A note on m-embedded subgroups of finite groups

Juping TANG1, Long MIAO2,*
1Wuxi Institute of Technology, Wuxi, P. R. China
2School of Mathematical Sciences, Yangzhou University, Yangzhou, P. R. China

Received: 27.02.2014 • Accepted/Published Online: 11.03.2015 • Printed: 30.07.2015

Abstract: Let A be a subgroup of G. A is m-embedded in G if G has a subnormal subgroup T and a $\{1 \leq G\}$-embedded subgroup C such that $G = AT$ and $T \cap A \leq C \leq A$. In this paper, we study the structure of finite groups by using m-embedded subgroups and obtain some new results about p-supersolvability and p-nilpotency of finite groups.

Key words: Sylow subgroup, $\{1 \leq G\}$-embedded, m-embedded subgroup, saturated formation, finite groups

1. Introduction

Throughout the paper, all groups are finite. Most of the notation is standard and can be found in [3, 6, 10, 11]. Let \mathcal{F} be a class of groups. \mathcal{F} is said to be a formation provided that (1) if $G \in \mathcal{F}$ and $H \leq G$, then $G/H \in \mathcal{F}$, and (2) if G/M and G/N are in \mathcal{F}, then $G/M \cap N$ is in \mathcal{F}. A formation \mathcal{F} is said to be saturated if $G \in \mathcal{F}$ whenever $G = (G)$ in \mathcal{F}. It is well known that the class of all p-supersolvable groups and the class of all p-nilpotent groups are saturated formations. Let A be a subgroup of G, $K \leq H \leq G$ and p a prime. Then: (1) A covers the pair (K, H) if $AH = AK$; (2) A avoids (K, H) if $A \cap H = A \cap K$. Recall that a subgroup A of G is called a CAP-subgroup [3, A, Definition 10.8] if A either covers or avoids each pair (K, H), where H/K is a chief factor of G. A subgroup A is called a partial CAP-subgroup [1] or a semicover-avoiding subgroup [8] of G if A either covers or avoids each pair (K, H), where H/K is a factor of some fixed chief series of G. By using the CAP-subgroups and the semicover-avoiding subgroups, group theorists have obtained many interesting results (see, for example, [2, 4, 9]). Furthermore, if E is a quasinormal subgroup of G, then for every maximal pair of G, that is, a pair (K, H), where K is a maximal subgroup of H, E either covers or avoids (K, H). Based on the definitions and properties above, Guo and Skiba presented a new concept as follows:

Definition 1.1 (7) Let A be a subgroup of G and $\Sigma = G_0 \leq G_1 \leq \ldots \leq G_n$ some subgroup series of G. Then A is Σ-embedded in G if A either covers or avoids every maximal pair (K, H) such that $G_{i-1} \leq K \leq H \leq G_i$, for some i.

Here we improve Theorem 4.1 of [7], and present a result of p-nilpotency of group G with some “extra hypothesis”, where p is an odd prime divisor of $|G|$. Meanwhile, we study the structure of G under the

*Correspondence: lmiiao@yzu.edu.cn

2010 AMS Mathematics Subject Classification: 20D10, 20D20.
This research is supported by NSFC (Grant #11271016) and Qing Lan Project of Jiangsu Province and High-Level Personnel Support Program of Yangzhou University and 333 High-Level Personnel Training Project in Jiangsu Province.
assumption of \(G \) is \(p \)-solvable, where \(p \) is a prime divisor of \(|G|\).

Theorem 1.2 Let \(p \) be an odd prime divisor of \(|G|\) and \(P \) be a Sylow \(p \)-subgroup of \(G \). Suppose that every maximal subgroup \(P_1 \) of \(P \) is \(m \)-embedded in \(G \). Then \(G \) is \(p \)-nilpotent if one of the following conditions holds:

1. \(N_G(P_1) \) is \(p \)-nilpotent for every maximal subgroup \(P_1 \) of \(P \).
2. \(N_G(P) \) is \(p \)-nilpotent.

Theorem 1.3 Let \(G \) be a \(p \)-solvable group and \(P \) a Sylow \(p \)-subgroup of \(G \). Suppose that every maximal subgroup \(P_1 \) of \(P \) is \(m \)-embedded in \(G \). Then \(G \) is \(p \)-nilpotent if one of the following conditions holds:

1. \(N_G(P_1) \) is \(p \)-nilpotent for every maximal subgroup \(P_1 \) of \(P \).
2. \(N_G(P) \) is \(p \)-nilpotent.

