Gonality of curves with a singular model on an elliptic quadric surface

Edoardo BALLICO*
Department of Mathematics, University of Trento, Povo (TN), Italy

Received: 17.12.2012 • Accepted: 06.01.2014 • Published Online: 14.03.2014 • Printed: 11.04.2014

Abstract: Let \(W \subset \mathbb{P}^3 \) be a smooth quadric surface defined over a perfect field \(K \) and with no line defined over \(K \) (e.g., an elliptic quadric surface over a finite field). In this note we study the gonality over \(K \) of smooth curves with a singular model contained in \(W \) and with mild singularities.

Key words: Gonality, curve over a perfect field, \(K \)-gonality, elliptic quadric surface

1. Introduction
Let \(K \) be a perfect field such that there is a degree 2 extension \(L \) of \(K \). Let \(f(x_0, x_1) \in K[x_0, x_1] \) denote any degree 2 homogeneous polynomial such that \(L = K(\alpha) \) with \(\alpha \) a root of \(f(1, t) \), i.e. take as \(f \) any degree 2 homogeneous polynomial that is irreducible over \(K \) but reducible over \(L \). The main examples are the case \(K = \mathbb{R}, L = \mathbb{C} \) and the case \(K = \mathbb{F}_q \) and \(L = \mathbb{F}_q^2 \). Take homogeneous coordinates \(x_0, x_1, x_2, x_3 \) of \(\mathbb{P}^3 \) (over \(K \) and hence over \(K') \). Let \(W \subset \mathbb{P}^3 \) denote the smooth quadric surface with \(x_2x_3 + f(x_0, x_1) \) as its equation. If \(K = \mathbb{R} \), then these types of surfaces are just ellipsoids. If \(K = \mathbb{F}_q \), then \(W \) is an elliptic quadric surface [4]. In this paper we study the \(K \)-gonality of smooth curves \(C \) either contained in \(W \) or with a singular model \(Y \subset W \), but with a small number of singularities. We prove the following result.

Corollary 1 Let \(Y \subset W \) be a geometrically integral curve defined over \(K \) and let \(u : C \to Y \) be the normalization of \(Y \). Let \(a > 0 \) be the positive integer such that \(Y \in |O_W(a)| \). Assume that \(Y(\overline{K}) \) has only ordinary nodes and ordinary cusps as singularities and set \(J := \text{Sing}(Y(\overline{K})) \). Assume \(\sharp(J) \leq a - 5 \) and that no line of \(W(\overline{K}) \) contains at least 2 points of \(J \). Let \(R \in \text{Pic}^0(C)(K) \) be a spanned line bundle on \(C \) defined over \(K \) and with minimal positive degree. Then \(2a - 4 \leq y \leq 2a \) and \(R \) is induced by a subseries of \(|O_W(1)| \).

We have \(y = 2a - 4 \) if and only if there is a degree 2 extension \(K' \) of \(K \) such that \(\sharp(J(K')) \geq 2 \).

We have \(y = 2a \) if and only if \(Y(K') = \emptyset \) for each degree 2 extension \(K' \) of \(K \).

See Theorem 1 for spelling out the possible cases of \(y \). For the foundational results on the gonality of curves over algebraically closed fields, see [8], [5], [9].

Since we work in arbitrary characteristic we cannot use some of the strongest tools in the literature. In our opinion in characteristic zero the best results are still obtained using [7] or the case \(e = 0 \) of [10] and [6].
Remark 2 on page 351. To get Corollary 1 and related results we need first to work over an algebraically closed field \(\mathbb{K} \) and study low degree linear series on smooth models of singular curves on a smooth quadric surface \(Q \) (see section 2). As stressed above, in characteristic zero stronger tools are available.

We discuss our method and possible improvements in Subsection 2.1.

Many thanks are due to a referee who improved the exposition.

