On a generalization of Kelly’s combinatorial lemma

Aymen BEN AMIRA1, Jamel DAMMAK1, Hamza SI KADDOUR2,*
1Department of Mathematics, Faculty of Sciences of Sfax, Sfax, Tunisia
2ICJ, Department of Mathematics, University of Lyon, Claude Bernard University Lyon 1, Villeurbanne, France

Received: 08.02.2013 • Accepted: 07.05.2014 • Published Online: 24.10.2014 • Printed: 21.11.2014

Abstract: Kelly’s combinatorial lemma is a basic tool in the study of Ulam’s reconstruction conjecture. A generalization in terms of a family of t-element subsets of a v-element set was given by Pouzet. We consider a version of this generalization modulo a prime p. We give illustrations to graphs and tournaments.

Key words: Set, matrix, graph, tournament, isomorphism

1. Introduction

Kelly’s combinatorial lemma [24] is the assertion that the number $s(F,G)$ of induced subgraphs of a given graph G, isomorphic to F, is determined by the deck of G, provided that $|V(F)| < |V(G)|$, namely $s(F,G) = \frac{1}{|V(G)| - |V(F)|} \sum_{x \in V(G)} s(F,G-x)$ (where $G-x$ is the graph induced by G on $V(G) \setminus \{x\}$).

In terms of a family F of t-element subsets of a v-element set, it simply says that $|F| = \frac{1}{v-t} \sum_{x \in V(G)} |F-x|$ where $F-x := F \cap [V(G) \setminus \{x\}]^t$.

For sets U,T, we put $U(T) := \{F : T \subseteq F \in U\}$ and $U_{|K} := U \cap \mathcal{P}(K)$ (where $\mathcal{P}(K)$ is the set of subsets of K) so that $U_{|K}(T) := \{F : T \subseteq F \subseteq K, F \in U\}$ and $e(U) := |U|$. Pouzet [31, 32] gave the following extension of this result.

Lemma 1.1 (M.Pouzet [31]) Let t and r be integers, V be a set of size $v \geq t+r$ elements, and U and U' be sets of t-element subsets T of V. If for every subset K of $k = t+r$ elements of V, $e(U_{|K}) = e(U'_{|K})$, then for all finite subsets T' and K' of V, such that T' is contained in K' and $K' \setminus T'$ has at least $t+r$ elements, $e(U'_{|K'}(T')) = e(U'_{|K'}(T'))$.

In particular, if $|V| \geq 2t+r = t+k$, we have this particular version of the combinatorial lemma of Pouzet:

Lemma 1.2 (M.Pouzet [31]) Let v,t, and k be integers, $k \leq v$, V be a set of v elements with $t \leq \min(k,v-k)$, and U and U' be sets of t-element subsets T of V. If for every k-element subset K of V, $e(U_{|K}) = e(U'_{|K})$, then $U = U'$.

*Correspondence: sikaddour@univ-lyon1.fr
2000 AMS Mathematics Subject Classification: 05C50, 05C60.
Here we consider the case where \(e(U_K) \equiv e(U'_K) \mod p \) for every \(k \)-element subset \(K \) of \(V \); our main result, Theorem 1.3, is then a version, modulo a prime \(p \), of the particular version of the combinatorial lemma of Pouzet.

Kelly’s combinatorial lemma is a basic tool in the study of Ulam’s reconstruction conjecture. Pouzet’s combinatorial lemma has been used several times in reconstruction problems (see for example [1, 5, 6, 7, 11, 12]). Pouzet gave a proof of his lemma via a counting argument [32] and later by using linear algebra (related to incidence matrices) [31] (the paper was published earlier).

Let \(n, p \) be positive integers, the decomposition of \(n = \sum_{i=0}^{n(p)} n_ip^i \) in the basis \(p \) is also denoted \([n_0, n_1, \ldots, n_{n(p)}]_p\) where \(n_{n(p)} \neq 0 \) if and only if \(n \neq 0 \).

Theorem 1.3 Let \(p \) be a prime number. Let \(v, t, \) and \(k \) be nonnegative integers, \(k \leq v, k = [k_0, k_1, \ldots, k_{k(p)}]_p, t = [t_0, t_1, \ldots, t_{t(p)}]_p \). Let \(V \) be a set of \(v \) elements with \(t \leq \min(k, v - k) \), and \(U \) and \(U' \) be sets of \(t \)-element subsets \(T \) of \(V \). We assume that \(e(U_K) \equiv e(U'_{K}) \mod p \) for every \(k \)-element subset \(K \) of \(V \).

1) If \(k_i = t_i \) for all \(i < t(p) \) and \(k_{t(p)} \geq t_{t(p)} \), then \(U = U' \).

2) If \(t = t_{t(p)}p^{t(p)} \) and \(k = \sum_{i=t(p)}^{k(p)} k_ip^i \), we have \(U = U' \), or one of the sets \(U, U' \) is the set of all \(t \)-element subsets of \(V \) and the other is empty, or (whenever \(p = 2 \)) for all \(t \)-element subsets \(T \) of \(V \), \(T \in U \) if and only if \(T \notin U' \).

We prove Theorem 1.3 in Section 3. We use Wilson’s theorem (Theorem 2.2) on incidence matrices.

In a reconstruction problem of graphs up to complementation [13], Wilson’s theorem yielded the following result:

Theorem 1.4 ([13]) Let \(k \) be an integer, \(2 \leq k \leq v - 2 \), \(k \equiv 0 (\mod 4) \). Let \(G \) and \(G' \) be 2 graphs on the same set \(V \) of \(v \) vertices (possibly infinite). We assume that \(e(G_K) \) has the same parity as \(e(G'_{K}) \) for all \(k \)-element subsets \(K \) of \(V \). Then \(G' = G \) or \(G' = \overline{G} \).

Here we look for similar results whenever \(e(G_K) \equiv e(G'_{K}) \mod p \). As an illustration of Theorem 1.3, we obtain the following result.

Theorem 1.5 Let \(G \) and \(G' \) be 2 graphs on the same set \(V \) of \(v \) vertices (possibly infinite). Let \(p \) be a prime number and \(k \) be an integer, \(2 \leq k \leq v - 2 \). We assume that for all \(k \)-element subsets \(K \) of \(V \), \(e(G_K) \equiv e(G'_{K}) \mod p \).

1) If \(p \geq 3, k \equiv 0, 1 (\mod p) \), then \(G' = G \).

2) If \(p \geq 3, k \equiv 0 (\mod p) \), then \(G' = G \), or one of the graphs \(G, G' \) is the complete graph and the other is the empty graph.

3) If \(p = 2, k \equiv 2 (\mod 4) \), then \(G' = G \).

We give other illustrations of Theorem 1.3, to graphs in section 4 and to tournaments in section 5.

2. Incidence matrices

We consider the matrix \(W_{t,k} \) defined as follows: Let \(V \) be a finite set, with \(v \) elements. Given nonnegative integers \(t, k \) with \(t \leq k \leq v \), let \(W_{t,k} \) be the \(\binom{v}{t} \) by \(\binom{v}{k} \) matrix of 0’s and 1’s, the rows of which are indexed
by the \(t \)-element subsets \(T \) of \(V \), the columns are indexed by the \(k \)-element subsets \(K \) of \(V \), and where the entry \(W_{t,k}(T,K) \) is 1 if \(T \subseteq K \) and is 0 otherwise. The matrix transpose of \(W_{t,k} \) is denoted \(tW_{t,k} \).

We say that a matrix \(D \) is a diagonal form for a matrix \(M \) when \(D \) is diagonal and there exist unimodular matrices (square integral matrices that have integral inverses) \(E \) and \(F \) such that \(D = EMF \). We do not require that \(M \) and \(D \) are square; here "diagonal" just means that the \((i,j)\) entry of \(D \) is 0 if \(i \neq j \). A fundamental result, due to R.M. Wilson [36], is the following.

