The prime tournaments T with $|W_5(T)|=|T|-2$

Houmem BELKHECHINE1,*, Imed BOUDABBOUS2, Kaouthar HZAMI3

1Bizerte Preparatory Engineering Institute, Carthage University, Bizerte, Tunisia
2Sfax Preparatory Engineering Institute, Sfax University, Sfax, Tunisia
3Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University, Kasserine, Tunisia

Received: 30.12.2014 • Accepted/Published Online: 20.05.2015 • Printed: 30.07.2015

Abstract: We consider a tournament $T = (V, A)$. For $X \subseteq V$, the subtournament of T induced by X is $T[X] = (X, A \cap (X \times X))$. A module of T is a subset X of V such that for $a, b \in X$ and $x \in V \setminus X$, $(a, x) \in A$ if and only if $(b, x) \in A$. The trivial modules of T are \emptyset, $\{x\} (x \in V)$, and V. A tournament is prime if all its modules are trivial. For $n \geq 2$, W_{2n+1} denotes the unique prime tournament defined on $\{0, \ldots, 2n\}$ such that $W_{2n+1}[[0, \ldots, 2n-1]]$ is the usual total order. Given a prime tournament T, $W_5(T)$ denotes the set of $v \in V$ such that there is $W \subseteq V$ satisfying $v \in W$ and $T[W]$ is isomorphic to W_5. B.J. Latka characterized the prime tournaments T such that $W_5(T) = \emptyset$. The authors proved that if $W_5(T) \neq \emptyset$, then $|W_5(T)| \geq |V| - 2$. In this article, we characterize the prime tournaments T such that $|W_5(T)|=|V| - 2$.

Key words: Tournament, prime, embedding, critical, partially critical

1. Introduction
1.1. Preliminaries

A tournament $T = (V(T), A(T))$ (or (V, A)) consists of a finite set V of vertices together with a set A of ordered pairs of distinct vertices, called arcs, such that for all $x \neq y \in V$, $(x, y) \in A$ if and only if $(y, x) \not\in A$. The cardinality of T, denoted by $|T|$, is that of $V(T)$. Given a tournament $T = (V, A)$, with each subset X of V is associated the subtournament $T[X] = (X, A \cap (X \times X))$ of T induced by X. For $X \subseteq V$ (resp. $x \in V$), the subtournament $T[V \setminus X]$ (resp. $T[V \setminus \{x\}]$) is denoted by $T - X$ (resp. $T - x$). Two tournaments $T = (V, A)$ and $T' = (V', A')$ are isomorphic, which is denoted by $T \simeq T'$, if there exists an isomorphism from T onto T', i.e. a bijection f from V onto V' such that for all $x, y \in V$, $(x, y) \in A$ if and only if $(f(x), f(y)) \in A'$. We say that a tournament T' embeds into T if T' is isomorphic to a subtournament of T. Otherwise, we say that T omits T'. The tournament T is said to be transitive if it omits the tournament $C_3 = (\{0, 1, 2\}, \{(0, 1), (1, 2), (2, 0)\})$. For a finite subset V of \mathbb{N}, we denote by \vec{V} the usual total order defined on V, i.e., the transitive tournament $(V, \{(i, j) : i < j\})$.

Some notations are needed. Let $T = (V, A)$ be a tournament. For two vertices $x \neq y \in V$, the notation $x \rightarrow y$ signifies that $(x, y) \in A$. Similarly, given $x \in V$ and $Y \subseteq V$, the notation $x \rightarrow Y$ (resp. $Y \rightarrow x$) means that $x \rightarrow y$ (resp. $y \rightarrow x$) for all $y \in Y$. Given $x \in V$, we set $N_T^+(x) = \{y \in V : x \rightarrow y\}$. For all

*Correspondence: houmem@gmail.com

2010 AMS Mathematics Subject Classification: 05C20, 05C60, 05C75.
n ∈ \mathbb{N} \setminus \{0\}, the set \{0, \ldots, n - 1\} is denoted by \mathbb{N}_n.

Let \(T = (V, A) \) be a tournament. A subset \(I \) of \(V \) is a *module* [11] (or a *clan* [7]) of \(T \) provided that for all \(x \in V \setminus I, x \rightarrow I \) or \(I \rightarrow x \). For example, \(\emptyset, \{x\} \), where \(x \in V \), and \(V \) are modules of \(T \), called *trivial* modules. A tournament is *prime* [4] (or *primitive* [7]) if all its modules are trivial. Notice that a tournament \(T = (V, A) \) and its *dual* \(T^* = (V, \{(x, y) : (y, x) \in A\}) \) share the same modules. Hence, \(T \) is prime if and only if \(T^* \) is.

For \(n \geq 2 \), we introduce the tournament \(W_{2n+1} \) defined on \(\mathbb{N}_{2n+1} \) as follows: \(W_{2n+1}[\mathbb{N}_{2n}] = \overrightarrow{\mathbb{N}_{2n}} \) and \(N_{W_{2n+1}}(2n) = \{2i : i \in \mathbb{N}_n\} \) (see Figure 1). In 2003, B.J. Latka [8] characterized the prime tournaments omitting the tournament \(W_5 \). In 2012, the authors were interested in the set \(W_5(T) \) of the vertices \(x \) of a prime tournament \(T = (V, A) \) for which there exists a subset \(X \) of \(V \) such that \(x \in X \) and \(T[X] \simeq W_5 \). They obtained the following.

Theorem 1 ([1]) Let \(T \) be a prime tournament into which \(W_5 \) embeds. Then \(|W_5(T)| \geq |T| - 2 \). If, in addition, \(|T| \) is even, then \(|W_5(T)| \geq |T| - 1 \).

Our main result in this paper, presented in [3] without detailed proof, gives a characterization of the class \(\mathcal{T} \) of the prime tournaments \(T \) on at least 3 vertices such that \(|W_5(T)| = |T| - 2 \). This answers [1, Problem 4.4].

![Figure 1. \(W_{2n+1} \)](image)

1.2. Partially critical tournaments and the class \(\mathcal{T} \)

Our characterization of the tournaments of the class \(\mathcal{T} \) requires the study of their partial criticality structure, a notion introduced as a weakening of the notion of criticality defined in Section 2. These notions are defined in terms of critical vertices. A vertex \(x \) of a prime tournament \(T \) is *critical* [10] if \(T - x \) is not prime. The set of noncritical vertices of a prime tournament \(T \) was introduced in [9]. It is called the *support* of \(T \) and is denoted by \(\sigma(T) \). Let \(T \) be a prime tournament and let \(X \) be a subset of \(V(T) \) such that \(|X| \geq 3 \); we say that \(T \) is *partially critical according to \(T[X] \) (or \(T[X] \)-critical) [6] if \(T[X] \) is prime and if \(\sigma(T) \subseteq X \). We will see that: for \(T \in \mathcal{T} \), \(V(T) \setminus W_5(T) = \sigma(T) \). Partially critical tournaments are characterized by M.Y. Sayar in [9]. In order to recall this characterization, we first introduce the tools used to this end. Given a tournament \(T = (V, A) \), with each subset \(X \) of \(V \), such that \(|X| \geq 3 \) and \(T[X] \) is prime, are associated the following subsets of \(V \setminus X \):

- \(\langle X \rangle = \{x \in V \setminus X : x \rightarrow X \text{ or } X \rightarrow x\} \).
- For all \(u \in X \), \(X(u) = \{x \in V \setminus X : \{u, x\} \text{ is a module of } T[X \cup \{x\}]\} \).
- \(\text{Ext}(X) = \{x \in V \setminus X : T[X \cup \{x\}] \text{ is prime}\} \).
The family \(\{X(u) : u \in X\} \cup \{\text{Ext}(X), \langle X \rangle\} \) is denoted by \(p_X^T \).