Theorem 1.4 Let \(G \) be a \(p \)-solvable group and \(p \) a prime divisor of \(|G|\). If every maximal subgroup of \(F_p(G) \) containing \(O_{p'}(G) \) is \(m \)-embedded in \(G \), then \(G \) is \(p \)-supersolvable.

2. Preliminaries

For the sake of convenience, we first list here some known results that will be useful in the sequel.

Lemma 2.1 (7, Lemma 2.13) Let \(K \) and \(H \) be subgroups of \(G \). Suppose that \(K \) is \(m \)-embedded in \(G \) and \(H \) is normal in \(G \). Then

1. If \(H \triangleleft K \), then \(K = H \) is \(m \)-embedded in \(G / H \).
2. If \(K \triangleleft E \triangleleft G \), then \(K \) is \(m \)-embedded in \(E \).
3. If \(|H|, |K| = 1 \), then \(HK/H \) is \(m \)-embedded in \(G / H \).
4. Suppose that \(K \) is a \(p \)-subgroup for some prime \(p \), \(K \) is \(m \)-embedded in \(G \), and \(K \) is not \(\{1 \leq G\} \)-embedded in \(G \). Then \(G \) has a normal subgroup \(M \) such that \(|G : M| = p \) and \(G = KM \).

Lemma 2.2 (7, Lemma 2.14) Let \(P \) be a normal nonidentity \(p \)-subgroup of \(G \) with \(|P| = p^n \) and \(P \cap \Phi(G) = 1 \). Suppose that there is an integer \(k \) such that \(1 \leq k < n \) and the subgroups of \(P \) of order \(p^k \) are \(m \)-embedded in \(G \), then some maximal subgroup of \(P \) is normal in \(G \).

Lemma 2.3 (7, Lemma 2.5) Every \(\{1 \leq G\} \)-embedded subgroup of \(G \) is subnormal in \(G \).

3. The proofs

Proof of Theorem 1.1 Assume that the assertion is false and choose \(G \) to be a counterexample of minimal order. We will divide the proof into the following steps.

1. \(O_{p'}(G) = 1 \).

 In fact, if \(O_{p'}(G) \neq 1 \), then we consider the quotient group \(G/O_{p'}(G) \). If \(N_G(P_1) \) is \(p \)-nilpotent, then

 \[
 N_{G/O_{p'}(G)}(P_1O_{p'}(G)/O_{p'}(G)) = N_G(P_1)O_{p'}(G)/O_{p'}(G)
 \]

 is \(p \)-nilpotent. By Lemma 2.1(3), \(G/O_{p'}(G) \) satisfies the conditions of the theorem, and the minimal choice of \(G \) implies that \(G/O_{p'}(G) \) is \(p \)-nilpotent. Hence \(G \) is \(p \)-nilpotent, a contradiction. Similarly, if \(N_G(P) \) is \(p \)-nilpotent, then we have \(G/O_{p'}(G) \) is \(p \)-nilpotent also, a contradiction.

2. If \(S \) is a proper subgroup of \(G \) containing \(P \), then \(S \) is \(p \)-nilpotent.
If \(N_G(P_1) \) is \(p \)-nilpotent, clearly, \(N_S(P_1) \leq N_G(P_1) \) and then \(N_S(P_1) \) is \(p \)-nilpotent. Applying Lemma 2.1(2), we find that \(S \) satisfies the hypothesis of our theorem. Now, the minimal choice of \(G \) implies that \(S \) is \(p \)-nilpotent. If \(N_G(P) \) is \(p \)-nilpotent, then we still obtain that \(S \) is \(p \)-nilpotent since \(N_S(P) \leq N_G(P) \).

(3) \(O_p(G) \neq 1 \) and \(G/N \) is \(p \)-nilpotent, where \(N = O_p(G) \) is the unique minimal normal subgroup of \(G \).

Case I. \(N_G(P_1) \) is \(p \)-nilpotent.

Since \(G \) is not \(p \)-nilpotent, \(N_G(Z(J(P))) \) is not \(p \)-nilpotent by the Glauberman–Thompson Theorem, where \(J(P) \) is the Thompson subgroup of \(P \). Then \(P \leq N_G(Z(J(P))) \). By (2), we have \(N_G(Z(J(P))) = G \) and hence \(O_p(G) \neq 1 \). Let \(N \) be a minimal normal subgroup of \(G \) contained in \(O_p(G) \).