Theorem 2.1 (R.M. Wilson [36]) For \(t \leq \min(k,v-k) \), \(W_{t,k} \) has as a diagonal form the \(\binom{v}{i} \times \binom{v}{i} \) diagonal matrix with diagonal entries

\[
\binom{k-i}{t-i} \text{ with multiplicity } \binom{v}{i} - \binom{v}{i-1}, \quad i = 0, 1, \ldots, t.
\]

In this statement and in Theorem 2.2, \(\binom{v}{i} \) should be interpreted as zero.

Denote \(\text{rank}_Q W_{t,k} \) the rank of \(W_{t,k} \) over the field \(\mathbb{Q} \) of rational numbers, resp. \(\text{rank}_p W_{t,k} \) the rank of \(W_{t,k} \) over the \(p \)-element field \(\mathbb{F}_p \); similarly denote \(\text{Ker}_Q W_{t,k} \), \(\text{Ker}_p W_{t,k} \) the corresponding kernels. Clearly from Theorem 2.1, \(\text{rank}_Q W_{t,k} = \binom{v}{i} \). This yields Theorem 2.3 below due to D.H. Gottlieb [20] and independently W. Kantor [22]. On the other hand, from Theorem 2.1 follows \(\text{rank}_p W_{t,k} \), as given by Theorem 2.2.

Theorem 2.2 (R.M. Wilson [36]) For \(t \leq \min(k,v-k) \), the rank of \(W_{t,k} \) modulo a prime \(p \) is

\[
\sum \binom{v}{i} - \binom{v}{i-1}
\]

where the sum is extended over those indices \(i \), \(0 \leq i \leq t \), such that \(p \) does not divide the binomial coefficient \(\binom{k-i}{t-i} \).

This yields Theorem 2.3 below due to D.H. Gottlieb [20], and independently W. Kantor [22]. A simpler proof of Theorem 2.2 was obtained by P. Frankl [17]. Applications of Wilson’s theorem and its version modulo \(p \) have been considered by various authors, notably Chung and Graham [10] and Dammak et al. [13].

Theorem 2.3 (D.H. Gottlieb [20], W. Kantor [22]) For \(t \leq \min(k,v-k) \), \(W_{t,k} \) has full row rank over the field \(\mathbb{Q} \) of rational numbers.

It is clear that \(t \leq \min(k,v-k) \) implies \(\binom{v}{i} \leq \binom{v}{k} \). Thus, from Theorem 2.3, we have the following result:

Corollary 2.4 (W. Kantor [22]) For \(t \leq \min(k,v-k) \), \(\text{rank}_Q W_{t,k} = \binom{v}{i} \) and thus \(\text{Ker}_Q (tW_{t,k}) = \{0\} \).

If \(k := v-t \) then, up to a relabelling, \(W_{t,k} \) is the adjacency matrix \(A_{t,v} \) of the Kneser graph \(KG(t,v) \) [19], a graph whose vertices are the \(t \)-element subsets of \(V \), 2 subsets forming an edge if they are disjoint. The eigenvalues of Kneser graphs are computed in [19] (Theorem 9.4.3, page 200), and thus an equivalent form of Theorem 2.3 is:

Theorem 2.5 \(A_{t,v} \) is nonsingular for \(t \leq \frac{v}{2} \).
We characterize values of t and k so that $\dim \ker_p(W_{t,k}) \in \{0,1\}$ and give a basis of $\ker_p(W_{t,k})$ that appears in the following result.

Theorem 2.6 Let p be a prime number. Let $v, t,$ and k be nonnegative integers, $k \leq v,$ $k = \lfloor k_0, k_1, \ldots, k_{k(p)} \rfloor_p,$ $t = \lfloor t_0, t_1, \ldots, t_{k(p)} \rfloor_p,$ $t \leq \min(k, v - k).$ We have:

1) $j \leq t$ for all $j < t(p)$ and $k_{t(p)} \geq t_{t(p)}$ if and only if $\ker_p(W_{t,k}) = \{0\}.$

2) $t = t_{t(p)}p(p)$ and $k = \sum_{i=1}^{k(p)} t_i p_i$ if and only if $\dim \ker_p(W_{t,k}) = 1$ and $\{(1, 1, \cdots, 1)\}$ is a basis of $\ker_p(W_{t,k}).$

The proof of Theorem 2.6 uses Lucas’s theorem. The notation $a \mid b$ (resp. $a \nmid b$) means a divides b (resp. a does not divide b).

Theorem 2.7 (Lucas’s theorem [29]) Let p be a prime number, t, k be positive integers, $t \leq k,$ $t = \lfloor t_0, t_1, \ldots, t_{k(p)} \rfloor_p$ and $k = \lfloor k_0, k_1, \ldots, k_{k(p)} \rfloor_p.$ Then

$${k \choose t} \equiv \prod_{i=0}^{t(p)} \frac{k_i}{t_i} \pmod{p}, \text{ where } \frac{k_i}{t_i} = 0 \text{ if } t_i > k_i.$$ \[\text{(mod } p)\]

For an elementary proof of Theorem 2.7, see Fine [15]. As a consequence of Theorem 2.7, we have the following result, which is very useful in this paper.

Corollary 2.8 Let p be a prime number, t, k be positive integers, $t \leq k,$ $t = \lfloor t_0, t_1, \ldots, t_{k(p)} \rfloor_p$ and $k = \lfloor k_0, k_1, \ldots, k_{k(p)} \rfloor_p.$ Then

\[p | \left(\begin{array}{c}k \\ t\end{array}\right)\] if and only if there is $i \in \{0, 1, \ldots, t(p)\}$ such that $t_i > k_i.$

Proof of Theorem 2.6. 1) We prove that under the stated conditions $\left(\begin{array}{c}k-i \\ t-i\end{array}\right) \neq 0 \pmod{p}$ for every $i \in \{0, \ldots, t\}.$ From Theorem 2.1 it follows that $\ker_p(W_{t,k}) = \{0\}.$ Let $i \in \{0, \ldots, t\}$ then $i = \lfloor i_0, i_1, \ldots, i_{t(p)} \rfloor$ with $i_{t(p)} \leq t_{t(p)}.$ Since $j = t_j$ for all $j < t(p),$ then $(t-i)j = (k-i)j$ for all $j < t(p).$ As $k_{t(p)} \geq t_{t(p)} \geq i_{t(p)}$ then $(k-i)_{t(p)} \geq (t-i)_{t(p)}$; thus, by Corollary 2.8, $p \nmid \left(\begin{array}{c}k-i \\ t-i\end{array}\right)$ for all $i \in \{0, 1, \ldots, t\}.$ Now from Theorem 2.2,

\[\text{rank}_p W_{t,k} = \sum_{i=0}^{t(p)} \left(\begin{array}{c}i \\ t\end{array}\right) - \left(\begin{array}{c}v \\ i-1\end{array}\right) = \left(\begin{array}{c}v \\ t\end{array}\right).\] Then $\ker_p(W_{t,k}) = \{0\}.$

Now we prove the converse implication. From Theorem 2.1, $\ker_p(W_{t,k}) = \{0\}$ implies $p \nmid \left(\begin{array}{c}k-i \\ t-i\end{array}\right)$ for all $i \in \{0, 1, \ldots, t\},$ in particular $p \nmid \left(\begin{array}{c}k \\ t\end{array}\right).$ Then by Corollary 2.8, $k_j \geq t_j$ for all $j \leq t(p).$ We will prove that $k_j = t_j$ for all $j \leq t(p) - 1.$ By contradiction, let s be the least integer in $\{0, 1, \ldots, t(p) - 1\},$ such that $k_s > t_s.$ We have $(t - (t_s + 1)p^s) s = p - 1, \ (k - (t_s + 1)p^s) s = k_s - t_s - 1$ and $p - 1 > k_s - t_s - 1.$ From Corollary 2.8, $p \mid \left(\begin{array}{c}k-(t_s+1)p^s \\ t-(t_s+1)p^s\end{array}\right),$ which is impossible.