Lemma 1 ([7]) Let \(T = (V, A) \) be a tournament and let \(X \) be a subset of \(V \) such that \(|X| \geq 3 \) and \(T[X] \) is prime. The nonempty elements of \(p_X^T \) constitute a partition of \(V \setminus X \) and satisfy the following assertions:

- For \(u \in X, x \in X(u), \) and \(y \in V \setminus (X \cup X(u)) \), if \(T[X \cup \{x, y\}] \) is not prime, then \(\{u, x\} \) is a module of \(T[X \cup \{x, y\}] \).
- For \(x \in \langle X \rangle \) and \(y \in V \setminus (X \cup \langle X \rangle) \), if \(T[X \cup \{x, y\}] \) is not prime, then \(X \cup \{y\} \) is a module of \(T[X \cup \{x, y\}] \).
- For \(x \neq y \in \text{Ext}(X) \), if \(T[X \cup \{x, y\}] \) is not prime, then \(\{x, y\} \) is a module of \(T[X \cup \{x, y\}] \).

Furthermore, \(\langle X \rangle \) is divided into \(X^- = \{x \in \langle X \rangle : x \rightarrow X\} \) and \(X^+ = \{x \in \langle X \rangle : X \rightarrow x\} \). Similarly, for all \(u \in X \), \(X(u) \) is divided into \(X^-(u) = \{x \in X(u) : x \rightarrow u\} \) and \(X^+(u) = \{x \in X(u) : u \rightarrow x\} \). We then introduce the family \(q_X^T = \{\text{Ext}(X), X^-, X^+\} \cup \{X^-(u) : u \in X\} \cup \{X^+(u) : u \in X\} \).

A graph \(G = (V(G), E(G)) \) (or \((V, E) \)) consists of a finite set \(V \) of vertices together with a set \(E \) of unordered pairs of distinct vertices, called edges. Given a vertex \(x \) of a graph \(G = (V, E) \), the set \(\{y \in V, \{x, y\} \in E\} \) is denoted by \(N_G(x) \). With each subset \(X \) of \(V \) is associated the subgraph \(G[X] = (X, E \cap \binom{X}{2}) \) of \(G \) induced by \(X \). An isomorphism from a graph \(G = (V, E) \) onto a graph \(G' = (V', E') \) is a bijection \(f \) from \(V \) onto \(V' \) such that for all \(x, y \in V, \{x, y\} \in E \) if and only if \(\{f(x), f(y)\} \in E' \). We now introduce the graph \(G_{2n} \) defined on \(\mathbb{N}_{2n} \), where \(n \geq 1 \), as follows. For all \(x, y \in \mathbb{N}_{2n}, \{x, y\} \in E(G_{2n}) \) if and only if \(|y - x| \geq n \) (see Figure 2).

Figure 2. \(G_{2n} \)

A graph \(G \) is connected if for all \(x \neq y \in V(G) \), there is a sequence \(x_0 = x, \ldots, x_m = y \) of vertices of \(G \) such that for all \(i \in \mathbb{N}_m, \{x_i, x_{i+1}\} \in E(G) \). For example, the graph \(G_{2n} \) is connected. A connected component of a graph \(G \) is a maximal subset \(X \) of \(V(G) \) (with respect to inclusion) such that \(G[X] \) is connected. The set of the connected components of \(G \) is a partition of \(V(G) \), denoted by \(\mathcal{C}(G) \). Let \(T = (V, A) \) be a prime tournament. With each subset \(X \) of \(V \) such that \(|X| \geq 3 \) and \(T[X] \) is prime, is associated its outside graph \(G_X^T \) defined by \(V(G_X^T) = V \setminus X \) and \(E(G_X^T) = \{\{x, y\} \in \binom{V \setminus X}{2} : T[X \cup \{x, y\}] \) is prime \}. We now present the characterization of partially critical tournaments.

Theorem 2 ([9]) Consider a tournament \(T = (V, A) \) with a subset \(X \) of \(V \) such that \(|X| \geq 3 \) and \(T[X] \) is prime. The tournament \(T \) is \(T[X] \)-critical if and only if the assertions below hold.
1. \(\text{Ext}(X) = \emptyset \).

2. For all \(u \in X \), the tournaments \(T[X(u) \cup \{u\}] \) and \(T[(X) \cup \{u\}] \) are transitive.

3. For each \(Q \in \mathcal{C}(G_X^T) \), there is an isomorphism \(f \) from \(G_{2n} \) onto \(G_X^T | Q \) such that \(Q_1, Q_2 \in q_X^T \), where \(Q_1 = f(N_n) \) and \(Q_2 = f(N_{2n} \setminus N_n) \). Moreover, for all \(x \in Q_i \) (\(i = 1 \) or \(2 \)), \(|N_{G_X^T}(x)| = |N^n_{T(Q_i)}(x)| + 1 \) (resp. \(n - |N^n_{T(Q_i)}(x)| \)) if \(Q_i = X^+ \) or \(X^-(u) \) (resp. \(Q_i = X^- \) or \(X^+(u) \)), where \(u \in X \).

The next corollary follows from Theorem 2 and Lemma 1.

Corollary 1 Let \(T \) be a \(T[X] \)-critical tournament, \(T \) is entirely determined up to isomorphism by giving \(T[X] \), \(q_X^T \) and \(\mathcal{C}(G_X^T) \). Moreover, the tournament \(T \) is exactly determined by giving, in addition, either the graphs \(G_X^T | Q \) for any \(Q \in \mathcal{C}(G_X^T) \), or the transitive tournaments \(T[Y] \) for any \(Y \in q_X^T \).

We underline the importance of Theorem 2 and Corollary 1 in our description of the tournaments of the class \(T \). Indeed, these tournaments are introduced up to isomorphism as \(C_3 \)-critical tournaments \(T \) defined by giving \(\mathcal{C}(G_{N_3}^T) \) in terms of the nonempty elements of \(q_{N_3}^T \). Figure 3 illustrates a tournament obtained from such information. We refer to [10, Discussion] for more details about this purpose.

We now introduce the class \(\mathcal{H} \) (resp. \(\mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L} \)) of the \(C_3 \)-critical tournaments \(H \) (resp. \(I, J, K, L \)) such that:

- \(\mathcal{C}(G_{N_3}^H) = \{N_3^+(0) \cup N_3^-, N_3^+ \cup N_3^-(1)\} \) (see Figure 3);
- \(\mathcal{C}(G_{N_3}^I) = \{N_3^+(0) \cup N_3^+(2), N_3^+(1) \cup N_3^-(0)\};
- \(\mathcal{C}(G_{N_3}^J) = \{N_3^+(1) \cup N_3^-, N_3^+(1) \cup N_3^-(0)\};
- \(\mathcal{C}(G_{N_3}^K) = \{N_3^+(1) \cup N_3^+, N_3^+(0) \cup N_3^-(2)\};
- \(\mathcal{C}(G_{N_3}^L) = \{N_3^+(1) \cup N_3^+, N_3^+(0) \cup N_3^-(2), N_3^+ \cup N_3^-(0)\}.\)

Notice that for \(X = \mathcal{H}, \mathcal{I}, \mathcal{J} \) or \(\mathcal{K} \), \(\{|V(T)| : T \in X\} = \{2n + 1 : n \geq 3\} \) and \(\{|V(T)| : T \in \mathcal{L}\} = \{2n + 1 : n \geq 4\} \). We denote by \(\mathcal{H}^* \) (resp. \(\mathcal{I}^*, \mathcal{J}^*, \mathcal{K}^*, \mathcal{L}^* \)) the class of the tournaments \(T^* \), where \(T \in \mathcal{H} \) (resp. \(I, J, K, L \)).