2. Over an algebraically closed field \(\mathbb{K} \)

Let \(Q \subset \mathbb{P}^3 \) be a smooth quadric surface defined over an algebraically closed field \(\mathbb{K} \). For any coherent sheaf \(\mathcal{F} \) on \(Q \) and any integer \(i \geq 0 \) set \(H^i(\mathcal{F}) := H^i(Q, \mathcal{F}) \) and \(h^i(\mathcal{F}) := \dim(H^i(\mathcal{F})) \). For all \((a, b) \in \mathbb{Z}^2\) let \(\mathcal{O}_Q(a, b) \) denote the line bundle on \(Q \) with bidegree \((a, b)\). We have \(h^0(\mathcal{O}_Q(a, b)) = (a+1)(b+1) \) and \(h^1(\mathcal{O}_Q(a, b)) = 0 \) if \(a \geq 0 \) and \(b \geq 0 \), while \(h^0(\mathcal{O}_Q(a, b)) = 0 \) if either \(a < 0 \) or \(b < 0 \). If \(a \geq 0 \), \(b \geq 0 \) and \(T \in |\mathcal{O}_Q(a, b)| \), then we say that \(T \) has type \((a, b)\). The lines contained in \(Q \) are the curves \(D \subset Q \) with either type \((1, 0)\) or type \((0, 1)\). For any zero-dimensional scheme \(Z \subset Q \) and any \(T \in |\mathcal{O}_Q(u, v)| \), let \(\text{Res}_T(Z) \) denote the residual scheme of \(Z \) with respect to \(T \), i.e. the closed subscheme of \(Q \) with \(\mathcal{I}_Z : \mathcal{I}_T \) as its ideal sheaf. We have \(\text{Res}_T(Z) \subset Z \), \(\text{deg}(Z) = \text{deg}(\text{Res}_T(Z)) + \text{deg}(Z \cap T) \) and for all \((a, b) \in \mathbb{Z}^2\) we have an exact sequence (often called the residual exact sequence)

\[
0 \to \mathcal{I}_{\text{Res}_T(Z)}(a - u, b - v) \to \mathcal{I}_Z(a, b) \to \mathcal{I}_{Z \cap T, T}(a, b) \to 0
\]

(1)

2.1. Outline of the proof and of possible improvements

Take an integral curve \(Y \subset Q \) with bidegree \((a, a)\). Let \(u : C \to Y \) be the normalization map and \(w : C \to Q \) the composition of \(u \) with the inclusion \(Y \to Q \). Let \(\mathcal{J} \subset \mathcal{O}_Q \) be the conductor of \(w \) and \(J \subset Q \) the zero-dimensional subscheme of \(Q \) with \(\mathcal{J} \) as its ideal sheaf. Let \(J_{\text{red}} \) be the support of \(J \). We assume for instance \(\text{deg}(J) \leq a - 5 \). Let \(\mathcal{F} \) be the set of all irreducible \(E \in |\mathcal{O}_Q(1, 1)| \) such that \(1 \leq \sharp(E \cap J_{\text{red}}) \leq 2 \). Let \(\mathcal{G} \) be the set of all irreducible \(E \in |\mathcal{O}_Q(1, 1)| \) such that \(\sharp(E \cap J_{\text{red}}) \geq 3 \). Let \(\mathcal{H} \) be the set of all reducible \(E \in |\mathcal{O}_Q(1, 1)| \) such that each component of \(E \) meets \(J_{\text{red}} \). Take \(B \) as in the proof of Lemma 5. Since \(\mathcal{G} \cup \mathcal{H} \) is finite, while \(B \) is general, we have \(E \cap B = \emptyset \) for all \(E \in (\mathcal{G} \cup \mathcal{H}) \). To apply Lemmas 1 and 2 to the scheme \(Z = J \cup B \) it is sufficient to assume \(\text{deg}(J \cap E) + y \leq 2a - 5 \) for all \(E \in |\mathcal{O}_Q(1, 1)| \). With this assumption steps (ii), (iii), (iv) of the proof of Lemma 5 carry over, because \(\text{deg}(J \cap E) \leq 2a - 5 - y \) for all \(E \in \mathcal{F} \) and \(\text{deg}(D \cap B) \leq 2 \) if \(D \in |\mathcal{O}_Q(1, 1)| \) is reducible and \(b_1 = b_2 = 1 \). Step (i) of the proof of Lemma 5 requires the following modifications for arbitrary singularities. For each \(P \in J_{\text{red}} \) let \(u_P \) be the degree of the effective divisor \(w^{-1}(P) \subset C \). For each connected degree 2 zero-dimensional scheme \(Z \subset Q \) whose support is a point \(P \in J_{\text{red}} \) let \(u_{Z, P} \) be the degree of the effective divisor \(w^{-1}(Z) \subset C \). We say that \(Y \) has either an ordinary node or an ordinary cusp at \(P \) if \(u_P = 2 \) and for each connected degree 2 scheme \(Z \subset Q \) with \(P \) as its support either \(u_{Z, P} = 3 \) (if and only if in the plane \(T_PQ \) the line through \(Z \) is in the tangent cone of \(Y \) at \(P \)) or \(u_{Z, P} = 2 \). In the description of step (i) of the proof of Lemma 5 we use the integers \(u_P \) (with \(u_P = 2 \) for double points) and \(u_{Z, P} \) (which are 2 or 3 for ordinary nodes and cusps with 3 if and only if \(Z \) corresponds to a branch of \(Y \) at \(P \). See for instance [1], [2], [3] for the formal theory of plane and space curves.