2) Set $n := t(p).$ We begin by the direct implication. Since $0 = k_n < t_n$ then, by Corollary 2.8, $p \mid \left(\begin{array}{c}k \\ t\end{array}\right).$ We will prove $p \nmid \left(\begin{array}{c}k-i \\ t-i\end{array}\right)$ for all $i \in \{i_0, i_1, \ldots, i_n\} \in \{1, 2, \ldots, t\}.$

Since $k_j = t_j = 0$ for all $j < n,$ then $(t-i)j = (k-i)j$ for all $j < n.$ From $t_n \geq i_n,$ we have $(t-i)_n \in \{t_n-i_n, t_n-i_n-1\}.$ Note that $(k-i)_n \in \{p-i_n-1, p-i_n\}$ and $p-i_n-1 \geq t_n-i_n$; thus $(k-i)_n \geq (t-i)_n.$
Therefore, for all \(j \leq n \), \((k-i)_j \geq (t-i)_j\). Then, by Corollary 2.8, \(p \nmid \binom{k-i}{t-i} \) for all \(i \in \{1,2,\ldots,t\} \).

Now from Theorem 2.2, \(\text{rank}_p W_{t,k} = \sum_{i=1}^{t} \binom{i}{t} - \binom{v}{t} = \binom{t}{t} - 1 \), and thus \(\dim \text{Ker}_p (W_{t,k}) = 1 \). Now \((1,1,\cdots,1)W_{t,k} = (\binom{t}{t}, \binom{t}{t}, \cdots, \binom{t}{t})\). Since \(p | \binom{t}{t} \), then \((1,1,\cdots,1)W_{t,k} \equiv 0 \pmod{p} \). Then \((1,1,\cdots,1)\) is a basis of \(\text{Ker}_p (W_{t,k}) \).

Now we prove the converse implication. Since \((1,1,\cdots,1)\) is a basis of \(\text{Ker}_p (W_{t,k}) \) and \((1,1,\cdots,1)W_{t,k} = (\binom{t}{t}, \binom{t}{t}, \cdots, \binom{t}{t})\), then \(p | \binom{t}{t} \). Since \(\dim \text{Ker}_p (W_{t,k}) = 1 \), then from Theorem 2.2, \(p \nmid \binom{k-i}{t-i} \) for all \(i \in \{1,2,\ldots,t\} \).

First, let us prove that \(t = t_n p^n \). Note that \(t_n \neq 0 \) since \(t \neq 0 \). Since \(p | \binom{t}{i} \), then, from Corollary 2.8, there is an integer \(j \in \{0,1,\ldots,n\} \) such that \(t_j > k_j \). Let \(A := \{ j < n : t_j \neq 0 \} \). By contradiction, assume \(A \neq \emptyset \).

Case 1. There is \(j \in A \) such that \(t_j > k_j \). We have \((t-p^n)_j = t_j, (k-p^n)_j = k_j \). Then from Corollary 2.8, we have \(p | \binom{k-p^n}{t-p^n} \), which is impossible.

Case 2. For all \(j \in A \), \(t_j \leq k_j \). Then \(t_n > k_n \). We have \((t-p^i)_n = t_n, (k-p^i)_n = k_n \). Then, from Corollary 2.8, we have \(p | \binom{k-p^i}{t-p^i} \), which is impossible.

From the above 2 cases, we deduce \(t = t_n p^n \).

Secondly, since \(p | \binom{t}{i} \), then by Corollary 2.8, \(t_n > k_n \). Let us show that \(k_n = 0 \). By contradiction, if \(k_n \neq 0 \) then \((t-p^n)_n = t_n - 1 > k_n - 1 = (k-p^n)_n \). From Corollary 2.8, \(p | \binom{k-p^n}{t-p^n} \), which is impossible.

Let \(s \in \{0,1,\ldots,n-1\} \); let us show that \(k_s = 0 \). By contradiction, if \(k_s \neq 0 \) then \((t-p^s)_s = p - 1, (k-p^s)_s = k_s - 1 \), thus \((t-p^s)_s > (k-p^s)_s \). Then, from Corollary 2.8, \(p | \binom{k-p^s}{t-p^s} \), which is impossible. \(\square \)

3. Proof of Theorem 1.3.

Let \(T_1, T_2, \cdots, T_{t(n)} \) be an enumeration of the \(t \)-element subsets of \(V \), let \(K_1, K_2, \cdots, K_{t(n)} \) be an enumeration of the \(k \)-element subsets of \(V \), and let \(W_{t,k} \) be the matrix of the \(t \)-element subsets versus the \(k \)-element subsets.

Let \(w_U \) be the row matrix \((u_1, u_2, \cdots, u_{t(n)})\) where \(u_i = 1 \) if \(T_i \in U \), 0 otherwise. We have

\[
w_U W_{t,k} = (\{T_i \in U : T_i \subseteq K_1\}), \cdots, \{T_i \in U : T_i \subseteq K_{t(n)}\}).
\]

\[
w_{U'} W_{t,k} = (\{T_i \in U' : T_i \subseteq K_1\}), \cdots, \{T_i \in U' : T_i \subseteq K_{t(n)}\}.
\]

Since for all \(j \in \{1,\ldots,t(n)\} \), \(e(U \cap K_j) \equiv e(U' \cap K_j) \pmod{p} \), then \((w_U - w_{U'})W_{t,k} = 0 \pmod{p} \), and \(w_U - w_{U'} \in \text{Ker}_p (W_{t,k}) \).

1) Assume \(k_i = t_i \) for all \(i < t(p) \) and \(k_{t(p)} \geq t_{t(p)} \). From 1) of Theorem 2.6, \(w_U - w_{U'} = 0 \), which gives \(U = U' \).

2) Assume \(t = t_{t(p)p^{t(p)}} \) and \(k = \sum_{i=t(p)+1}^{t(p)+k_{t(p)}} i p^i \). From 2) of Theorem 2.6, there is an integer \(\lambda \in [0, p-1] \) such that \(w_U - w_{U'} = \lambda(1,1,\cdots,1) \). It is clear that \(\lambda \in \{0,1,-1\} \). If \(\lambda = 0 \) then \(U = U' \). If \(\lambda = 1 \) and \(p \geq 3 \) then \(U = \{T_1, T_2, \cdots, T_{t(n)}\} \), \(U' = \emptyset \). If \(\lambda = 1 \) and \(p = 2 \) then \(U = \{T_1, T_2, \cdots, T_{t(n)}\} \), \(U' = \emptyset \), or \(T \in U \) if
and only if $T \not\in U'$. If $\lambda = -1$ and $p \geq 3$ then $U = \emptyset$, $U' = \{T_1, T_2, \ldots, T_{(\lambda)^k}\}$. If $\lambda = -1$ and $p = 2$ then $U' = \{T_1, T_2, \ldots, T_{(\lambda)^k}\}$, $U = \emptyset$, or $T \in U$ if and only if $T \not\in U'$. \hfill \square

4. Illustrations to graphs

Our notations and terminology follow [2]. A digraph $G = (V, E)$ or $G = (V(G), E(G))$ is formed by a finite set V of vertices and a set E of ordered pairs of distinct vertices, called arcs of G. The order (or cardinal) of G is the number of its vertices. If K is a subset of V, the restriction of G to K, also called the induced subdigraph of G on K, is the digraph $G|_K := (K, K^2 \cap E)$. If $K = V \setminus \{x\}$, we denote this digraph by G_{-x}.