Remark 1 We have \(\mathcal{H}^* = \mathcal{H} \) and \(\mathcal{I}^* = \mathcal{I} \).

Proof Let \(T \in \mathcal{H} \). The permutation \(f \) of \(V(T) \) defined by \(f(1) = 0, f(0) = 1, \) and \(f(v) = v \) for all \(v \in V(T) \setminus \{0, 1\} \) is an isomorphism from \(T^* \) onto a tournament \(T' \) of the class \(\mathcal{H} \). Let now \(T \in I \) and let \(x \) be the unique vertex of \(N_3^+(2) \) such that \(|N^n_{T[N_3^+(2)]}(x)| = 0 \). The permutation \(g \) of \(V(T) \) defined by \(g(1) = 0, g(0) = 1, g(x) = 2, g(2) = x, \) and \(g(v) = v \) for \(v \in V(T) \setminus \{0, 1, 2, x\} \) is an isomorphism from \(T^* \) onto a tournament \(T' \) of the class \(\mathcal{I} \).

By setting \(\mathcal{M} = \mathcal{H} \cup \mathcal{I} \cup \mathcal{J} \cup \mathcal{J}^* \cup \mathcal{K} \cup \mathcal{K}^* \cup \mathcal{L} \cup \mathcal{L}^* \), we state our main result as follows.

Theorem 3 Up to isomorphism, the tournaments of the class \(T \) are those of the class \(\mathcal{M} \). Moreover, for all \(T \in \mathcal{M} \), we have \(V(T) \setminus W_5(T) = \sigma(T) = \{0, 1\} \).
2. Critical tournaments and tournaments omitting W_5

We begin by recalling the characterization of the critical tournaments and some of their properties. A prime tournament $T = (V, A)$, with $|T| \geq 3$, is critical if $\sigma(T) = \emptyset$, i.e. if all its vertices are critical. In order to present the critical tournaments, characterized by J.H. Schmerl and W.T. Trotter in [10], we introduce the tournaments T_{2n+1} and U_{2n+1} defined on N_{2n+1}, where $n \geq 2$, as follows:

- $A(T_{2n+1}) = \{(i, j) : j - i \in \{1, \ldots, n\} \mod 2n + 1\}$ (see Figure 4).
- $A(T_{2n+1}) \setminus A(U_{2n+1}) = A(T_{2n+1}([n + 1, \ldots, 2n])$) (see Figure 5).

![Figure 4. T_{2n+1}](image)

![Figure 5. U_{2n+1}](image)

Theorem 4 ([10]) Up to isomorphy, T_{2n+1}, U_{2n+1}, and W_{2n+1}, where $n \geq 2$, are the only critical tournaments.

Notice that a critical tournament is isomorphic to its dual. Moreover, as a tournament on 4 vertices is not prime, we have:

\[T[N^+_3(0)] = N_{2k+1} \setminus N_{k+2}; \]
\[T[N^+_3(0)] = (N_{k+2} \setminus N_3)^*; \]
\[\text{for all } (i, j) \in N^+_3(0) \times N^-_3, \]
\[i \rightarrow j \text{ if and only if } j - i \geq k - 1. \]
Fact 1 Up to isomorphy, T_5, U_5, and W_5 are the only prime tournaments on 5 vertices.

As mentioned in [2], the next remark follows from the definition of the critical tournaments.

Remark 2 Up to isomorphy, the prime subtournaments on at least 5 vertices of T_{2n+1} (resp. U_{2n+1}, W_{2n+1}), where $n \geq 2$, are the tournaments T_{2m+1} (resp. U_{2m+1}, W_{2m+1}), where $2 \leq m \leq n$.

To recall the characterization of the prime tournaments omitting W_5, we introduce the Paley tournament P_7 defined on \mathbb{N}_7 by $A(P_7) = \{(i, j) : j - i \in \{1, 2, 4\} \mod 7\}$. Notice that for all $x \neq y \in \mathbb{N}_7$, $P_7 - x \simeq P_7 - y$, and let $B_6 = P_7 - 6$.

Theorem 5 ([8]) Up to isomorphy, the prime tournaments on at least 5 vertices and omitting W_5 are the tournaments B_6, P_7, T_{2n+1}, and U_{2n+1}, where $n \geq 2$.

3. Some useful configurations

In this section, we introduce a number of configurations that occur in the proof of Theorem 3. These configurations involve mainly partially critical tournaments. We begin with the two following lemmas obtained in [2].

Lemma 2 ([2]) If B_6 embeds into a prime tournament T on 7 vertices and if $T \not\simeq P_7$, then $|W_5(T)| = 7$.

Lemma 3 ([2]) Let T be a U_5-critical tournament on 7 vertices. If $T \not\simeq U_7$, then $W_5(T) \cap \{3, 4\} \neq \emptyset$.

Lemma 4 specifies the C_3-critical tournaments with a connected outside graph. It follows from the examination of the different possible configurations obtained by using Theorem 2.

Lemma 4 Given a C_3-critical tournament T on at least 5 vertices, if $G_{N_3}^T$ is connected, then T is critical. More precisely, the different configurations are as follows where $i \in N_3$ and $i + 1$ is considered modulo 3.

1. If $C(G_{N_3}^T) = \{N_3^- (i) \cup N_3^+ (i + 1)\}$, then $T \simeq T_{2n+1}$ for some $n \geq 2$.

2. If $C(G_{N_3}^T) = \{N_3^- \cup N_3^+ (i)\}, \{N_3^- \cup N_3^- (i)\}, \{N_3^+ (i) \cup N_3^+ (i + 1)\}$, or $\{N_3^- (i) \cup N_3^- (i + 1)\}$, then $T \simeq U_{2n+1}$ for some $n \geq 2$.

3. If $C(G_{N_3}^T) = \{N_3^- \cup N_3^- (i)\}, \{N_3^+ \cup N_3^- (i)\},$ or $\{N_3^+ (i) \cup N_3^- (i + 1)\}$, then $T \simeq W_{2n+1}$ for some $n \geq 2$.

For a transitive tournament T, recall that $\min T$ denotes its smallest element and $\max T$ its largest.

Lemma 5 Given a C_3-critical tournament T on at least 5 vertices, if $T[N_3 \cup e] \simeq T_5$ for all $e \in E(G_{N_3}^T)$, then $T \simeq T_{2n+1}$ for some $n \geq 2$.