If \(N = P \), then \(G/N \) is \(p \)-nilpotent. If \(|P : N| = p \), then \(G = N_G(N) \) is \(p \)-nilpotent, a contradiction. Now we may assume that \(|P : N| > p \). For every maximal subgroup \(P_1/N \) of \(P/N \),

\[
N_{G/N}(P_1/N) = N_G(P_1N)/N = N_G(P_1)/N
\]

is \(p \)-nilpotent and \(P_1/N \) is \(m \)-embedded in \(G/N \) by Lemma 2.1(1). Therefore \(G/N \) satisfies the hypothesis of the theorem, and hence \(G/N \) is \(p \)-nilpotent. Obviously, \(N \) is the unique minimal normal subgroup of \(G \) contained in \(O_p(G) \) and \(\Phi(G) = 1 \). Then we obtain that \(N = O_p(G) \) is an elementary abelian \(p \)-group.

Case II. \(N_G(P) \) is \(p \)-nilpotent.

Since \(G \) is not \(p \)-nilpotent, by Corollary of [12], there exists a characteristic subgroup \(H \) of \(P \) such that \(N_G(H) \) is not \(p \)-nilpotent. Since \(N_G(P) \) is \(p \)-nilpotent, we may choose a characteristic subgroup \(H \) of \(P \) such that \(N_G(H) \) is not \(p \)-nilpotent, but \(N_G(K) \) is \(p \)-nilpotent for any characteristic subgroup \(K \) of \(P \) with \(H < K \leq P \). Since \(P \leq N_G(H) \) and \(N_G(K) \) is not \(p \)-nilpotent, we have \(N_G(H) = G \) by (2). This leads to \(O_p(G) \neq 1 \) and \(N_G(K) \) is \(p \)-nilpotent for any characteristic subgroup \(K \) of \(P \) such that \(O_p(G) < K \leq P \). Now by using Corollary of [12] again, we see that \(G/O_p(G) \) is \(p \)-nilpotent and \(|P : O_p(G)| > p \). Let \(N \) be a minimal normal subgroup of \(G \) contained in \(O_p(G) \).

Since \(|P : N| > p \), \(P/N \) is a Sylow \(p \)-subgroup of \(G/N \), and

\[
N_{G/N}(P/N) = N_G(PN)/N = N_G(P)/N
\]

is \(p \)-nilpotent and every maximal subgroup \(P_1/N \) of \(P/N \) is \(m \)-embedded in \(G/N \) by Lemma 2.1(1). Therefore \(G/N \) satisfies the hypothesis of the theorem, and hence \(G/N \) is \(p \)-nilpotent. Obviously, \(N \) is the unique minimal normal subgroup of \(G \) contained in \(O_p(G) \) and \(\Phi(G) = 1 \). Then we obtain that \(N = O_p(G) \) is an elementary abelian \(p \)-group.

(4) \(G = PQ \), where \(Q \) is a Sylow \(q \)-subgroup of \(G \) and \(q \neq p \) is a prime divisor of \(|G| \).

By (3), immediately we obtain that \(G \) is \(p \)-solvable, and then by (1) \(C_G(N) = N \) since \(N \leq C_G(N) \leq N \). For any \(q \in \pi(G) \) with \(q \neq p \), Theorem 6.3.5 of [5] implies that there exists a Sylow \(q \)-subgroup \(Q \) of \(G \) such that \(G_1 = PQ \) is a subgroup of \(G \). If \(G_1 < G \), then \(G_1 \) is \(p \)-nilpotent by (2). This leads to \(Q \leq C_G(N) \leq N \), a contradiction. Thus \(G = PQ \).

(5) The final contradiction.

Since \(N \not\leq \Phi(G) \), there exists a maximal subgroup \(M \) of \(G \) such that \(G = NM \) and \(N \cap M = 1 \). Let \(M_p \) be Sylow \(p \)-subgroup of \(M \). Firstly, we may assume that \(M_p \neq 1 \). Otherwise, \(M_p = 1 \) and then \(P = N \). If \(N_G(P) \) is \(p \)-nilpotent, then \(G \) is \(p \)-nilpotent, a contradiction. If \(N_G(P_1) \) is \(p \)-nilpotent, then there exists a
maximal subgroup P_1 of P such that P_1 is normal in G by Lemma 2.2. Therefore $G = N_G(P_1)$ is p-nilpotent, a contradiction. Now we may obtain the final contradiction as follows.