Let $G = (V, E)$ and $G' = (V', E')$ be 2 digraphs. A one-to-one correspondence f from V onto V' is an isomorphism from G onto G' provided that for $x, y \in V$, $(x, y) \in E$ if and only if $(f(x), f(y)) \in E'$. The digraphs G and G' are then said to be isomorphic, which is denoted by $G \cong G'$ if there is an isomorphism from one of them onto the other. A subset I of V is an interval [16, 21, 34] (or an autonomous subset [23] or a clan [14], or an homogeneous subset [18] or a module [35]) of G provided that for all $a, b \in I$ and $x \in V \setminus I$, $(a, x) \in E(G)$ if and only if $(b, x) \in E(G)$, and the same for (x, a) and (x, b). For example, \emptyset, $\{x\}$ where $x \in V$, and V are intervals of G, called trivial intervals. A digraph is then said to be indecomposable [34] (or primitive [14]) if all its intervals are trivial; otherwise it is said to be decomposable.

We say that G is a graph (resp. tournament) when for all distinct vertices x, y of V, $(x, y) \in E$ if and only if $(y, x) \in E$ (resp. $(x, y) \in E$ if and only if $(y, x) \not\in E$); we say that $\{x, y\}$ is an edge of the graph G if $(x, y) \in E$, x, $y \in V$, and E is identified with a subset of $[V]^2$, the set of pairs $\{x, y\}$ of distinct elements of V.

Let $G = (V, E)$ be a graph, the complement of G is the graph $\overline{G} := (V, [V]^2 \setminus E)$. We denote by $e(G) := |E(G)|$ the number of edges of G. The degree of a vertex x of G, denoted $d_G(x)$, is the number of edges that contain x. A 3-element subset T of V such that all pairs belong to $E(G)$ is a triangle of G. Let $T(G)$ be the set of triangles of G and let $t(G) := |T(G)|$. A 3-element subset of V that is a triangle of G or of \overline{G} is a 3-homogeneous subset of G. We set $H^{(3)}(G) := T(G) \cup T(\overline{G})$, the set of 3-homogeneous subsets of G, and $h^{(3)}(G) := |H^{(3)}(G)|$.

Another proof of Theorem 1.4 using Theorem 1.3. Here $p = 2$, $t = 2 = [0, 1]_p$, and $k = [0, 0, k_2, \ldots]_p$.

From 2) of Theorem 1.3, $U = U'$, or one of the sets U, U' is the set of all 2-element subsets of V and the other is empty, or for all 2-element subsets T of V, $T \in U$ if and only if $T \not\in U'$. Thus $G' = G$ or $G' = \overline{G}$. \hfill \square

Proof of Theorem 1.5. We may suppose V finite. We set $U := E(G)$, $U' := E(G')$. For all $K \subseteq V$ with $|K| = k$, we have: $\{\{x, y\} \subseteq K : \{x, y\} \subseteq U\} = E(G|_K)$ and $\{\{x, y\} \subseteq K : \{x, y\} \subseteq U'\} = E(G'|_K)$.

Since $e(G|_K) \equiv e(G'|_K) \mod p$, then $|\{\{x, y\} \subseteq K : \{x, y\} \subseteq U\}| \equiv |\{\{x, y\} \subseteq K : \{x, y\} \subseteq U'\}| \mod p$.

1) $p \geq 3$, $t := 2 = [2]_p$, and $k_0 \geq 2$. From 1) of Theorem 1.3, $U = U'$; thus $G = G'$.

2) $p \geq 3$, $t := 2 = [2]_p$, and $k_0 = 0$. From 2) of Theorem 1.3, we have $U = U'$ or one of U, U' is the set of all 2-element subsets of V and the other is empty. Then $G = G'$ or one of the graphs G, G' is the complete graph and the other is the empty graph.

3) $p = 2$, $t = 2 = [0, 1]_p$, and $k = [0, 1, k_2, \ldots]_p$. From 1) of Theorem 1.3, we have $U = U'$; thus $G = G'$.

The following result concerns graphs G and G' such that $h^{(3)}(G|_K) \equiv h^{(3)}(G'|_K)$ modulo a prime p, for all k-element subsets K of V.

954
Theorem 4.1 Let G and G' be 2 graphs on the same set V of v vertices (possibly infinite). Let p be a prime number and k be an integer, $3 \leq k \leq v - 3$.

1) If $h^3(G_{1|K}) = h^3(G'_{1|K})$ for all k-element subsets K of V then G and G' have the same 3-element homogeneous subsets.

2) Assume $p \geq 5$. If $k \not\equiv 1, 2 \pmod{p}$ and $h^3(G_{1|K}) \equiv h^3(G'_{1|K}) \pmod{p}$ for all k-element subsets K of V, then G and G' have the same 3-element homogeneous subsets.

3) If $(p = 2$ and $k \equiv 3 \pmod{4})$ or $(p = 3$ and $3 \mid k)$, and $h^3(G_{1|K}) \equiv h^3(G'_{1|K}) \pmod{p}$ for all k-element subsets K of V, then G and G' have the same 3-element homogeneous subsets.

Proof We may suppose V finite.

We have $H^3(G) = \{\{a, b, c\} : G_{1\{a,b,c\}}$ is a 3-element homogeneous subset$\}$.

We set $U := H^3(G)$ and $U' := H^3(G')$. For all $K \subseteq V$ with $|K| = k$, we have: $\{T \subseteq K : T \in U\} = H^3_{G_{1|K}}$ and $\{T \subseteq K : T \in U'\} = H^3_{G'_{1|K}}$. Set $t := |T| = 3$.

1) Since $h^3(G_{1|K}) = h^3(G'_{1|K})$ for all k-element subsets K of V then $|\{T \subseteq K : T \in U\}| = |\{T \subseteq K : T \in U'\}|$. From Lemma 1.2 it follows that $U = U'$; then G and G' have the same 3-element homogeneous subsets.

2) Since $h^3(G_{1|K}) \equiv h^3(G'_{1|K}) \pmod{p}$ for all k-element subsets K of V then $|\{T \subseteq K : T \in U\}| \equiv |\{T \subseteq K : T \in U'\}| \pmod{p}$.

Case 1. $k_0 \geq 3$. Then $p \geq 5$, $t := 3 = [3]_p$, and $t_0 = 3 \leq k_0$. From 1) of Theorem 1.3 we have $U = U'$; thus G and G' have the same 3-element homogeneous subsets.

Case 2. $k_0 = 0$. Then $p \geq 5$, $t := 3 = [3]_p$. By Ramsey’s theorem [33], every graph with at least 6 vertices contains a 3-element homogeneous subset. Then U and U' are nonempty and so from 2) of Theorem 1.3, $U = U'$; thus G and G' have the same 3-element homogeneous subsets.

3) Since $h^3(G_{1|K}) \equiv h^3(G'_{1|K}) \pmod{p}$ for all k-element subsets K of V then $|\{T \subseteq K : T \in U\}| \equiv |\{T \subseteq K : T \in U'\}| \pmod{p}$.

Case 1. $p = 2$ and $k \equiv 3 \pmod{4}$. Let $t := 3 = [1, 1]_p$. In this case, $k = [1, 1, k_2, \ldots]_p$; then from 1) of Theorem 1.3 we have $U = U'$; thus G and G' have the same 3-element homogeneous subsets.

Case 2. $p = 3$ and $3 \mid k$. Then $k = [0, k_1, \ldots, k_{k(p)}]_p$. Let $t := 3 = [0, 1]_p$.

Case 2.1. $k_1 \in \{1, 2\}$; then from 1) of Theorem 1.3 we have $U = U'$; thus G and G' have the same 3-element homogeneous subsets.

Case 2.2. $k_1 = 0$. By Ramsey’s theorem [33], every graph with at least 6 vertices contains a 3-element homogeneous subset. Then U and U' are nonempty, and so from 2) of Theorem 1.3, $U = U'$; thus G and G' have the same 3-element homogeneous subsets.

Let $G = (V, E)$ be a graph. From [34], every indecomposable graph of size 4 is isomorphic to $P_4 = \{(0, 1, 2, 3), \{0, 1\}, \{1, 2\}, \{2, 3\}\}$. Let $P^4(G)$ be the set of subsets X of V such that the induced subgraph $G_{1|X}$ is isomorphic to P_4. We set $p^4(G) := |P^4(G)|$. The following result concerns graphs G and G' such that $p^4(G_{1|K}) \equiv p^4(G'_{1|K})$ modulo a prime p, for all k-element subsets K of V.
Theorem 4.2 Let G and G' be 2 graphs on the same set V of v vertices. Let p be a prime number and k be an integer, $4 \leq k \leq v - 4$.