Proof Let T be a C_3-critical tournament on at least 5 vertices such that for all $e \in E(G_{N_3}^T)$, $T[N_3 \cup e] \simeq T_5$. Given $e \in E(G_{N_3}^T)$, by using Lemma 4 and Remark 2, $C = \{v, v'\}$, where $v \in N_3^- (i)$, $v' \in N_3^+ (i + 1)$, $i \in N_3$ and $i + 1$ is considered modulo 3. Then, by Theorem 2, the connected components of T are the nonempty elements of the family $\{N_3^- (j) \cup N_3^+ (j + 1)\}_{j \in N_3}$, where $j + 1$ is considered modulo 3. The tournament T is critical. Indeed, by using Theorem 2, for each $k \in N_3$, $\{\max T[N_3^+ (k + 1) \cup \{k + 1\}], \min T[N_3^- (k + 2) \cup \{k + 2\}]\}$, where
Lemma 6. Given a U_5-critical tournament, if $T[\mathbb{N}_5 \cup e] \simeq U_5$ for all $e \in E(G_5^T)$, then $T \simeq U_{2n+1}$ for some $n \geq 2$.

Proof. The subsets X of \mathbb{N}_7 such that $U_7[X] \simeq U_5$ are the sets $\mathbb{N}_7 \setminus \{i, j\}$, where $\{i, j\} = \{0, 4\}, \{4, 1\}, \{1, 5\}, \{5, 2\}, \{2, 6\}$, or $\{6, 3\}$. By observing $d_X^{U_7}$ for such subsets X and by Theorem 2, we deduce that the elements of $\mathcal{C}(G_5^T)$ are the nonempty elements among the following six sets: $\mathbb{N}_7^+ \cup \mathbb{N}_7^-(0)$, $\mathbb{N}_7^+(0) \cup \mathbb{N}_7^+(3)$, $\mathbb{N}_7^-(1) \cup \mathbb{N}_7^+(3)$, $\mathbb{N}_7^+(1) \cup \mathbb{N}_7^+(4)$, $\mathbb{N}_7^-(2) \cup \mathbb{N}_7^+(4)$, and $\mathbb{N}_7^- \cup \mathbb{N}_7^+(2)$. Suppose first that $|\mathcal{C}(G_5^T)| = 6$. The tournament T is critical. Indeed, by using Theorem 2, $\{\min T[\mathbb{N}_7^+(3)], \max T[\mathbb{N}_7^+(3)]\}$ (resp. $\{\min T[\mathbb{N}_7^+(3)], \max T[\mathbb{N}_7^+(4)]\}$, $\{\min T[\mathbb{N}_7^-(4)], \max T[\mathbb{N}_7^+(4)]\}, \{\min T[\mathbb{N}_7^+(1)], \max T[\mathbb{N}_7^+(0)]\}$, $\{\min T[\mathbb{N}_7^+(2)], \max T[\mathbb{N}_7^+(1)]\}$) is a nontrivial module of $T - \{\}$ (resp. $T - 1, T - 2, T - 3, T - 4$). By Remark 2, $T \simeq U_{2n+1}$ for some $n \geq 8$. Suppose now that $|\mathcal{C}(G_5^T)| \leq 5$. Then T embeds into a U_5-critical tournament T' with $|\mathcal{C}(G_5^{T'})| = 6$. By the first case, $T' \simeq U_{2n+1}$ for some $n \geq 8$ and thus $T \simeq U_{2n+1}$ for some $n \geq 2$ by Remark 2.

Lemma 7. Let $T = (V, A)$ be a $T[X]$-critical tournament with $|V \setminus X| \geq 2$, let $Q = \mathbb{N}_2n$ be a connected component of G_V^X such that $G_V^X[Q] = G_{2n}$, and let $e = \{i, i+n\}$, where $i \in \mathbb{N}_n$. Then the tournament $T - e$ is $T[X]$-critical. Moreover, Q is included in any subset Z of V such that $T[Z] \simeq W_5$ and $Z \cap (V \setminus (Q \cup W_5(T-e))) \neq \emptyset$.

Proof. For $n \geq 2$, the function

$$f_1 : Q \setminus e \longrightarrow \mathbb{N}_2n$$

$$k \longmapsto \begin{cases}
 k & \text{if } 0 \leq k \leq i - 1 \\
 k - 1 & \text{if } i + 1 \leq k \leq n + i - 1 \\
 k - 2 & \text{if } n + i + 1 \leq k \leq 2n - 1,
\end{cases}$$

is an isomorphism from $G_{2n} - e$ onto G_{2n}. It follows from Theorem 2 that $T - e$ is $T[X]$-critical. Now suppose that there is $Z \subseteq V$ such that $T[Z] \simeq W_5$ and $Z \cap (V \setminus (Q \cup W_5(T-e))) \neq \emptyset$. Therefore, we have $|Z \cap e| = 1$ or $e \subset Z$. Suppose for a contradiction that $|Z \cap e| = 1$, and set $\{z\} = Z \cap e$. As $\text{Ext}(V \setminus e) = \emptyset$, then by Lemma 1, either $z \in \langle V' \rangle$ or $z \in \langle V'(u) \rangle$, where $V' = V \setminus e$ and $u \in V'$. If $z \in \langle V' \rangle$, then $Z \setminus \{z\}$ is a nontrivial module of $T[Z]$, a contradiction. If $z \in \langle V'(u) \rangle$, then $u \not\in Z$, otherwise $\{u, z\}$ is a nontrivial module of $T[Z]$. Thus, $T[Z'] \simeq W_5$, where $Z' = (Z \setminus \{z\}) \cup \{u\} \subset V \setminus e$. A contradiction because $Z' \cap (V \setminus W_5(T-e)) \neq \emptyset$. Finally, for all $e' \in \{\{j, j+n\} : j \in \mathbb{N}_n\}$, the bijection f from $V \setminus e$ onto $V \setminus e'$, defined by $f|_{V \setminus Q} = \text{Id}_{V \setminus Q}$ and $f|_{Q \setminus e} = f_1^{-1} \circ f_1$, is an isomorphism from $T - e$ onto $T - e'$. It follows that $V \setminus (Q \cup W_5(T-e')) = V \setminus (Q \cup W_5(T-e))$. Thus, as proved above, $e' \subset Z$, so that $Q \subset Z$.

576
4. Proof of Theorem 3

We begin by establishing the partial criticality structure of the tournaments of the class \(T \). For this purpose, we use the notion of minimal tournaments for two vertices. Given a prime tournament \(T = (V, A) \) of cardinality \(\geq 3 \) and two distinct vertices \(x \neq y \in V \), \(T \) is said to be minimal for \(\{x, y\} \) (or \(\{x, y\} \)-minimal) when for all proper subset \(X \) of \(V \), if \(\{x, y\} \subset X \ (\mid X \mid \geq 3) \), then \(T[X] \) is not prime. These tournaments were introduced and characterized by A. Courner and P. Ille in \([5]\). From this characterization, the following fact, observed in \([1]\), is obtained by a simple and quick verification.

Fact 2 \(([1, 5])\) Up to isomorphy, the tournaments \(C_3 \) and \(U_5 \) are the unique minimal tournaments for two vertices \(T \) such that \(|W_5(T)| \leq |T| - 2 \). Moreover, \(\{3, 4\} \) is the unique unordered pair of vertices for which \(U_5 \) is minimal.

Proposition 1 Let \(T = (V, A) \) be a tournament of the class \(T \). Then the vertices of \(W_5(T) \) are critical and there exists \(z \in W_5(T) \) such that \(T[(V \setminus W_5(T)) \cup \{z\}] \simeq C_3 \). In particular, \(T \) is \(T[(V \setminus W_5(T)) \cup \{z\}] \)-critical.