Now assume \(Y \subset W \) and that \(Y \) is defined over \(K \). To extend Theorem 1 one needs to know the integers \(u_P, P \in J_{\text{red}}(K') \) for any degree 2 extension \(K' \) of \(K \) and the integers \(u_{Z, P} \) with \(P \in J_{\text{red}}(K) \) and \(Z \) defined

395
over K. The tools work for all spanned $R \in \text{Pic}^h(C)(K)$ with $\deg(J) + y \leq 3a - 5$, without assuming that y is the K-gonality of C.

2.2. Proofs over K

Lemma 1 Fix an integer $c \geq 2$ and a zero-dimensional scheme $Z \subset Q$. Assume $\deg(Z \cap L) \leq 1$ for each line $L \subset Q$, $h^1(I_Z(c,e)) > 0$ and $\deg(Z) \leq 3c + 1$. Then there is an integral $D \in |\mathcal{O}_Q(1,1)|$ such that $\deg(D \cap Z) \geq 2c + 2$.

Proof Set $Z_0 := Z$. Let $T_1 \subset Q$ be any element of $|\mathcal{O}_Q(1,1)|$ such that $e_1 := \deg(T_1 \cap Z)$ is maximal. Set $Z_1 := \text{Res}_{T_1}(Z_0)$. For each integer $i \geq 2$ define recursively the integer e_i, the curve $T_i \in |\mathcal{O}_Q(1,1)|$, and the scheme $Z_i \subset Z_{i-1}$ in the following way. Let $T_i \subset Q$ be any element of $|\mathcal{O}_Q(1,1)|$ such that $e_i := \deg(T_i \cap Z_{i-1})$ is maximal. Set $Z_i := \text{Res}_{T_i}(Z_{i-1})$. The sequence $\{e_i\}_{i \geq 1}$ is nonincreasing. Since $h^0(\mathcal{O}_Q(1,1)) = 4$, we have $e_{i+1} = 0$ and $Z_i = \emptyset$ if $e_i \leq 2$. Since $\deg(Z \cap L) \leq 1$ for each line $L \subset Q$, we may take T_i as above and with the additional restriction that each T_i is irreducible. Since $\deg(Z) \leq 3c + 1$, we get $e_{c+1} \leq 1$ and $Z_{c+1} = \emptyset$. From (1) for each $i \in \{1, \ldots, c\}$ we get the exact sequences

$$0 \to I_{Z_i}(c-i,c-i) \to I_{Z_{i-1}}(c-i+1,c-i+1) \to I_{Z_{i-1},T_i}(c-i+1,c-i+1) \to 0$$

(2)

Since $\deg(Z_c) \leq 1$, we have $h^1(I_{Z_c}) = 0$. Since $h^1(I_Z(c,e)) > 0$, we get the existence of an integer $i \in \{1, \ldots, c\}$ such that $h^1(T_i, I_{Z_i}, T_i(c-i+1,c-i+1)) > 0$. Let f be the minimal such integer. Since T_f is irreducible, we have $T_f \cong \mathbb{P}^1$. Since $\deg(\mathcal{O}_{T_f}(c-f+1,c-f+1)) = 2c-2f+2$, we have $h^1(T_f, I_{Z_{i-1},T_i}(c-f+1,c-f+1)) > 0$ if and only if $e_f \geq 2c-2f+4$. If $f = 1$, then we may take $D := T_1$. Now assume $f \geq 2$. Since $e_i \geq e_f$ for all $i < f$, we get $\deg(Z) \geq 2f(c-f+2)$. The function $\psi(t) := 2t(c+2-t)$ is increasing in the interval $[2,(c+2)/2]$ and decreasing for $t > (c+2)/2$. Since $\psi(2) = \psi(c) = 4c$, we get $\deg(Z) \geq 4c$, a contradiction. □