1) If $p^4(G|_K) = p^4(G'|_K)$ for all k-element subsets K of V then G and G' have the same indecomposable sets of size 4.

2) Assume $p^4(G|_K) \equiv p^4(G'|_K) \pmod{p}$ for all k-element subsets K of V.

 a) If $p \geq 5$ and $k \not\equiv 1, 2, 3 \pmod{p}$, then G and G' have the same indecomposable sets of size 4.

 b) If $(p = 2, 4 \mid k$ and $8 \nmid k)$ or $(p = 3, 3 \mid k - 1$ and $9 \nmid k - 1)$, then G and G' have the same indecomposable sets of size 4.

 c) If $p = 2$ and $8 \nmid k$, then G and G' have the same indecomposable sets of size 4, or for all 4-element subsets T of V, $G|_T$ is indecomposable if and only if $G'|_T$ is decomposable.

Proof Let $U := \{T \subseteq V : |T| = 4, G|_T \simeq P_4\} = \mathcal{P}^4(G)$, $U' := \{T \subseteq V : |T| = 4, G'|_T \simeq P_4\} = \mathcal{P}^4(G')$. For all $K \subseteq V$, we have $\{T \subseteq K : T \in U\} = \mathcal{P}_4(G|_K)$ and $\{T \subseteq K : T \in U'\} = \mathcal{P}_4(G'|_K)$. Set $t := |T| = 4$.

1) Since $p^4(G|_K) = p^4(G'|_K)$ then $|\{T \subseteq K : T \in U\}| = |\{T \subseteq K : T \in U'\}|$. From Lemma 1.2, $U = U'$; then G and G' have the same indecomposable sets of size 4.

2) We have $p^4(G|_K) \equiv p^4(G'|_K) \pmod{p}$ for all k-element subsets K of V; then $|\{T \subseteq K : T \in U\}| \equiv |\{T \subseteq K : T \in U'\}| \pmod{p}$.

 a) Case 1. $k_0 \geq 4$. Then $p \geq 5$, $t = 4 = [4]_p$, and $t_0 = 4 \leq k_0$. From 1) of Theorem 1.3 we have $U = U'$; thus G and G' have the same indecomposable sets of size 4.

 Case 2. $k_0 = 0$. Let $t := 4 = [4]_p$.

 A graph H is k-monomorphic if $G|_X \simeq G|_Y$ for all k-element subsets X and Y of V. If a graph of order at least 6 is 4-monomorphic then it is 2-monomorphic and hence complete or empty. Since in every graph of order 6, there is a restriction of size 4 not isomorphic to P_4 then, from 2) of Theorem 1.3, $U = U'$; thus G and G' have the same indecomposable sets of size 4.

 b) Case 1. $p = 2, 4 \mid k$, and $8 \nmid k$. Then $t := 4 = [0, 0, 1]_p$ and $k = [0, 0, 1, k_3, \ldots, k_{k(p)}]_p$. From 1) of Theorem 1.3, we have $U = U'$; thus G and G' have the same indecomposable sets of size 4.

 Case 2. $p = 3, 3 \mid k - 1$, and $9 \nmid k - 1$. Then $t := 4 = [1, 1]_p$, $k = [1, k_1, \ldots, k_{k(p)}]_p$, and $t_1 = 1 \leq k_1$. From 1) of Theorem 1.3, $U = U'$, thus G and G' have the same indecomposable sets of size 4.

 c) We have $p = 2, t := 4 = [0, 0, 1]_p$, and $k = [0, 0, 0, k_3, \ldots, k_{k(p)}]_p$. Since in every graph of order 6, there is a restriction of size 4 not isomorphic to P_4, then from 2) of Theorem 1.3, $U = U'$, or for all 4-element subsets T of V, $T \in U$ if and only if $T \not\in U'$. Thus G and G' have the same indecomposable sets of size 4, or for all 4-element subsets T of V, $G|_T$ is indecomposable if and only if $G'|_T$ is decomposable. □

In a reconstruction problem of graphs up to complementation [13], Wilson’s theorem yielded the following result:

Theorem 4.3 ([13]) Let G and G' be 2 graphs on the same set V of v vertices (possibly infinite). Let k be an integer, $5 \leq k \leq v - 2$, $k \equiv 1 \pmod{4}$. Then the following properties are equivalent:

(i) $e(G|_K)$ has the same parity as $e(G'|_K)$ for all k-element subsets K of V; and $G|_K$, $G'|_K$ have the same 3-homogeneous subsets;

(ii) $G' = G$ or $G' = \overline{G}$.
Here, we just want to point out that we can obtain a similar result for \(k \equiv 3 \pmod{4} \), namely Theorem 4.4, using the same proof as that of Theorem 4.3.

The boolean sum \(G + G' \) of 2 graphs \(G = (V, E) \) and \(G' = (V, E') \) is the graph \(U \) on \(V \) whose edges are pairs \(e \) of vertices such that \(e \in E \) if and only if \(e \notin E' \).

Theorem 4.4 Let \(G \) and \(G' \) be 2 graphs on the same set \(V \) of \(v \) vertices (possibly infinite). Let \(k \) be an integer, \(3 \leq k \leq v - 2 \), \(k \equiv 3 \pmod{4} \). Then the following properties are equivalent:

(i) \(e(G_{1|K}) \) has the same parity as \(e(G'_{1|K}) \) for all \(k \)-element subsets \(K \) of \(V \); and \(G_{1|K}, G'_{1|K} \) have the same \(3 \)-homogeneous subsets;

(ii) \(G' = G \).

Proof It is exactly the same as that of Theorem 4.3 (see ([13])). The implication \((ii) \Rightarrow (i) \) is trivial. We prove \((i) \Rightarrow (ii) \). We may suppose \(V \) finite. We set \(U := G + G' \); let \(T_1, T_2, \ldots, T_{\binom{v}{2}} \) be an enumeration of the 2-element subsets of \(V \), and let \(K_1, K_2, \ldots, K_{\binom{v}{2}} \) be an enumeration of the \(k \)-element subsets of \(V \). Let \(w_U \) be the row matrix \((u_1, u_2, \ldots, u_{\binom{v}{2}}) \) where \(u_i = 1 \) if \(T_i \) is an edge of \(U \), 0 otherwise. We have \(w_U W_{2|k} = (e(U_{1|K_1}), e(U_{1|K_2}), \ldots, e(U_{1|K_{\binom{v}{2}}})) \). From the fact that \(e(G_{1|K}) \) has the same parity as \(e(G'_{1|K}) \) and \(e(U_{1|K}) = e(G_{1|K}) + e(G'_{1|K}) - 2e(G_{1|K} \cap G'_{1|K}) \) for all \(k \)-element subsets \(K \), \(w_U \) belongs to \(\text{Ker}_2(\ell W_{2|k}) \). According to Theorem 2.2, \(\text{rank}_{2} W_{2|k} = \left(\binom{v}{2} \right) - v + 1 \). Hence \(\dim \text{Ker}_2(\ell W_{2|k}) = v - 1 \).

We give a similar claim as Claim 2.8 of [13]; the proof is identical.

Claim 4.5 Let \(k \) be an integer such that \(3 \leq k \leq v - 2 \), \(k \equiv 3 \pmod{4} \); then \(\text{Ker}_2(\ell W_{2|k}) \) consists of complete bipartite graphs (including the empty graph).