Proof By Theorem 1, \(|T| \) is odd and \(\geq 7 \). First, suppose by contradiction that there is \(\alpha \in W_5(T) \) such that \(T - \alpha \) is prime. Since \(|T - \alpha| \) is even and \(\geq 6 \) with \(|V(T - \alpha) \setminus W_5(T - \alpha)| \geq 2 \), then by Theorems 1 and 5, \(T - \alpha \simeq B_6 \) and \(T \not\simeq P_r \). By contradiction by Lemma 2. Second, let \(X \) be a minimal subset of \(V \) such that \(V \setminus W_5(T) \subset X \ (\mid X \mid \geq 3) \) and \(T[X] \) is prime, so that \(T[X] \) is \((V \setminus W_5(T)) \)-minimal. By Fact 2, \(T[X] \simeq C_3 \) or \(U_5 \). Suppose, toward a contradiction that \(T[X] \simeq U_5 \) and take \(T[X] = U_5 \). By Fact 2, \(V \setminus W_5(T) = \{3, 4\} \). As \(T \) is \(U_5 \)-critical, then by Lemma 6 and Theorem 5, there exists \(e \in E(G^T_X) \) such that \(T[X \cup e] \) is prime and not isomorphic to \(U_7 \). It follows from Lemma 3, that there exists a subset \(Z \) of \(X \cup e \) such that \(T[Z] \simeq W_5 \) and \(Z \cap (V \setminus W_5(T)) \neq \emptyset \), a contradiction.

Now, we prove Theorem 3 for tournaments on 7 vertices.

Proposition 2 Up to isomorphy, the class \(\mathcal{M} \) and the class \(T \) have the same tournaments on 7 vertices. Moreover, for each tournament \(T \) on 7 vertices of the class \(\mathcal{M} \), we have \(V(T) \setminus W_5(T) = \sigma(T) = \{0, 1\} \).

Proof Let \(T = (V, A) \) be a tournament on 7 vertices of the class \(\mathcal{M} \). \(T \in \mathcal{M} \setminus (\mathcal{L} \cup \mathcal{L}^\ast) \) because the tournaments of the class \(\mathcal{L} \) have at least 9 vertices. Let \(e \in E(G^T_N) \). By Lemma 4, \(T - e \simeq U_5 \) or \(T_5 \). By Lemma 7, if there exists a subset \(Z \subset V \) such that \(T[Z] \simeq W_5 \), then \(e \subset Z \). It follows that \(V \setminus N_3 \subset Z \). Thus \(V \setminus W_5(T) = \{0, 1\} \) by verifying that \(T - \{1, 2\} \not\simeq W_5 \), \(T - \{0, 2\} \not\simeq W_5 \) and \(T - \{0, 1\} \simeq W_5 \). As \(T \) is \(C_3 \)-critical, \(\sigma(T) = \{0, 1\} \) from the following. First, \(T - 2 \) is not prime because \(\{0\} \cup N_3^- \cup N_3^+(0) \) (resp. \(\{1\} \cup N_3^+(0), \{0, 1\} \cup N_3^+(0) \cup N_3^-(1), \{1\} \cup N_3^-(0)) \) is a nontrivial module of \(T - 2 \) if \(T \in \mathcal{H} \) (resp. \(\mathcal{L}, \mathcal{J}, \mathcal{K} \)). Second, by Lemma 1, we have \(\text{Ext}(X) = \{0, 1\} \), where \(X = V \setminus \{0, 1\} \), because \(\{0, 1\} \cap \langle X \rangle = \emptyset \), and for all \(u \in X \), \(\{0, 1\} \cap X(u) = \emptyset \) because \(V \setminus W_5(T) = \{0, 1\} \).

Conversely, let \(T \) be a tournament on 7 vertices of the class \(\mathcal{T} \). By Proposition 1, we can assume that \(T \) is \(C_3 \)-critical with \(V(T) \setminus W_5(T) \subset N_3 \). By Lemma 4 and Theorem 5, \(|\mathcal{L}(G^T_N)| = 2 \). We distinguish the following cases.

- \(N_3^+ \neq \emptyset \) and \(N_3^- \neq \emptyset \). By Theorem 2, \(|N_3^-| = |N_3^+| = 1 \). Therefore, we can assume that \(N_3(0) \neq \emptyset \) and \(N_3(2) = \emptyset \). It suffices to verify that \(|N_3(0)| = |N_3^+(0)| = 1 \) because, in this case, by using Theorem 2 and Lemma 4, \(T \in \mathcal{H} \). By using again Theorem 2 and Lemma 4, we verify the following. First, if \(|N_3(0)| = 2 \),
then \(C(G_{N_3}^T) = \{N_3^+ \cup N_3^-(0), N_3^- \cup N_3^+(0)\} \). Therefore, \(T - \{0,1\} \simeq T - \{0,2\} \simeq W_5 \), a contradiction. Second, if \(|N_3^-(0)| = 1 \), then \(C(G_{N_3}^T) = \{N_3^+ \cup N_3^-(0), N_3^- \cup N_3^+(1)\} \). Therefore, \(T \simeq U_7 \), a contradiction by Theorem 5.

- \(\langle N_3 \rangle = \emptyset \). By Theorem 2, we can assume that \(|N_3^-(0)| = |N_3^+(0)| = 1 \). We have \(|N_3(1)| = 1 \). Otherwise, by Theorem 2 and Lemma 4, we can suppose that \(C(G_{N_3}^T) = \{N_3^+(0) \cup N_3^+(1), N_3^-(0) \cup N_3^-(1)\} \). Therefore, \(T - \{1,2\} \simeq T - \{0,2\} \simeq W_5 \), a contradiction. We have also \(C(G_{N_3}^T) = \{N_3^+(0) \cup N_3(2), N_3^-(0) \cup N_3(1)\} \). Otherwise, again by Theorem 2 and Lemma 4, \(C(G_{N_3}^T) = \{N_3^+(0) \cup N_3^+(1), N_3^-(0) \cup N_3(1)\} \), so that \(T \simeq U_7 \), a contradiction by Theorem 5. Thus, we distinguish four cases. If \(|N_3^-(2)| = |N_3^+(1)| = 1 \), then \(T \simeq T_7 \), which contradicts Theorem 5. If \(|N_3^+(2)| = |N_3^+(1)| = 1 \), then \(T - \{0,2\} \simeq T - \{0,1\} \simeq W_5 \), a contradiction. If \(|N_3^-(2)| = |N_3^+(1)| = 1 \), then \(T \in \mathcal{I} \). If \(|N_3^-(2)| = |N_3^+(1)| = 1 \), then \(T \) is isomorphic to a tournament of the class \(\mathcal{I} \) with \(V(T) \setminus W_5(T) = \{0,2\} \).