Lemma 2 Fix integers $k \geq c \geq 0$ and a zero-dimensional scheme $Z \subset Q$ such that $\deg(Z) \leq k + c + 1$ and $\deg(Z \cap L) \leq 1$ for each line $L \subset Q$. Then $h^1(I_Z(k,c)) = 0$.

Proof If $c = 0$, then one may use $k-c$ residual exact sequences, each time with respect to some $L \in |\mathcal{O}_Q(1,0)|$. If $k = c = 1$, then the lemma is obvious. If $k = c \geq 2$, then we may apply Lemma 1. Now assume $k > c > 0$. By the case $c = 0$ we may assume $\deg(Z) \geq k - c$. Since $h^0(Q, \mathcal{O}_Q(k-c,0)) = k - c + 1$, there is $F \in |\mathcal{O}_Q(k-c,0)|$ such that $\deg(F \cap Z) \geq k - c$. Since $\deg(L \cap Z) \leq 1$ for each $L \in |\mathcal{O}_Q(1,0)|$, we have $\deg(F \cap Z) = k - c$. Hence $\deg(\text{Res}_F(Z)) = \deg(Z) - k + c \leq 2c + 1$. Lemma 1 gives $h^1(I_{\text{Res}_F(Z)}(c,c)) = 0$. We saw that $h^1(I_{F \cap Z}(k,0)) = 0$ and hence $h^1(I_{F \cap Z}(k,c)) = 0$. Therefore $h^1(F, I_{F \cap Z}(k,c)) = 0$. A residual exact sequence gives $h^1(I_Z(k,c)) = 0$. □

Lemma 3 Let $T \subset Q$ be an integral element of $|\mathcal{O}_Q(a,a)|$ and $u : C \to T$ its normalization. Let $J \subset \mathcal{O}_Q$ be the conductor of u and $I \subset Q$ the closed subscheme with J as its ideal sheaf. Fix integers $x \in \{0, \ldots, a-2\}$ and $y \in \{0, \ldots, a-2\}$. We have $h^0(C, u^*(\mathcal{O}_T(x,y))) = (x+1)(y+1)$ if and only if $h^1(I_J(a-2-x,b-2-y)) = 0$.

Proof Since $a > x$, $a > y$ and T has type (a,a), we have $h^0(I_T(x,y)) = 0$. Since $h^1(Q, \mathcal{O}_Q(a-x,b-y)) = 0$, the exact sequence (1) for $Z = \emptyset$ gives $h^0(T, \mathcal{O}_T(x,y)) = (x+1)(y+1)$. Hence we have
Proof

Lemma 4 Fix positive integers \(c, b_1, b_2 \) such that \(\max\{b_1, b_2\} \leq c + 1 \). Fix a zero-dimensional scheme \(J \subset Q \) and a finite set \(B \subset Q \) such that \(B \cap J = \emptyset \), \(\deg(J \cap I) \leq 1 \) for every line \(I \subset Q \), no line of \(Q \) intersects both \(J \) and \(B \), either \(I \cap B = \emptyset \) or \(I \cap B = b_1 \) for each \(I \in |O_Q(1, 0)| \) and either \(I \cap B = \emptyset \) or \(I \cap B = b_2 \) for each \(I \in |O_Q(0, 1)| \). Assume \(h^1(I_{J \cup B}(c, c)) > 0 \).

(a) If \(b_1 = b_2 = 1 \) and \(\deg(J \cup B) \leq 3c + 1 \), then there is an integral \(D \in |O_Q(1, 1)| \) such that \(\sharp(D \cap (J \cup B)) \geq 2c + 2 \).

(b) If \(\delta := \max\{b_1, b_2\} \geq 2 \), then \(\deg(J) \geq 2c + 2 - \sharp(B)/\delta \).