Proof Let us recall that a star-graph of \(v \) vertices consists of a vertex linked to all other vertices, those \(v - 1 \) vertices forming an independent set. First we prove that each star-graph \(S \) belongs to \(\mathbb{K} := \text{Ker}_2(\ell W_{2|k}) \). Let \(w_S \) be the row matrix \((s_1, s_2, \ldots, s_{\binom{v}{2}}) \) where \(s_i = 1 \) if \(T_i \) is an edge of \(S \), 0 otherwise. We have \(w_S W_{2|k} = (e(S_{1|K_1}), e(S_{1|K_2}), \ldots, e(S_{1|K_{\binom{v}{2}}})) \). For all \(i \in \{1, \ldots, \binom{v}{k}\} \), \(e(S_{1|K_i}) = k - 1 \) if the center of the star-graph belongs to \(K_i \), 0 otherwise. Since \(k \) is odd, each star-graph \(S \) belongs to \(\mathbb{K} \). The vector space (over the 2-element field) generated by the star-graphs on \(V \) consists of all complete bipartite graphs; since \(v \geq 3 \), these are distinct from the complete graph (but include the empty graph). Moreover, its dimension is \(v - 1 \) (a basis being made of star-graphs). Since \(\dim \text{Ker}_2(\ell W_{2|k}) = v - 1 \), then \(\mathbb{K} \) consists of complete bipartite graphs as claimed.

A claw is a star-graph on 4 vertices, that is a graph made of a vertex joined to 3 other vertices, with no edges between these 3 vertices. A graph is claw-free if no induced subgraph is a claw.

Claim 4.6 ([13]) Let \(G \) and \(G' \) be 2 graphs on the same set and having the same \(3 \)-homogeneous subsets; then the boolean sum \(U := G + G' \) is claw-free.

From Claim 4.5, \(U \) is a complete bipartite graph and, from Claim 4.6, \(U \) is claw-free. Since \(v \geq 5 \), it follows that \(U \) is the empty graph. Hence \(G' = G \) as claimed.
5. Illustrations to tournaments

Let $T = (V, E)$ be a tournament. For 2 distinct vertices x and y of T, $x \rightarrow_T y$ (or simply $x \rightarrow y$) means that $(x, y) \in E$. For $A \subseteq V$ and $y \in V$, $A \rightarrow y$ means $x \rightarrow y$ for all $x \in A$. The degree of a vertex x of T is $d_T(x) := |\{y \in V : x \rightarrow y\}|$. We denote by T^* the dual of T that is $T^* = (V, E^*)$ with $(x, y) \in E^*$ if and only if $(y, x) \in E$. A transitive tournament or a total order or k-chain (denoted O_k) is a tournament of cardinality k, such that for $x, y, z \in V$, if $x \rightarrow y$ and $y \rightarrow z$, then $x \rightarrow z$. If x and y are 2 distinct vertices of a total order, the notation $x < y$ means that $x \rightarrow y$. The tournament $C_3 := \{(0, 1, 2), (0, 1), (1, 2), (2, 0)\}$ (resp. $C_4 := \{(0, 1, 2, 3), ((0, 3), (0, 1), (3, 1), (1, 2), (2, 0), (2, 3))\}$) is a 3-cycle (resp. 4-cycle) (see Figure 1). A diamond is a tournament on 4 vertices admitting only 1 interval of cardinality 3, which is a 3-cycle. Up to isomorphism, there are exactly 2 diamonds δ^+ and $\delta^- = (\delta^+)^*$, where δ^+ is the tournament defined on $\{0, 1, 2, 3\}$ by $\delta^+_{\{0, 1, 2\}} = C_3$ and $\{0, 1, 2\} \rightarrow 3$. A tournament isomorphic to δ^+ (resp. isomorphic to δ^-) is said to be a positive diamond (resp. negative diamond) (see Figure 1). The boolean sum $U := T_1 + T_2$ of 2 tournaments, $T = (V, E)$ and $T' = (V, E')$, is the graph U on V whose edges are pairs $\{x, y\}$ of vertices such that $(x, y) \in E$ if and only if $(x, y) \notin E'$.

Theorem 5.1 Let $T = (V, E)$ and $T' = (V, E')$ be 2 tournaments on the same set V of v vertices (possibly infinite). Let p be a prime number and k be an integer, $2 \leq k \leq v - 2$. Let $G := T_1 + T_2$. We assume that for all k-element subsets K of V, $e(G_{|K}) \equiv 0$ (mod p). Then

1) $T_1 = T_2$ if $(p > 3, k \neq 0, 1$ (mod p)) or $(p = 2, k \equiv 2$ (mod 4)).

2) $T = T_1$ or $T = T_2$ if $(p > 3, k \equiv 0$ (mod p)) or $(p = 2, k \equiv 0$ (mod 4)).

Proof We may suppose V finite. The proof reduces to say when G is the empty graph or when G is either empty or full. We set $G' :=$ The empty graph. Then $e(G_{|K}) \equiv e(G'_{|K})$ (mod p).

1) Use respectively 1) of Theorem 1.5 and 3) of Theorem 1.5.

2) Use respectively 2) of Theorem 1.5 and Theorem 1.4. \qed

Let T be a tournament; we set $C^{(3)}(T) := \{a, b, c : T_{|\{a, b, c\}}$ is a 3-cycle$\}$, and $e^{(3)}(T) := |C^{(3)}(T)|$. Let $T = (V, E)$ and $T' = (V, E')$ be 2 tournaments and let k be a nonnegative integer; T and T' are k-hypomorphic [8, 27] (resp. k-hypomorphic up to duality) if for every k-element subset K of V, the induced subtournaments $T_{|K}$ and $T'_{|K}$ are isomorphic (resp. $T_{|K}$ is isomorphic to $T'_{|K}$ or to $T_{|K}^+$). We say that T and T' are $(\leq k)$-hypomorphic if T and T' are h-hypomorphic for every $h \leq k$. Similarly, we say that T and T' are $(\leq k)$-hypomorphic up to duality if T and T' are h-hypomorphic up to duality for every $h \leq k$. Clearly, 2 (≤ 3)-hypomorphic tournaments have the same diamonds. Furthermore, note that 2 (≤ 3)-hypomorphic tournaments have the same indecomposable structures and if a component in the tree decomposition is indecomposable, then the corresponding one is equal or dual [9].

![Figure 1](image-url)
Figure 1. Cycle C_3, Cycle C_4, Positive Diamond, Negative Diamond.
Theorem 5.2 Let T and T' be 2 tournaments on the same set V of v vertices. Let p be a prime number and k be an integer, $3 \leq k \leq v - 3$.

1) If $c^3(T↾|K) = c^3(T'↾|K)$ for all k-element subsets K of V then T and T' are (≤ 3)-hypomorphic.

2) Assume $p \geq 5$. If $k \not\equiv 1, 2 \pmod{p}$, and $c^3(T↾|K) \equiv c^3(T'↾|K) \pmod{p}$ for all k-element subsets K of V, then T and T' are (≤ 3)-hypomorphic.

3) If $(p = 2$ and $k \equiv 3 \pmod{4})$ or $(p = 3$ and $3 | k$), and $c^3(G↾|K) \equiv c^3(G'↾|K) \pmod{p}$ for all k-element subsets K of V, then T and T' are (≤ 3)-hypomorphic.

Proof Since every tournament of cardinality ≥ 4 has at least a restriction of cardinality 3 that is not a 3-cycle, then the proof is similar to that of Theorem 4.1. □

Let T be a tournament, we set $D^+_k(T) := \{a, b, c, d \mid T↾|\{a, b, c, d\} \simeq \delta^+\}$, $D^-_k(T) := \{a, b, c, d \mid T↾|\{a, b, c, d\} \nsimeq \delta^+\}$, $d^+_k(T) := |D^+_k(T)|$, and $d^-_k(T) := |D^-_k(T)|$.

It is well known that every subtournament of order 4 of a tournament is a diamond, a 4-chain, or a 4-cycle subtournament. We have $c^3(O_4) = 0$, $c^3(\delta^+) = c^3(\delta^-) = 1$, $c^3(C_4) = 2$, and $C_4 \simeq C_4$. The (≤ 4)-hypomorphy has been studied by G. Lopez and C. Rauzy [27, 28].