- \(\emptyset \neq \langle N_3 \rangle \in q_3^T \). By interchanging \(T \) and \(T^* \), we can suppose that \(\langle N_3 \rangle = N_3^- \). In this case, \(|N_3^-| = 1 \) by Theorem 2. First, suppose that \(|N_3(0)| = 2 \) and \(|N_3(1)| = 1 \). By Theorem 2 and Lemma 4, \(C(G_{N_3}^T) = \{N_3^+(0) \cup N_3^-(0) \cup N_3(1)\} \). We have \(|N_3^+(1)| = 1 \), otherwise \(T \simeq U_7 \), a contradiction by Theorem 5. Thus, \(T \) is isomorphic to a tournament of the class \(\mathcal{K} \) with \(V(T) \setminus W_5(T) = \{0,2\} \). Second, suppose that \(|N_3(0)| = 1 \) and \(|N_3(1)| = 2 \). Again by Theorem 2 and Lemma 4, \(C(G_{N_3}^T) = \{N_3^+(1) \cup N_3^-, N_3^-(1) \cup N_3^-(0)\} \), so that \(T \in \mathcal{J} \). Lastly, suppose that \(|N_3(0)| = |N_3(1)| = 1 \). By Theorem 2 and Lemma 4, we can suppose that \(C(G_{N_3}^T) = \{N_3^+(1) \cup N_3^-, N_3(0) \cup N_3(2)\} \). By Lemma 4, we distinguish only three cases. If \(|N_3^-(2)| = |N_3^-(0)| = 1 \), then \(T - \{0,1\} \simeq T - \{1,2\} \simeq W_5 \), a contradiction. If \(|N_3^+(0)| = |N_3^+(2)| = 1 \), then \(T \simeq U_7 \), which contradicts Theorem 5. If \(|N_3^+(2)| = |N_3^-(0)| = 1 \), then \(T \in \mathcal{K} \).

We complete our structural study of the tournaments of the class \(\mathcal{T} \) by the following two corollaries.

Corollary 2 Let \(T \) be a \(C_3 \)-critical tournament such that \(V(T) \setminus W_5(T) = \{0,1\} \). Then there exist \(Q \neq Q' \in C(G_{N_3}^T) \) and a tournament \(R \) on 7 vertices of the class \(\mathcal{M} \) such that for all \(e \in E(G_{N_3}^T[Q]) \) and for all \(e' \in E(G_{N_3}^T[Q']) \), there exists an isomorphism \(f \) from \(R \) onto \(T[N_3 \cup e \cup e'] \). Moreover, \(f(0) = 0 \), \(f(1) = 1 \) and we have:

1. If \(R \in \mathcal{H} \cup \mathcal{J} \cup \mathcal{J}^* \), then \(f(2) = 2 \);

2. If \(R \in \mathcal{I} \cup \mathcal{K} \cup \mathcal{K}^* \), then \(f(2) = 2 \) or \(N_3(2) = \{f(2)\} \).

Proof To begin, notice the following remark: given a \(D[X] \)-critical tournament \(D \), for any edges \(a \) and \(b \) belonging to a same connected component of \(G_{N_3}^T \), we have \(D[X \cup a] \simeq D[X \cup b] \). Therefore, by Fact 1, Lemma 5, and Theorem 5, there exists \(Q \in C(G_{N_3}^T) \) such that for all \(a \in E(G_{N_3}^T[Q]) \), \(T[N_3 \cup a] \simeq U_5 \). By Lemma 4 and Remark 2, the tournament \(T[N_3 \cup Q] \) is isomorphic to \(U_{2n+1} \), for some \(n \geq 2 \), and does not admit a prime subtournament on 7 vertices other than \(U_7 \). Therefore, by Lemma 6, Theorem 5, and the remark above, there exists \(Q' \in C(G_{N_3}^T) \setminus \{Q\} \) such that for all \(e \in E(G_{N_3}^T[Q]) \) and for all \(e' \in E(G_{N_3}^T[Q']) \), \(T[N_3 \cup e \cup e'] \) is prime and not isomorphic to \(U_7 \). Moreover, \(T[N_3 \cup e \cup e'] \neq P_7 \) because the vertices of \(P_7 \) are all noncritical.
Likewise, $T[N_3 \cup e \cup e'] \not\cong T_7$ by Remark 2. It follows from Theorem 5 and Proposition 2 that there exists an isomorphism f from a tournament R on 7 vertices of the class \mathcal{M} onto $T[N_3 \cup e \cup e']$. As $(0,1) \in A(R) \cap A(T)$ and $V(R) \setminus W_5(R) = V(T) \setminus W_5(T) = \{0,1\}$ by Proposition 2, then f fixes 0 and 1. If $R \in \mathcal{H} \cup \mathcal{J} \cup \mathcal{J}^*$, then f fixes 2 because 2 is the unique vertex x of R such that $R[\{0,1,x\}] \cong C_3$. If $R \in \mathcal{I} \cup \mathcal{K} \cup \mathcal{K}^*$, then $|\{x \in V(R) : R[\{0,1,x\}] \cong C_3\}| = 2$. Therefore, $f(2) = 2$ or α, where α is the unique vertex of $N_3(2)$ in the tournament $T[N_3 \cup e \cup e']$.

\[\square\]

Corollary 3 For all $T \in \mathcal{T}$, we have $V(T) \setminus W_5(T) = \sigma(T)$.

Proof Let T be a tournament of the class \mathcal{T} such that $V(T) \setminus W_5(T) = \{0,1\}$. By Proposition 1, we can assume that T is C_3-critical. By the same proposition, it suffices to prove that $\{0,1\} \subseteq \sigma(T)$. By Corollary 2, there is a subset X of $V(T)$ such that $N_3 \subseteq X$ and $T[X]$ is isomorphic to a tournament on 7 vertices of the class \mathcal{M}. Suppose for a contradiction that T admits a critical vertex $i \in \{0,1\}$, and let $Y = X \setminus \{i\}$. By Proposition 2, $T[Y]$ is prime. As T is $T[Y]$-critical, then $i \notin \text{Ext}(Y)$ by Theorem 2. This is a contradiction because $T[X]$ is prime.

Now, we prove that $\mathcal{M} \subseteq \mathcal{T}$. More precisely:

Proposition 3 For all tournament T of the class \mathcal{M}, we have $V(T) \setminus W_5(T) = \sigma(T) = \{0,1\}$.

Proof Let T be a tournament on $(2n + 1)$ vertices of the class \mathcal{M} for some $n \geq 3$. By Corollary 3, it suffices to prove that $V(T) \setminus W_5(T) = \{0,1\}$. We proceed by induction on n. By Proposition 2, the statement is satisfied for $n = 3$. Let now $n \geq 4$. Therefore, either T is a tournament on 9 vertices of the class $\mathcal{L} \cup \mathcal{L}^*$ or there is $Q \in \mathcal{C}(G_{N_3}^T)$ such that $|Q| \geq 4$. In the first case, for all $e \in E(G_{N_3}^T)$, $T - e$ is isomorphic to U_7 or to a tournament on 7 vertices of the class $\mathcal{K} \cup \mathcal{K}^*$. Therefore, if there exists a subset Z of $V(T)$ such that $Z \setminus \{0,1\} \neq \emptyset$ and $T[Z] \cong W_5$, then, for all $e \in E(G_{N_3}^T)$, $e \subseteq Z$ by Lemma 7. Thus, $V(T) \setminus N_3 \subseteq Z$, a contradiction. As, furthermore, W_5 embeds into T, then $V(T) \setminus W_5(T) = \{0,1\}$ by Theorem 1. In the second case, let $Q \in \mathcal{C}(G_{N_3}^T)$ such that $|Q| \geq 4$. Let $\mathcal{X} = \mathcal{H}, \mathcal{I}, \mathcal{J}, \mathcal{K}$, or \mathcal{L}. For $T \in \mathcal{X}$, by Lemma 7, there is $e \in E(G_{N_3}^T[Q])$ such that $T - e$ is C_3-critical. Moreover, $T - e$ is isomorphic to a tournament of the class \mathcal{X} because $\mathcal{C}(G_{N_3}^T)$ is as described in the same class. By induction hypothesis, W_5 embeds into $T - e$, and thus into T. By Theorem 1, it suffices to verify that $\{0,1\} \subseteq V(T) \setminus W_5(T)$. Therefore, suppose that there exists $Z \subseteq V(T)$ such that $Z \setminus \{0,1\} \neq \emptyset$ and $T[Z] \cong W_5$. By induction hypothesis and by Lemma 7, $Q \subseteq Z$, so that $Z \subseteq Q \cup N_3$. This is a contradiction by Theorem 5, because $T[N_3 \cup Q] \cong U_{Q+3}$ or T_{Q+3} by Lemma 4. \[\square\]