Proof

Set \(Z = J \cup B \). The case \(b_1 = b_2 = 1 \) is true by Lemma 1. Hence we may assume \(b_1 \geq 2 \). We have \(\sharp(B) = xb_1 = yb_2 \) for some positive integers \(x, y \). Without losing generality we may assume \(b_1 \geq b_2 \). Let \(F \in |O_Q(x, 0)| \) be the union of all lines containing at least one point of \(B \). By assumption \(F \cap J = \emptyset \). Since \(\sharp(B \cap I) = b_1 \leq c + 1 \) for each component \(I \) of \(F \), we have \(h^1(F, I_{Z \cap F}(c, c)) = 0 \). Hence the exact sequence

\[
0 \to I_J(c - x, c) \to I_Z(c, c) \to I_{F \cap Z, F}(c, c) \to 0
\]
gives \(h^1(I_J(c - x, c)) > 0 \). Lemma 2 gives \(\deg(J) \geq 2c - x + 2 \).

Remark 1 In the next lemma the integers \(b_1 \) and \(b_2 \) are positive integers dividing \(y \) (they may be 1). In the applications to \(W \) (Corollary 1 and Theorem 1) \(b_1 = b_2 \) and \(b_1 \) divides \(a \). Hence when one needs to apply Lemma 5 to curves in \(W \) there is a very small number of possible pairs \((b_1, b_2) \neq (1, 1) \).

Lemma 5 Let \(T \subset Q \) be an integral element of \(|O_Q(a, a')| \), \(a' \geq a \geq 2 \), and \(u : C \to T \) its normalization. Let \(w : C \to Q \) be the composition of \(u \) with the inclusion \(T \to Q \). Assume that \(T \) has only ordinary nodes and ordinary cusps as singularities and set \(J := \text{Sing}(T) \). Assume \(\deg(J \cap L) \leq 1 \) for each line \(L \subset Q \). Fix \(R \in \text{Pic}^R(C) \), \(y > 0 \), such that \(R \) has no base points and \(R \) is neither \(u^*(O_C(1, 0)) \) nor \(u^*(O_C(0, 1)) \).

Let \(h : C \to \mathbb{P}^1 \) be the morphism associated to a general 2-dimensional linear subspace of \(H^0(C, R) \). Let \(u_1 : C \to \mathbb{P}^1 \) and \(u_2 : C \to \mathbb{P}^1 \) be the morphisms associated to the 2 projections \(Q \to \mathbb{P}^1 \). Let \(b_i \) be the degree of the morphism \((h, u_i) \).
(a) Assume $b_1 = b_2 = 1$ and $y + \sharp(J) \leq 2a + a' - 5$. There is a zero-dimensional scheme $\Gamma \subset Q$ with $0 \leq \deg(\Gamma) \leq 2$ such that $h^0(R) = 4 - \deg(\Gamma)$ and R is induced by the linear system $|\mathcal{I}_{\Gamma}(1,1)|$. We have $\deg(R) = a + a' - \deg(\Gamma')$, where $\Gamma' := w^{-1}(\Gamma)$.

(b) Assume $(b_1, b_2) \neq (1, 1)$ and set $\delta := \max\{b_1, b_2\}$. We have $\sharp(J) \geq a' + a - 2 - y/\delta$.

Proof Set $R' := u^*(\mathcal{O}_Q(1,1))$. Lemma 3 gives $h^0(C, R') = 4$. Hence $|R'|$ is induced by $|\mathcal{O}_Q(1,1)|$.

(i) Assume for the moment that $|R|$ is induced by a linear subseries M of $|\mathcal{O}_Q(1,1)|$, after deleting a base locus. Let $\Gamma \subset Q$ be the base locus of M. Since R is neither $u^*(\mathcal{O}_C(1,0))$ nor $\mathcal{O}_C(0,1)$, Γ is not a line. Hence Γ is a zero-dimensional scheme (it may be empty). Set $\Gamma' := w^{-1}(\Gamma)$. Since $\mathcal{O}_Q(1,1)$ is very ample, we have $h^0(\mathcal{I}_E(1,1)) = 4 - \deg(E)$ for all zero-dimensional schemes $E \subset Q$ with $\deg(E) \leq 2$. Notice that $h^0(\mathcal{I}_E(1,1)) = 1$ for each degree 3 scheme $E \subset Q$ not contained in a line of Q. Since every line $L \subset \mathbb{P}^3$ with $\deg(L \cap Q) \geq 3$ is contained in Q, we get $\deg(\Gamma) \leq 2$ and $h^0(R) = 4 - \deg(\Gamma)$. Moreover, $\mathcal{I}_\Gamma(1,1)$ is spanned, unless $\deg(\Gamma) = 2$ and Γ is contained in a line of Q. The latter case does not occur for R, because the line would be in the base locus Γ, while $\dim(\Gamma) = 0$. Hence $\mathcal{I}_\Gamma(1,1)$ is spanned. Since $\mathcal{I}_\Gamma(1,1)$ and R are spanned, we have $R \cong R'(-\Gamma')$.

