Some results on \mathcal{T}-noncosingular modules

Rachid TRIBAK
Centre Régional des Métiers de L’Education et de la Formation (CRMEF)-Tanger, Tangier 90000, Morocco

Received: 26.02.2013 Accepted: 01.04.2013 Published Online: 09.12.2013 Printed: 20.01.2014

Abstract: The notion of \mathcal{T}-noncosingularity of a module has been introduced and studied recently. In this article, a number of new results of this property are provided. It is shown that over a commutative semilocal ring R such that $\text{Jac}(R)$ is a nil ideal, every \mathcal{T}-noncosingular module is semisimple. We prove that for a perfect ring R, the class of \mathcal{T}-noncosingular modules is closed under direct sums if and only if R is a primary decomposable ring. Finitely generated \mathcal{T}-noncosingular modules over commutative rings are shown to be precisely those having zero Jacobson radical. We also show that for a simple module S, $E(S) \oplus S$ is \mathcal{T}-noncosingular if and only if S is injective. Connections of \mathcal{T}-noncosingular modules to their endomorphism rings are investigated.

Key words: Small submodules, \mathcal{T}-noncosingular modules, endomorphism rings

1. Introduction

The concept of \mathcal{T}-noncosingularity of a module was introduced and studied recently by Tütüncü and Tribak in 2009 [20] as a dual notion of the \mathcal{K}-nonsingularity that was introduced and studied by Rizvi-Roman [14, 15]. It was shown in [21] that every dual Baer module is \mathcal{T}-noncosingular and that every \mathcal{T}-noncosingular lifting module is dual Baer. We note also that dual Rickart modules were introduced and studied by Lee et al. in 2011 [12] and it is easy to see that every dual Rickart module is \mathcal{T}-noncosingular. These links of the \mathcal{T}-noncosingularity with the dual Rickart and dual Baer properties are the motivations for the investigations in this paper. We obtain some new useful properties of this kind of module.

Throughout, R will denote an associative ring with unity, $\text{Jac}(R)$ will denote the Jacobson radical of R, and $Z(R)$ will stand for the right singular ideal of R. For an R-module M, we write $E(M)$ and $\text{Rad}(M)$ for the injective hull and the Jacobson radical of M, respectively. If N is a submodule of an R-module M, then the notation $N \ll M$ means that N is small in M.

In Section 2 we investigate general properties of \mathcal{T}-noncosingular modules. We provide conditions for a \mathcal{T}-noncosingular module to have zero Jacobson radical. Among other results, we show that every finitely generated \mathcal{T}-noncosingular module over a commutative ring has zero Jacobson radical. The class of commutative rings R for which every cyclic R-module is \mathcal{T}-noncosingular is characterized as that of von Neumann regular rings, while the class of commutative rings R for which every finitely generated \mathcal{T}-noncosingular R-module is semisimple is shown to be precisely that of semilocal rings. It is also shown that over a commutative semilocal ring R such that $\text{Jac}(R)$ is a nil ideal, every \mathcal{T}-noncosingular R-module is semisimple.

Section 3 is devoted to some results on direct sums of \mathcal{T}-noncosingular modules. We show that for a
simple module S, $E(S) \oplus S$ is \mathcal{T}-noncosingular if and only if S is injective. We prove that for a perfect ring R, the class of \mathcal{T}-noncosingular modules is closed under direct sums if and only if R is a primary decomposable ring.

The focus of our investigations in Section 4 is on connections of a \mathcal{T}-noncosingular module to its endomorphism ring.

2. Some properties of \mathcal{T}-noncosingular modules

Definition 2.1 Let M and N be 2 modules.

1. We say that M is \mathcal{T}-noncosingular relative to N if $\forall \varphi \in \text{Hom}_R(M, N)$, $\text{Im} \varphi \ll N$ implies $\varphi = 0$.

2. The module M is called \mathcal{T}-noncosingular if M is \mathcal{T}-noncosingular relative to M (or, equivalently, $\forall \varphi \in \text{End}_R(M)$, $\text{Im} \varphi \ll M \Rightarrow \varphi = 0$).

Many examples of \mathcal{T}-noncosingular modules are exhibited in [21] and [20]. Before presenting another example, we recall that a module M is called radical if M has no maximal submodules, i.e. $\text{Rad}(M) = M$.

Example 2.2 Let M be a simple radical module. That is, M is a nonzero radical module that has no nonzero radical submodules (e.g., we can consider the \mathbb{Z}-modules $\mathbb{Z}(p^\infty)$ and \mathbb{Q}, where p is a prime number). Let φ be a nonzero endomorphism of M. Then $\text{Im} \varphi \cong M/\text{Ker} \varphi$ and so $\text{Rad}(\text{Im} \varphi) = \text{Im} \varphi$. Therefore, $\text{Im} \varphi = M$. Hence, M is \mathcal{T}-noncosingular.