Now we pick a maximal subgroup P_1 of P such that $M_p \leq P_1$. By hypothesis, P_1 is m-embedded in G, that is, G has a subnormal subgroup T and a $\{1 \leq G\}$-embedded subgroup C such that $G = P_1 T$ and $P_1 \cap T \leq C \leq P_1$. Applying Lemma 2.3, we obtain that $C \leq O_p(G) = N$.

Assume that $C \neq 1$. If $C < N$, then for $N \cap M = 1$, we obtain C neither covers nor avoids maximal pair (M, G), a contradiction. Hence we may assume that $C = N$, i.e. $N \leq P_1$ and then $P = NM_p \leq P_1 < P$, a contradiction.

Assume that $C = 1$. The Sylow p-subgroup of T is cyclic with order p. It follows from $N \leq O^p(G) \leq T$ that $|N| = p$. Therefore $M \cong G/N = N_G(N)/C_G(N)$ is isomorphic to a subgroup of $Aut(N)$, and then M is cyclic with order q^α by (4), that is, $M_p = 1$, a contradiction.

The final contradiction completes our proof.

Proof of Theorem 1.2 Assume that the assertion is false and choose G to be a counterexample of minimal order. Furthermore, we have that

(1) $O_{p'}(G) = 1$.

If $L = O_{p'}(G) \neq 1$, we consider G/L. Clearly, $P_1 L/L$ is a maximal subgroup of Sylow p-subgroup of G/L where P_1 is a maximal subgroup of P. Since P_1 is m-embedded in G, we have $P_1 L/L$ is also m-embedded in G/L by Lemma 2.1(3). Therefore G/L satisfies the condition of the theorem. The minimal choice of G implies that G/L is p-supersolvable, and hence G is p-supersolvable, a contradiction.

(2) $O_p(G) \neq 1$.

Since G is p-solvable and $O_{p'}(G) = 1$, we have that a minimal normal subgroup of G is an abelian p-group and hence $O_p(G) \neq 1$.

(3) Final contradiction.

By (2), we may pick a minimal normal subgroup N of G contained in $O_p(G)$. If $N = P$ then G/N is p-supersolvable. If $N = P_1$, where P_1 is a maximal subgroup of P, then G/N is p-supersolvable. Now we may assume that $|P : N| > p$. By Lemma 2.1(1), we know that G/N satisfies the condition of the theorem, and hence the minimality of G implies that G/N is p-supersolvable; on the other hand, since the class of all p-supersolvable groups is a saturated formation, we have N' is the unique minimal normal subgroup of G and $O_p(G) = N \not\leq \Phi(G)$. If $O_p(G) = P$, then by Lemma 2.2, some maximal subgroup of P is normal in G, a contradiction. Now we may assume that $N \leq P$.

Clearly, there exists a maximal subgroup M of G such that $G = NM$ with $N \cap M = 1$ and $P = NM_p$ with $M_p \neq 1$. Now we choose a maximal subgroup P_1 with $M_p \leq P_1$. By hypothesis, P_1 is m-embedded in G. Therefore G has a subnormal subgroup T and a $\{1 \leq G\}$-embedded subgroup C such that $G = P_1 T$ and $P_1 \cap T \leq C \leq P_1$. On the other hand, we know that $C \leq O_p(G)$. Therefore $C \leq N$. If $1 < C < N$, then for $N \cap M = 1$, we have C neither covers nor avoids maximal pair (M, G). Now we may assume that either $C = N$ or $C = 1$. By the choice of P_1, we immediately have $P_1 \cap T = 1$ and then the Sylow p-subgroup of T is cyclic with order p. It follows from $N \leq O^p(G) \leq T$ that $|N| = p$. Therefore G is p-supersolvable since G/N p-supersolvable, a contradiction.

The final contradiction completes our proof.
Proof of Theorem 1.3. Assume that the assertion is false and choose G to be a counterexample of minimal order. Furthermore, we have that

(1) $O_{p'}(G) = 1$.

If $T = O_{p'}(G) \neq 1$, we consider G/T. Firstly, $F_p(G/T) = F_p(G)/T$. Let M/T be a maximal subgroup of $F_p(G/T)$. Then M is a maximal subgroup of $F_p(G)$ containing $O_{p'}(G)$. Since M is m-embedded in G, then M/T is m-embedded in G/T by Lemma 2.1(3). Thus G/T satisfies the hypothesis of the theorem. The minimality of G implies that G/T is p-supersolvable and so is G, a contradiction.