We are now ready to construct the tournaments of the class \mathcal{T}. We partition these tournaments T according to the following invariant $c(T)$. For $T \in \mathcal{T}$, $c(T)$ is the minimum of $|\mathcal{C}(G_{\sigma(T) \cup \{x\}}^T)|$, the minimum being taken over all the vertices x of $W_5(T)$ such that $T[\sigma(T) \cup \{x\}] \cong C_3$. Notice that $c(T) = c(T^*)$. As T is $T[\sigma(T) \cup \{x\}]$-critical by Proposition 1, then $c(T) \leq 4$. Moreover, $c(T) \geq 2$ by Lemma 4. Proposition 1 leads us to classify the tournaments T of the class \mathcal{T} according to the different values of $c(T)$. We will see that $c(T) = 2$ or 3. Theorem 3 results from Propositions 3, 4, 5, and 6.

Proposition 4 Up to isomorphism, the tournaments T of the class \mathcal{T} such that $c(T) = 2$ are those of the class $\mathcal{M} \setminus (\mathcal{L} \cup \mathcal{L}^*)$.
Proof. For all $T \in \mathcal{M} \setminus (\mathcal{L} \cup \mathcal{L}^*)$, we have $T \in \mathcal{T}$ by Proposition 3, and $c(T) = 2$ by Lemma 4. Now let T be a tournament on $(2n + 1)$ vertices of the class \mathcal{T} such that $c(T) = 2$. By Proposition 1, we can assume that T is C_3-critical with $V(T) \setminus W_5(T) = \{0, 1\}$ and $|\mathcal{C}(G_{R_3}^T)| = 3$. By Corollary 2 and by interchanging T and T^*, there is a tournament R on 7 vertices of the class $\mathcal{H} \cup \mathcal{I} \cup \mathcal{J} \cup \mathcal{K}$ such that for all $e \in E(G_{R_3}(Q))$ and for all $e' \in E(G_{R_3}(Q'))$, there exists an isomorphism f, fixing 0 and 1, from R onto $T|\mathcal{N}_3 \cup e \cup e'|$, where Q and Q' are the two different connected components of $G_{R_3}^T$. If $f(2) = 2$, then, by Theorem 2, T and R are in the same class $\mathcal{H}, \mathcal{I}, \mathcal{J}$, or \mathcal{K}. Suppose now that $f(2) \neq 2$. By Corollary 2, $R \in \mathcal{I} \cup \mathcal{K}$. If $R \in \mathcal{I}$ (resp. \mathcal{K}), then $T|\mathcal{N}_3 \cup e \cup e'|$ is a tournament on 7 vertices of the class \mathcal{T}' (resp. \mathcal{K}') of the C_3-critical tournaments Z such that $|\mathcal{C}(G_{Z_3}(T))| = \{N_3^-(0) \cup N_3^+(1), N_3^-(1) \cup N_3^+(2)\}$ (resp. $\mathcal{C}(G_{Z_3}(T)) = \{N_3^-(1) \cup N_3^-(2), N_3^+(1) \cup N_3^+(2)\}$). By Theorem 2, $T \in \mathcal{T}'$ (resp. \mathcal{K}'). Moreover, by considering the vertex $\alpha = \min T|\mathcal{N}_3^-(2)$ (resp. $\max T|\mathcal{N}_3^+(2)$) and by using Corollary 3, T is also $T[\{0, 1, \alpha\}]$-critical with $\mathcal{C}(G_{Z_3}(T)) = \{(0, 1, \alpha)^{-}(0) \cup \{0, 1, \alpha\}^{+}(1), (0, 1, \alpha)^{-}(0) \cup \{0, 1, \alpha\}^{+}(\alpha)\}$ (resp. $\mathcal{C}(G_{Z_3}(T)) = \{(0, 1, \alpha)^{-}(1) \cup \{0, 1, \alpha\}^{-}, (0, 1, \alpha)^{-}(0) \cup \{0, 1, \alpha\}^{-}(\alpha)\}$). It follows that T is isomorphic to a tournament of the class \mathcal{I} (resp. \mathcal{K}).

Proposition 5. Up to isomorphy, the tournaments T of the class \mathcal{T} such that $c(T) = 3$ are those of the class $\mathcal{L} \cup \mathcal{L}^*$.

Proof. Let T be a tournament of the class $\mathcal{L} \cup \mathcal{L}^*$. $T \in \mathcal{T}$ by Proposition 3. Moreover, $c(T) = 3$ by Theorem 2. Indeed, it suffices to observe that for all $x \in \{i \in V(T) \setminus \mathcal{N}_3 : T[\{0, 1, i\}] \simeq C_3\} = \mathcal{N}_3^2(2)$, we have $\max T|\mathcal{N}_3^2(1)| \in X^+(1)$, $\min T|\mathcal{N}_3^2| \in X^-$, $\min T|\mathcal{N}_3^2| \in X^+$, $\max T|\mathcal{N}_3^2(0)| \in X^-(0)$ and $2 \in X^+(x)$, where $X = \{0, 1, x\}$.

Now let T be a tournament on $(2n + 1)$ vertices of \mathcal{T} such that $c(T) = 3$. By Proposition 1, we can assume that T is C_3-critical with $V(T) \setminus W_5(T) = \{0, 1\}$ and $|\mathcal{C}(G_{R_3}^T)| = 3$. By Corollary 2 and by interchanging T and T^*, there is a tournament R on 7 vertices of the class $\mathcal{H} \cup \mathcal{I} \cup \mathcal{J} \cup \mathcal{K}$ such that for all $e \in E(G_{R_3}(Q))$ and $e' \in E(G_{R_3}(Q'))$, there exists an isomorphism f, which fixes 0 and 1, from R onto $T|\mathcal{N}_3 \cup e \cup e'|$, where $Q \neq Q' \in \mathcal{C}(G_{R_3}^T)$. Take $e'' \in (G_{R_3}(Q'))$, where $Q'' = \mathcal{C}(G_{R_3}^T) \setminus \{Q, Q'\}$. Suppose, toward a contradiction, that $R \in \mathcal{H} \cup \mathcal{J}$. By Theorem 2 and by Corollary 2, if $R \in \mathcal{H}$ (resp. $R \in \mathcal{J}$), then $\{Q, Q'\} = \{N_3^+(0) \cup N_3^-(1), N_3^-(0) \cup N_3^+(1)\}$ (resp. $\{N_3^+(1) \cup N_3^-, N_3^-(0) \cup N_3^-(1)\}$). Therefore, by Lemma 4, $Q'' = \{N_3^+(1) \cup N_3^+(2)\}$, $\{N_3^+(0) \cup N_3^+(1)\}$ or $\{N_3^-(0) \cup N_3^-(2)\}$ (resp. $\{N_3^+(0) \cup N_3^+(2)\}$ or $\{N_3^-(1) \cup N_3^+(2)\}$). We verify that in each of these cases, either $T[\{0 \cup e \cup e''\}]$, $T[\{0 \cup e' \cup e''\}]$, $T[\{1 \cup e \cup e''\}]$ or $T[\{1 \cup e' \cup e''\}]$ is isomorphic to W_5, a contradiction. Therefore, $R \in \mathcal{I} \cup \mathcal{K}$. By Corollary 2, $f(2) = 2$ or α, where α is the unique vertex of $\mathcal{N}_3(2)$ in $T|\mathcal{N}_3 \cup e \cup e'|$.