(ii) Fix a general $A \in |R|$ and set $B := u(A)$. Let $f : C \to \mathbb{P}^1$ be the degree y morphism induced by $|R|$. Since f is induced by a general pencil of the complete linear system $|R|$, it cannot factor through the Frobenius of order p. Since \mathbb{K} is perfect, we get that f is separable. Since A is general, A is a reduced set of y points. Since $|R|$ is spanned, we may also assume $A \cap u^{-1}(\text{Sing}(T)) = \emptyset$. Hence $B \cap J = \emptyset$ and $\sharp(B) = y$.

Claim: We have $h^1(\mathcal{I}_{J \cup B}(a - 2, a' - 2)) > 0$.

Proof of the Claim: Fix $O \in A$. Since R is spanned, we have $h^0(R(-O)) = h^0(R) - 1$, i.e. $h^0(\mathcal{O}_C(-(A \setminus \{O\}))) = h^0(\mathcal{O}_C(-A))$ (Riemann–Roch and Serre duality). Hence $h^1(\mathcal{O}_C(-A)) > 0$. We have $\mathcal{O}_Q \cong \mathcal{O}_Q(-2, -2)$. Hence the adjunction formula gives $\omega_T \cong \mathcal{O}_T(a - 2, a' - 2)$. Since $h^i(\mathcal{O}_Q(-2, -2)) = 0$, $i = 0, 1$, the restriction map $H^0(\mathcal{O}_Q(a - 2, a' - 2)) \to H^0(T, \omega_T)$ is bijective. Since T has only ordinary nodes and ordinary cusps as singularities, we have $H^0(C, \omega_C) \cong H^0(\mathcal{I}_J(a - 2, a' - 2))$. Hence $h^1(\mathcal{I}_{J \cup B}(a - 2, a' - 2)) > 0$.

(iii) In this step we assume $a' = a$ and $h^0(R) = 2$. We first prove that R is a subsheaf of $u^*(\mathcal{O}_T(1,1))$.

(a) Assume $b_1 = b_2 = 1$. Since $y + \sharp(J) \leq 3a - 5$ and $h^i(\mathcal{I}_{J \cup B}(a - 2, a' - 2)) > 0$ by the Claim, Lemma 4 gives the existence of a divisor $D \in |\mathcal{O}_Q(1,1)|$ such that $\deg(D \cap (J \cup B)) \geq 2a - 2$. Since R has no base points and $h^0(R) = 2$, we get $B = B \cap D$. Moving $A \in |R|$ the set B moves and hence D moves, but Y and the set $J \cap D$ are the same for all general A. Hence $|R|$ is induced by a subsheaf M of the linear system $|\mathcal{O}_Q(1,1)|$. Let $\Gamma \subset Q$ be the base locus of M. Since $h^0(R) = 2$, step (i) gives $\deg(\Gamma) = 2$. Step (i) gives $y = 2a - \deg(\Gamma')$.

(b) Assume $\delta \geq 2$ and say $b_1 \geq b_2$. Since B is general, either $I \cap B = \emptyset$ or $\sharp(I \cap B) = b_1$ for each $I \in |\mathcal{O}_Q(1,0)|$ and either $I \cap B = \emptyset$ or $\sharp(I \cap B) = b_2$ for each $I \in |\mathcal{O}_Q(0,1)|$. Since $R \neq u^*(\mathcal{O}_T(1,0))$, we have $\delta < a$. Lemma 4 gives $\sharp(J) \geq 2a - 2 - y/\delta$.

