 1 - \|\text{Id}_H - S_F\| \). Now the result follows from Proposition 3.7 (or [20, Theorem 3.1]).

(ii) The result follows from part (i) by considering \(S_F = A\text{Id}_H \).

Remark 4.6 We can obtain from part (ii) of the above proposition that if \(F = \{f_i\}_{i \in I} \) is an \(A \)-tight frame with \(A \leq 1 \), then each sequence \(\{g_i\}_{i \in I} \) that is \(\varepsilon \)-close to \(F \) with \(\varepsilon < \sqrt{A} \) is an approximate dual of \(F \). Especially if \(F \) is a Parseval frame that is \(\varepsilon \)-close to \(G = \{g_i\}_{i \in I} \), then \(F \) and \(G \) are approximately dual frames.

Let \(F = \{f_i\}_{i=1}^n \) be an \(\varepsilon \)-nearly Parseval frame for a d-dimensional Hilbert space \(H \). As we know (see [7, Theorem 5.3.4] and [3]), \(\{S_F^{-1} f_i\}_{i=1}^n \) is the closest Parseval frame to \(F \). It was proved in [5, Proposition 3.1 and
Remark 3.2] that the relation \(\sum_{i=1}^{n} \|S_{F_i}^{-1} f_i - f_i\|^2 = d(2 - \varepsilon - 2\sqrt{1 - \varepsilon}) \leq \frac{d^2}{8} \) holds if \(\{\frac{1}{\sqrt{1 - \varepsilon}} f_i\}_{i=1}^{n} \) is a Parseval frame (or equivalently \(S_{F_i}^{-1} = \frac{1}{\sqrt{1 - \varepsilon}} Id_{H} \), so we have \(\sum_{i=1}^{n} \|S_{F_i}^{-1} f_i - f_i\|^2 = d(2 - \varepsilon - 2\sqrt{1 - \varepsilon}) \leq \frac{d^2}{8} \)). It was also shown in Example 2.4 in [24] that if \(\mathcal{F} = \{f_i\}_{i=1}^{n} \) is an \(\varepsilon \)-nearly Parseval frame for a finite-dimensional Hilbert space \(H \), then \(\{\frac{1}{2}(f_i + S_{F_i}^{-1} f_i)\}_{i=1}^{n} \) is a \((1, 1 + \frac{4}{2}) \) frame, which is much closer to \(\mathcal{F} \) than \(\{S_{F_i}^{-1} f_i\}_{i=1}^{n} \) with better frame bounds compared with the bounds of \(\mathcal{F} \). Therefore, the frames of the forms \(\{\frac{1}{\sqrt{1 - \varepsilon}} f_i\}_{i\in I} \) and \(\{\frac{1}{2}(f_i + S_{F_i}^{-1} f_i)\}_{i\in I} \) are useful in applications (also, see [1, Section 3]). Now we have the following results:

Proposition 4.7 (i) Let \(\Lambda = \{\Lambda_i\}_{i\in I} \) be an \(\varepsilon \)-nearly Parseval g-frame with \(\varepsilon < \frac{1}{3} \). Then \(\{\frac{1}{\sqrt{1 - \varepsilon}} \Lambda_i\}_{i\in I} \) is an approximate g-dual of itself.

(ii) Let \(\{f_i\}_{i\in I} \) be an \(\varepsilon \)-nearly Parseval frame with \(\varepsilon < \frac{1}{3} \). Then \(\{\frac{1}{\sqrt{1 - \varepsilon}} f_i\}_{i\in I} \) is an approximate dual of itself.

Proof (i) We have \((1 - \varepsilon)Id_{H} \leq S_{\Lambda} \leq (1 + \varepsilon)Id_{H}, \) so \(0 \leq \frac{S_{\Lambda}}{1 - \varepsilon} - Id_{H} \leq \frac{2\varepsilon}{1 - \varepsilon} Id_{H} \). Therefore, \(\|\frac{S_{\Lambda}}{1 - \varepsilon} - Id_{H}\| \leq \frac{2\varepsilon}{1 - \varepsilon} < 1 \). This means that \(\{\frac{1}{\sqrt{1 - \varepsilon}} \Lambda_i\}_{i\in I} \) and \(\{\frac{1}{\sqrt{1 - \varepsilon}} g_i\}_{i\in I} \) are approximately dual g-frames.

(ii) The result follows from part (i).

Proposition 4.8 Let \(\mathcal{F} = \{f_i\}_{i\in I} \) be a frame and \(\mathcal{G} = \{g_i\}_{i\in I} \), where \(g_i = \frac{1}{2}(f_i + S_{F_i}^{-1} f_i) \).

(i) If \(\|S_{\mathcal{F}} - Id_{H}\| < 2 \), then \(\mathcal{F} \) and \(\mathcal{G} \) are approximately dual frames.

(ii) If \(\mathcal{F} \) is an \(\varepsilon \)-nearly Parseval frame, then \(\mathcal{F} \) and \(\mathcal{G} \) are approximately dual frames.

(iii) If \(\mathcal{F} = \{f_i\}_{i\in I} \) is an A-tight frame with \(A < 3 \), then \(\mathcal{F} \) and \(\mathcal{G} \) are approximately dual frames.

Proof (i) For each \(f \in H \), we have

\[
S_{\mathcal{F}\mathcal{G}}(f) = \frac{1}{2} \left(\sum_{i\in I} \langle f, f_i \rangle f_i + \sum_{i\in I} \langle f, S_{F_i}^{-1} f_i \rangle f_i \right) = \frac{1}{2} \langle S_{\mathcal{F}} f + f \rangle.
\]

Hence:

\[
\|S_{\mathcal{F}\mathcal{G}} - Id_{H}\| = \frac{1}{2} \|S_{\mathcal{F}} - Id_{H}\| < 1.
\]

This means that \(\mathcal{F} \) and \(\mathcal{G} \) are approximately dual frames.

(ii) Since \(\mathcal{F} \) is an \(\varepsilon \)-nearly Parseval frame, \(\mathcal{F} \) is an approximate dual of itself by Theorem 4.2, and so \(\|S_{\mathcal{F}} - Id_{H}\| < 1 \). Now we get the result from part (i).

(iii) Since \(\mathcal{F} \) is A-tight, we have \(S_{\mathcal{F}} = A.Id_{H} \), so \(\|S_{\mathcal{F}} - Id_{H}\| = |A - 1| < 2 \), and the result follows from part (i).
References