(2) $\Phi(G) = 1$ and $F_p(G) = F(G) = O_p(G)$.

If not, then $L = \Phi(G) \neq 1$. We consider G/L. Since $O_{p'}(G) = 1$, it is easy to show that $F_p(G) = F(G) = O_p(G)$. This implies that $F_p(G/L) = O_p(G/L) = O_p(G)/L = F_p(G)/L$. If P_1/L is a maximal subgroup of $F_p(G/L)$, then P_1 is a maximal subgroup of $F_p(G)$. Since P_1 is m-embedded in G and hence P_1/L is m-embedded in G/L by Lemma 2.1(1). Thus G/L satisfies the hypothesis of the theorem. The minimal choice of G implies that G/L is p-supersolvable and so is G, since the class of all p-supersolvable groups is a saturated formation, a contradiction.

(3) Every minimal normal subgroup of G contained in $F(G)$ is cyclic of order p.

By (2), $P = F(G) = R_1 \times \cdots \times R_t$, where R_i ($i = 1, 2, \ldots, t$) is a minimal normal subgroup of G contained in $F(G)$. At the same time, Lemma 2.2 implies that $t \geq 2$. Since G is p-solvable and $O_{p'}(G) = 1$, we have $C_G(O_p(G)) \leq O_p(G)$. Thus $C_G(F(G)) = F(G)$. Suppose that there exists R_i such that $|R_i| > p$. Without loss of generality, let $i = 1$ and $R = R_2 \times \cdots \times R_t$. Obviously, we may assume that $P/R \cap \Phi(G)/R = 1$, in fact, if $P/R \cap \Phi(G)/R \neq 1$, then $P/R \leq \Phi(G)/R$ since $R_1 \cong P/R$ is a chief factor of G. Therefore $P \leq \Phi(G)/R$ and then $P = P \cap \Phi(G)/R = R(P \cap \Phi(G)) = R$, a contradiction. Applying Lemma 2.1(1), G/R satisfies the hypothesis of the theorem and we have that some maximal subgroup of P/R is normal in G/R by Lemma 2.2, which contradicts the minimality of R_1. Therefore every R_i is of order p.

(4) The final contradiction.

By (3), $P = F(G) = R_1 \times \cdots \times R_t$, where R_i is a minimal normal subgroup of G of order p. For each i the quotient $G/C_G(R_i)$ is a subgroup of $\text{Aut}(R_i)$ and hence is abelian. Since the class of all p-supersolvable groups is a formation, we have $G/\bigcap_{i=1}^t(C_G(R_i))$ is p-supersolvable, and thus $G/F(G)$ is p-supersolvable because $\bigcap_{i=1}^t(C_G(R_i)) = C_G(F(G)) = F(G)$. Actually, all chief factors of G below $F(G)$ are cyclic groups of order p; therefore G is p-supersolvable.

The final contradiction completes our proof.

4. Applications

Obviously, if H is $\{1 \leq G\}$-embedded in G, then H is m-embedded in G. Therefore we have the following corollaries.

Corollary 4.1 Let p be an odd prime divisor of $|G|$ and P be a Sylow p-subgroup of G. If every maximal subgroup P_1 of P is $\{1 \leq G\}$-embedded in G and $N_G(P_1)$ is p-nilpotent, then G is p-nilpotent.

Corollary 4.2 Let p be an odd prime divisor of $|G|$ and P be a Sylow p-subgroup of G. If every maximal subgroup P_1 of P is $\{1 \leq G\}$-embedded in G and $N_G(P)$ is p-nilpotent, then G is p-nilpotent.
Corollary 4.3 Let G be a p-solvable group. If every maximal subgroup of a Sylow subgroup of G is $\{1 \leq G\}$-embedded in G, then G is p-supersolvable.

Corollary 4.4 Let G be a p-solvable group and p a prime divisor of $|G|$. If every maximal subgroup of $F_p(G)$ containing $O_p(G)$ is $\{1 \leq G\}$-embedded in G, then G is p-supersolvable.

Acknowledgment

We thank the referee for his/her careful reading of the manuscript and for his/her suggestions, which have helped to improve our original version.

References