(iv) Assume $a' > a$ and $h^0(R) = 2$. Let $F \subset Q$ be a union of $a' - a$ lines of type $(0,1)$, each of them meeting B. Notice that $F \cap J = \emptyset$ and $\sharp(L \cap B) = b_1$ for each component L of F. Since $b_1 \leq a + 1$, we have $h^1(F, \mathcal{I}_{\mathcal{F}(B \cup J), F}(a, a')) = 0$. Hence $h^1(\mathcal{I}_{J \cup B}(a, a')) \leq h^1(\mathcal{I}_{J \cup B \cap F}(a, a))$ by a residual exact sequence like (1). Apply step (iii).
(v) Assume $h^0(R) > 2$. By steps (iii) and (iv) a general pencil of R is induced by a 2-dimensional linear subspace of $|O_Q(1,1)|$. Hence R is induced by a subspecies of $|O_Q(1,1)|$ after deleting the base points. Use step (i).

Corollary 3 In the set-up of Lemma 5 assume $a = a'$. Then $y \geq 2a - 2 - \min\{2, \deg(J)\}$ and for each y with $2a - 2 - \min\{2, \sharp(J)\} \leq y \leq 2a$ there is a spanned $R \in \text{Pic}^y(C)$ with $|R|$ induced by a linear subspace of $|O_Q(1,1)|$.

3. The quadric surface W

Let K be a perfect field having a quadratic extension. Fix homogeneous coordinates x_0, x_1, x_2, x_3 on \mathbb{P}^3. Fix $f \in K[x_0, x_1]$ with f homogeneous of degree 2 and with no nontrivial zero in K. Set $W := \{x_2x_3 + f(x_0, x_1) = 0\} \subset \mathbb{P}^3$. W is a geometrically smooth quadric surface containing no line defined over K. Hence $\text{Pic}(W)(K)$ is freely generated by $\mathcal{O}_W(1)$. Let $Y \subset W$ be a geometrically irreducible curve defined over K and $u : C \to Y$ the normalization map. C is a geometrically connected smooth curve and C and u are defined over K. Let a be the only integer such that $Y \in |\mathcal{O}_W(a,a)|$. Set $Q := W(K)$.

In the set-up of Remark 1 and Corollary 3 the curve $Y(K)$ has $b_1 = b_2$. For any field $K' \supseteq K$ let $J(K')$ denote the set of all $P \in J$ defined over K'.

The following statement implies Corollary 1.

Theorem 1 Take the set-up of Corollary 1.

(a) If $\sharp(J(K')) \geq 2$ for some quadratic extension K' of K, then $y = 2a - 4$.

(b) If $\sharp(J(K)) = 1$, $J(K) = J(K')$ for every quadratic extension K' of K and $Y(K) \setminus J(K) \neq \emptyset$, then $y = 2a - 3$.

(c) Assume $\sharp(J(K)) = 1$, $J(K) = J(K')$ for every quadratic extension K' of K and $Y(K) = J(K)$. Set $\{P\} := J(K)$. If Y has an ordinary node at P and the formal branches of Y at P are not defined over K, then $y = 2a - 2$; otherwise, $y = 2a - 3$.

(d) If $J(K'') = \emptyset$ for every quadratic extension K'' of K and there is a quadratic extension K' of K with $\sharp(Y(K')) \geq 2$, then $y = 2a - 2$.

(e) If $Y(K)$ has a unique point P, $P \notin J$ and $Y(K') = \{P\}$ for every quadratic extension K' of K, then $y = 2a - 1$.

(f) If $J(K') = Y(K') = \emptyset$ for every quadratic extension K' of K, then $y = 2a$.

In case (e) the only line bundle evincing y is the pull-back of $\mathcal{O}_Y(1)(-P)$ and we have $h^0(R) = 3$.

In case (f) the only line bundle R evincing y is the one induced by the pull-back of $\mathcal{O}_W(1)$ and we have $h^0(R) = 4$.

Proof Since $\mathcal{O}_W(1)$ is spanned, we have $y \leq 2a$. Part (b) of Lemma 5 shows that $b_1 = b_2 = 1$. Theorem 1 follows from Corollary 3 and step (i) of the proof of Lemma 5.

Notice that if $J(K') \supseteq J(K)$ for some quadratic extension K' of K, then $J(K') \setminus J(K)$ contains at least 2 elements and hence we are in case (a) with $y = 2a - 4$.

399
References