Theorem 5.3 Let T and T' be 2 (≤ 3)-hypomorphic tournaments on the same set V of v vertices. Let p be a prime number and k be an integer, $4 \leq k \leq v - 4$.

1) If $d^+_k(T↾|K) = d^+_k(T'↾|K)$ for all k-element subsets K of V then T' and T are (≤ 4)-hypomorphic.

2) Assume $d^+_k(T↾|K) \equiv d^+_k(T'↾|K) \pmod{p}$ for all k-element subsets K of V.

a) If $p \geq 5$ and $k \not\equiv 1, 2, 3 \pmod{p}$, then T' and T are (≤ 4)-hypomorphic.

b) If $(p = 3, 3 | k - 1$ and $9 \not| k - 1)$ or $(p = 2, 4 | k$ and $8 \not| k)$, then T' and T are (≤ 4)-hypomorphic.

c) If $p = 2$ and $8 | k$, then T' and T are (≤ 4)-hypomorphic.

Proof Let $U^+ := \{S \subseteq V, T↾|S \simeq \delta^+\} = D^+_k(T)$, $U'^+ := D^+_k(T')$, $U^- := D^-_k(T)$, and $U'^- := D^-_k(T')$.

Claim 5.4 If T and T' are (≤ 3)-hypomorphic and $U^+ = U'^+$, then $U^- = U'^-; T$ and T' are (≤ 4)-hypomorphic.

Proof Let $S \subseteq U^-$, $T↾|S \simeq \delta^-$. Since T and T' are (≤ 3)-hypomorphic, then $T↾|S \simeq \delta^+$ or $T'↾|S \simeq \delta^-$. We have $\{S \subseteq V, T↾|S \simeq \delta^+\} = \{S \subseteq V, T↾|S \simeq \delta^-\}$; then $T↾|S \simeq \delta^-$, $S \subseteq U'^-$ and $U^- = U'^-$. Therefore, for $X \subseteq V$, if $T↾|X$ is a diamond then $T'↾|X \simeq T↾|X$.

Now we prove that T and T' are 4-hypomorphic. Let $X \subseteq V$ such that $|X| = 4$. If $T↾|X \simeq C_4$, then $c^3(T↾|X) = 2$. Since T and T' are (≤ 3)-hypomorphic then $c^3(T↾|X) = 2$; thus $T'↾|X \simeq T↾|X \simeq C_4$. The same, if $T↾|X \simeq O_4$ then $T'↾|X \simeq T↾|X \simeq O_4$. Therefore, T' and T are (≤ 4)-hypomorphic. □

From Claim 5.4, it is sufficient to prove that $U^+ = U'^+.$

For all $K \subseteq V$ with $|K| = k$, we have $\{S \subseteq K : S \subseteq U^+\} = D^+_k(T↾|K)$ and $\{S \subseteq K : S \subseteq U'^+\} = D^+_k(T'↾|K)$.

1) Since $d^+_k(T↾|K) = d^+_k(T'↾|K)$ then $\{|S \subseteq K : S \subseteq U^+\} = \{|S \subseteq K : S \subseteq U'^+\}$. From Lemma 1.2, we have $U^+ = U'^+$. 959
Figure 3). We set \(\sum S \subseteq K : S \in U^+ \) (mod \(p \)) for all \(k \)-element subsets \(K \) of \(V \); then \(|\{S \subseteq K : S \in U^+\}| \equiv |\{S \subseteq K : S \in U^+\}| \pmod{p} \).

2) We have \(d^+_4(T_{|K}) \equiv d^+_4(T'_{|K}) \pmod{p} \) for all \(k \)-element subsets \(K \) of \(V \); then \(|\{S \subseteq K : S \in U^+\}| \equiv |\{S \subseteq K : S \in U^+\}| \pmod{p} \).

 a) Case 1. \(k_0 \geq 4 \). Then \(p \geq 5 \), \(t := 4 \equiv [4]_p \), \(k = [k_0, \ldots]_p \), and \(t_0 = 4 \leq k_0 \). From 1) of Theorem 1.3 we have \(U^+ = U^+ \).

 Case 2. \(k_0 = 0 \). Then \(p \geq 5 \), \(t := 4 \equiv [4]_p \), and \(k = [0, k_1, \ldots]_p \). Since every tournament of cardinality \(\geq 5 \) has at least a restriction of cardinality 4 that is not a diamond, then from 2) of Theorem 1.3, \(U^+ = U^+ \).

 b) Case 1. \(p = 3 \), \(3 \mid k - 1 \) and \(9 \mid k - 1 \). Then \(t := 4 \equiv [1, 1]_p \), \(k = [1, k_1, \ldots, k_{k(p)}]_p \) and \(t_1 = 1 \leq k_1 \). From 1) of Theorem 1.3 we have \(U^+ = U^+ \).

 Case 2. \(p = 2 \), \(4 \mid k \) and \(8 \mid k \). Then \(t := 4 \equiv [0, 0, 1]_p \) and \(k = [0, 0, 1, k_3, \ldots, k_{k(p)}]_p \).

 From 1) of Theorem 1.3 we have \(U^+ = U^+ \).

 c) We have \(p = 2 \), \(t := 4 \equiv [0, 0, 1]_p \), \(k = [0, 0, 0, k_3, \ldots, k_{k(p)}]_p \). Since every tournament of cardinality \(\geq 5 \) has at least a restriction of cardinality 4 that is not a diamond, and the fact that \(T \) and \(T' \) are 3-hypomorphic, then from 2) of Theorem 1.3, \(U^+ = U^+ \); thus \(T' \) and \(T \) are \((\leq 5)-\)hypomorphic, or for all 4-element subsets \(S \) of \(V \), \(T_{|S} \) is isomorphic to \(\delta^+ \) if and only if \(T'_{|S} \) is isomorphic to \(\delta^- \).

In fact, in Theorem 5.3, the conclusion is that \(T' \) and \(T \) are \((\leq 5)-\)hypomorphic; this follows from Lemma 5.5 below.

Lemma 5.5 ([5]) Let \(T \) and \(T' \) be \((\leq 4)-\)hypomorphic tournaments on at least 5 vertices. Then, \(T \) and \(T' \) are \((\leq 5)-\)hypomorphic.

Comment. Let \(T \) and \(T' \) be \((\leq 3)-\)hypomorphic tournaments on the same set \(V \) of \(v \) vertices. Let \(U \) (respectively \(U' \)) be the set of positive diamonds of \(T \) (respectively of \(T' \)). Then 2) of Theorem 1.3 with \(U \neq U' \) cannot occur. Indeed, from 2) of Theorem 1.3, it follows that if \(U \neq U' \) then for every 4-element subset \(X \) of \(V \), \(T_{|X} \) is a positive diamond if and only if \(T'_{|X} \) is not a positive diamond. This implies that for every 4-element subset \(Y \) of \(V \) such that \(T'_{|Y} \) is not a diamond, \(T_{|Y} \) is a positive diamond. Since there are such \(Y \) (a 5-element tournament has 0 or 2 diamonds, see H. Bouchaala [4]), this contradicts the 3-hypomorphy.

Let \(m \) be an integer, \(m \geq 1 \), \(S = \{\{0, 1, \ldots, m - 1\}, A\} \) be a digraph and for \(i < m \) a digraph \(G_i = (V_i, A_i) \) such that the \(V_i \)’s are nonempty and pairwise disjoint. The lexicographic sum over \(S \) of the \(G_i \)’s or simply the \(S \)-sum of the \(G_i \)’s is the digraph denoted by \(S(G_0, G_1, \ldots, G_{m-1}) \) and defined on the union of the \(V_i \)’s as follows: given \(x \in V_i \) and \(y \in V_j \), where \(i, j \in \{0, 1, \ldots, m - 1\} \), \((x, y)\) is an arc of \(S(G_0, G_1, \ldots, G_{m-1}) \) if either \(i = j \) and \((x, y)\) is in \(A_i \) or \(i \neq j \) and \((i, j)\) is in \(A \): this digraph replaces each vertex \(i \) of \(S \) by \(G_i \). We say that the vertex \(i \) of \(S \) is dilated by \(G_i \).