Suppose, again by contradiction, that $R \in \mathcal{I}$. We begin by the case where $f(2) = 2$. By Theorem 2, we can suppose that $Q = \{N_3^+(0) \cup N_3^+(2)\}$ and $Q' = \{N_3^-(0) \cup N_3^+(1)\}$. By Lemma 4, $Q'' = \{N_3^+(1) \cup N_3^+(2)\}$ or $\{N_3^-(0) \cup N_3^+(2)\}$ or $\{N_3^-(1) \cup N_3^+(2)\}$. If $Q'' = \{N_3^-(1) \cup N_3^+(2)\}$ (resp. $\{N_3^-(0) \cup N_3^+(2)\}$), then $T[\{0 \cup e \cup e''\}] \simeq W_5$ (resp. $T[\{1 \cup e' \cup e''\}] \simeq W_5$), a contradiction. If $Q'' = \{N_3^-(1) \cup N_3^+(2)\}$, then, by taking $X = \{0, 1, x\}$, where $x = \min T|\mathcal{N}_3^+(2)|$, we obtain a contradiction because, by Corollary 3, $T[\{x\}]$ is isomorphic to 2. Indeed, $\mathcal{C}(G_{R_3}^T) = \{X^{-}(0) \cup X^+(1), X^+(0) \cup X^+(x)\}$, with $X^{-}(0) = \mathcal{N}_3^-(0)$, $X^+(1) = \mathcal{N}_3^+(1)$, $X^+(0) = \mathcal{N}_3^+(0) \cup \mathcal{N}_3^+(1)$,
and $X^+(x) = N_3^+(2) \cup \{2\} \cup (N_3^-(2) \setminus \{x\})$. Now if $f(2) = \alpha$, then we obtain again a contradiction. Indeed, by replacing T by T^* and by interchanging the vertices 0 and 1. \{Q, Q'\} = \{N_3^+(0) \cup N_3^-(2), N_3^-(0) \cup N_3^+(1)\}$ as in the case where $f(2) = 2$.

At present, $R \in K$. We begin by the case where $f(2) = 2$. By Theorem 2, we can suppose that \[Q = \{N_3^-(0) \cup N_3^+(1)\} \text{ and } Q' = \{N_3^+(0) \cup N_3^-(2)\}.\] By Lemma 4, $Q'' = \{N_3^+(0) \cup N_3^-(1)\}$, $\{N_3^-(0) \cup N_3^+(1)\}$ or $\{N_3^+(1) \cup N_3^-(2)\}$. If $Q'' = \{N_3^-(1) \cup N_3^+(2)\}$ (resp. $\{N_3^+(1) \cup N_3^-(0)\}$), then $T[\{0\} \cup e \cup e''] \simeq W_5$ (resp. $T[\{1\} \cup e' \cup e'''] \simeq W_5$), a contradiction. If $Q'' = \{N_3^+(1) \cup N_3^-(2)\}$, then, by taking $X = \{0, 1, x\}$, where $x = \max T[N_3^+(2)]$, we have a contradiction because, by Corollary 3, T is $T[X]$-critical with $|C(G_T^X)| = 2$. Indeed, $C(G_T^X) = \{X^- \cup X^+(1), X^+(0) \cup X^-(x)\}$, with $X^- = N_3^-(0)$, $X^+(1) = N_3^+(1)$, $X^+(0) = N_3^-(1) \cup N_3^+(3)\}$ and $X^-(x) = N_3^-(2) \cup \{2\} \cup (N_3^+(2) \setminus \{x\})$. If $Q'' = \{N_3^-(0) \cup N_3^+(1)\}$, then $T \in \mathcal{L}$. Now suppose that $f(2) = \alpha$. By Theorem 2, we can suppose that $Q = \{N_3^+(1) \cup N_3^-\}$ and $Q' = \{N_3^-(1) \cup N_3^+(2)\}$. By Lemma 4, $Q'' = \{N_3^+(0) \cup N_3^-\}$, $\{N_3^+(2) \cup N_3^-(0)\}$, or $\{N_3^-(2) \cup N_3^+(0)\}$. If $Q'' = \{N_3^+(0) \cup N_3^-\}$ or $\{N_3^-(2) \cup N_3^+(0)\}$, then $T[\{0\} \cup e \cup e'''] \simeq W_5$, a contradiction. If $Q'' = \{N_3^+(0) \cup N_3^-(2)\}$, then we obtain the same configuration giving $|C(G_T^X)| = 2$ in the case where $f(2) = 2$. If $Q'' = \{N_3^-(0) \cup N_3^+(1)\}$, then T is isomorphic to a tournament of the class \mathcal{L}^*. \[\square\]

Proposition 6 *For any tournament T of the class \mathcal{T}, we have $c(T) = 2$ or 3.***

Proof Let T be a tournament on $(2n+1)$ vertices of the class \mathcal{T} for some $n \geq 3$. We proceed by induction on n. By Propositions 4 and 5, the statement is satisfied for $n = 3$ and for $n = 4$. Let $n \geq 5$. By Proposition 1, we can assume that T is C_3-critical with $V(T) \setminus W_5(T) = \{0, 1\}$. By Theorem 2 and Lemma 4, $2 \leq c(T) \leq 4$. Therefore, we only consider the case where $|C(G_T^N_{N_3})| = 4$. By Corollary 2, there exist $Q \neq Q' \in C(G_T^N_{N_3})$ and a tournament R on 7 vertices of the class \mathcal{M}, such that for all $e \in E(G_T^N_{N_3}[Q])$ and for all $e' \in E(G_T^N_{N_3}[Q'])$, $T[N_3 \cup e \cup e'] \simeq R$. By Lemma 7, there exists $e'' \in E(G_T^N_{N_3}[Q'\prime\prime])$, where $Q'\prime\prime \in C(G_T^N_{N_3}) \setminus \{Q, Q'\}$, such that $T - e''$ is C_3-critical. As W_5 embeds into $T - e''$, then $V(T - e''') \setminus W_5(T - e''') = \{0, 1\}$ by Theorem 1. Therefore, $T - e'' \in \mathcal{T}$. By induction hypothesis, $c(T - e''') = 2$ or 3. By Theorem 2, if $c(T - e''') = 2$, then $c(T) = 2$ or 3. Therefore, suppose that $c(T - e''') = 3$. By Proposition 5 and by interchanging T and T^*, we can assume that $T - e'' \in \mathcal{L}$. By Theorem 2 and by taking $e'' = \{x, x'\}$, we can assume that $x \in N_3^-(1)$ and $x' \in N_3^+(2)$. Thus, for $X = \{0, 1, x'\}$, we have $T[X] \simeq C_3$ and $X^+(x') = \emptyset$. It follows from Theorem 2 that $c(T) < 4$. \[\square\]

References