We define, for each integer \(h \geq 0 \), the tournament \(T_{2h+1} \) (see Figure 2) on \(\{0, \ldots, 2h\} \) as follows. For \(i, j \in \{0, \ldots, 2h\} \), \(i \rightarrow j \) if there exists \(k \in \{1, \ldots, h\} \) such that \(j = i + k \) modulo \(2h + 1 \). A tournament \(T \) is said to be an element of \(D(T_{2h+1}) \) if \(T \) is obtained by dilating each vertex of \(T_{2h+1} \) by a finite chain \(p_i \), and then \(T = T_{2h+1}(p_0, p_1, \ldots, p_{2h}) \). We recall that \(T_{2h+1} \) is indecomposable and \(D(T_{2h+1}) \) is the class of finite tournaments without a diamond [27]; this class was obtained previously by Moon [30].

We define the tournament \(T_{6} = T_2(p_0, p_1, p_2) \) with \(p_0 = (0 < 1 < 2) \), \(p_1 = (3 < 4) \), and \(|p_2| = 1 \) (see Figure 3). We set \(\beta_{6}^+ := (\beta_{6}^-)^* \).
Theorem 5.8

Lemma 5.7

Corollary 5.6

A prime number and

then:

Two tournaments T and T' on the same vertex set V are hereditarily isomorphic if for all $X \subseteq V$, $T|_X$ and $T'|_X$ are isomorphic.

Let $G = (V, E)$ and $G' = (V, E')$ be (≤ 2)-hypomorphic digraphs. Denote $D_{G,G'}$ the binary relation on V such that: for $x \in V$, $xD_{G,G'}x$; and for $x \neq y \in V$, $xD_{G,G'}y$ if there exists a sequence $x_0 = x, \ldots, x_n = y$ of elements of V satisfying $(x_i, x_{i+1}) \in E$ if and only if $(x_i, x_{i+1}) \notin E'$, for all i, $0 \leq i \leq n - 1$. The relation $D_{G,G'}$ is an equivalence relation called the difference relation; its classes are called difference classes.

Using difference classes, G. Lopez [25, 26] showed that if T and T' are (≤ 6)-hypomorphic then T and T' are isomorphic. One may deduce the next corollary.

Corollary 5.6 ([25, 26]) Let T and T' be 2 tournaments. We have the following properties:

1) If T and T' are (≤ 6)-hypomorphic then T and T' are hereditarily isomorphic.

2) If for each equivalence class C of $D_{T,T'}$, C is an interval of T and T', and T'_C, $T|_C$ are (≤ 6)-hypomorphic, then T and T' are hereditarily isomorphic.

Lemma 5.7 [27] Given (≤ 4)-hypomorphic tournaments T and T', and C an equivalence class of $D_{T,T'}$, then:

1) C is an interval of T' and T.

2) Every 3-cycle in $T|_C$ is reversed in T'_C.

3) There exists an integer $h \geq 0$ such that $T|_C = T_{2h+1}(p_0, p_1, \ldots, p_{2h})$ and $T'_C = T_{2h+1}(p'_0, p'_1, \ldots, p'_{2h})$ with p_i, p'_i as chains on the same basis, for all $i \in \{0, 1, \ldots, 2h\}$.

Theorem 5.8 Let T and T' be (≤ 4)-hypomorphic tournaments on the same set V of v vertices. Let p be a prime number and $k = [k_0, k_1, \ldots, k_{k(p)}]_p$ be an integer, $6 \leq k \leq v - 6$.

961
1) If $b_6^+(T_{1|K}) = b_6^+(T'_{1|K})$ for all k-element subsets K of V then T' and T are (≤ 6)-hypomorphic and thus hereditarily isomorphic.

2) Assume $b_6^+(T_{1|K}) \equiv b_6^+(T'_{1|K})$ (mod p) for all k-element subsets K of V.

a) If $p \geq 7$, and $k_0 \geq 6$ or $k_0 = 0$, then T' and T are (≤ 6)-hypomorphic and thus hereditarily isomorphic.

b) If $(p = 5, k_0 = 1, \text{ and } k_1 \neq 0)$ or $(p = 3, k_0 = 0, \text{ and } k_1 = 2)$ or $(p = 3 \text{ and } k_0 = k_1 = 0) \text{ or } (p = 2, k_0 = 0, \text{ and } k_1 = k_2 = 1)$, then T' and T are (≤ 6)-hypomorphic and thus hereditarily isomorphic.

Proof From Lemma 5.5, T and T' are (≤ 5)-hypomorphic. Let $U^+ := \{S \subseteq V, T_{1|S} \simeq \beta_6^+\} = B_6^+(T)$, $U'^+ := B_6^+(T')$, $U^- := \{S \subseteq V, T_{1|S} \simeq \beta_6^-\} = B_6^-(T)$, $U'^- := B_6^-(T')$.

Every tournament of cardinality ≥ 7 has at least a restriction of cardinality 6 that is neither isomorphic to β_6^+ nor to β_6^-. Then, for all cases, similarly to the proof of Theorem 5.3, we have $U^+ = U'^+$.

Let C be an equivalence class of $D_{T,T'}$, $S \in U^-$, $T_{1|S} \simeq \beta_6^-$. Since T and T' are (≤ 3)-hypomorphic, then $T'_{1|S} \simeq \beta_6^+$ or $T'_{1|S} \simeq \beta_6^-$. We have $S \subseteq V$, $T'_{1|S} \simeq \beta_6^+\}$ \cup $\{S \subseteq V, T'_{1|S} \simeq \beta_6^-\}$. Then, $T'_{1|S} \simeq \beta_6^-$, $S \in U'^-$, and $U^- = U'^-$. Let $X \subseteq C$ such that $|X| = 6$; if $T_X \simeq \beta_6^+$ then, from 2) of Lemma 5.7, $T_X \simeq \beta_6^-$, which is impossible, and so T_C and T'_C do not have a restriction of cardinality 6 isomorphic to β_6^+ and β_6^-. From Lemma 5.9 below, T_C and T'_C are (≤ 6)-hypomorphic.

Lemma 5.9 ([?]) Let T and T' be 2 (≤ 5)-hypomorphic tournaments defined on a vertex set V such that for all $X \subseteq V$, if $T_{1|X}$ is isomorphic to β_6^+ or to β_6^-, then $T'_{1|X}$ is isomorphic to $T_{1|X}$. Then T and T' are (≤ 6)-hypomorphic.

From 1) of Lemma 5.7, C is an interval of T' and T. Then, from 2) of Corollary 5.6, T and T' are hereditarily isomorphic.

From Theorem 5.2, Theorem 5.3, and Theorem 5.8, we deduce the following result.

Corollary 5.10 Let T and T' be 2 tournaments on the same set V of v vertices. Let p be a prime number and $k = [k_0, k_1, \ldots, k_{k(p)}]_p$ be an integer, $6 \leq k \leq v - 6$.

1) If $c^{(3)}(T_{1|K}) = c^{(3)}(T'_{1|K})$, $d_1^+(T_{1|K}) = d_1^+(T'_{1|K})$, and $b_6^+(T_{1|K}) = b_6^+(T'_{1|K})$ for all k-element subsets K of V then T' and T are hereditarily isomorphic.

2) Assume $c^{(3)}(T_{1|K}) \equiv c^{(3)}(T'_{1|K})$, $d_1^+(T_{1|K}) \equiv d_1^+(T'_{1|K})$, and $b_6^+(T_{1|K}) \equiv b_6^+(T'_{1|K})$ (mod p) for all k-element subsets K of V.

If $p \geq 7$, and $k_0 \geq 6$ or $k_0 = 0$, then T' and T are hereditarily isomorphic.

References