A ring R is called a right V-ring if every simple right R-module is injective. This is equivalent to the condition that for any right R-module M, we have $\text{Rad}(M) = 0$. Recall that a module M is called \mathcal{K}-nonsingular if, for every $0 \neq \varphi \in \text{End}_R(M)$, $\text{Ker} \varphi$ is not essential in M (see [15]). The next example shows the existence of a \mathcal{T}-noncosingular module that is not \mathcal{K}-nonsingular and provides a \mathcal{K}-nonsingular module that is not \mathcal{T}-noncosingular.

Example 2.3 (1) Let R be a right V-ring that is not semisimple (e.g., we can take $R = \prod_{i=1}^{\infty} F_i$, with $F_i = F$ is a field for all $i \geq 1$). By [20, Proposition 2.13], every R-module is \mathcal{T}-noncosingular. On the other hand, from [15, Corollary 2.21] it follows that R has a module M that is not \mathcal{K}-nonsingular.

(2) Let F be a field and set $R = \begin{bmatrix} F & 0 \\ F & F \end{bmatrix}$. Then $\text{Jac}(R) = \begin{bmatrix} 0 & 0 \\ F & 0 \end{bmatrix}$, and hence R_R is not \mathcal{T}-noncosingular by [20, Corollary 2.7]. On the other hand, we have $Z(R_R) = 0$ by [4, Corollary 4.3]. Applying [15, Corollary 2.4], we conclude that R_R is \mathcal{K}-nonsingular.

In [20, Proposition 2.3] it was showed that the \mathcal{T}-noncosingularity is inherited by direct summands. Next, we show that the \mathcal{T}-noncosingularity property does not always transfer from a module to each of its submodules and factor modules.

Example 2.4 (1) Note that the \mathbb{Z}-module $\mathbb{Z}/8\mathbb{Z}$ is not \mathcal{T}-noncosingular, while \mathbb{Z} is \mathcal{T}-noncosingular (see [20, Proposition 2.10]).

(2) Consider the \mathbb{Z}-module $M = \mathbb{Z}(2^\infty) \oplus \mathbb{Z}(2^\infty)$. Then M has a submodule N, which is isomorphic to $\mathbb{Z}(2^\infty) \oplus \mathbb{Z}/2\mathbb{Z}$. Then M is \mathcal{T}-noncosingular as every factor module of M is injective, while N is not \mathcal{T}-noncosingular by [20, Example 2.12].
Recall that a ring R is said to be a right H-ring if, whenever S_1 and S_2 are simple R-modules such that $\text{Hom}_R(E(S_1), E(S_2)) \neq 0$, then $S_1 \cong S_2$. It is well known that every commutative Noetherian ring is an H-ring (see, e.g., [16]). Next, we deal with the T-noncosingularity of injective hulls of simple modules. First note that for any prime number p, the \mathbb{Z}-module $E(\mathbb{Z}/p\mathbb{Z}) = \mathbb{Z}(p^\infty)$ is T-noncosingular.

Proposition 2.5 Assume that R is a ring that has a unique simple right R-module (up to isomorphism) or R is a right H-ring. If S is a simple R-module such that $E(S)$ is T-noncosingular, then S is injective or $\text{Rad}(E(S)) = E(S)$.

Proof Suppose that S is not injective and $\text{Rad}(E(S)) \neq E(S)$. Then $S \ll E(S)$ and $E(S)$ has a maximal submodule N. Let S' denote the simple R-module $E(S)/N$. Taking the canonical projection $\pi : E(S) \rightarrow S'$ and the inclusion map $\alpha : S' \rightarrow E(S')$, the homomorphism $\alpha \pi : E(S) \rightarrow E(S')$ is nonzero and $\text{Im}(\alpha \pi) = S'$. By hypothesis, we get that $S' \cong S$. Hence, there exists a nonzero endomorphism φ of $E(S)$ such that $\text{Im} \varphi = S \ll E(S)$. This contradicts the fact that M is T-noncosingular. \hfill \Box

Corollary 2.6 Let m be a maximal ideal of a commutative Artinian ring R. Then $E(R/m)$ is T-noncosingular if and only if R/m is injective.

Proof Note that $\text{Rad}(E(R/m)) \neq E(R/m)$ and R is Noetherian by [2, Theorem 15.20 and Corollary 15.21]. Hence, R is an H-ring, and the result follows from Proposition 2.5. \hfill \Box

We recall that a ring R is called a right max ring if $\text{Rad}(M) \neq M$ for all nonzero right R-modules M.

Corollary 2.7 Let R be a right max local ring with maximal right ideal m. The following are equivalent:

1. $E(R/m)$ is T-noncosingular;
2. R/m is injective;
3. R is a division ring.

Proof (i) \Rightarrow (ii) By Proposition 2.5 and the fact that R is a right max ring.

(ii) \Rightarrow (iii) By hypothesis, every simple R-module is injective. Thus, R is a right V-ring and $m = \text{Rad}(R) = 0$. Therefore, R is a division ring.

(iii) \Rightarrow (i) This is obvious. \hfill \Box

Proposition 2.8 Let M be a module with $\text{Rad}(M) \neq 0$ and let N be a nonzero small submodule of M. If K is a module that is isomorphic to N, then the module $M \oplus K$ is not T-noncosingular.

Proof By hypothesis, there exists an isomorphism $\varphi : K \rightarrow N$. Let $\pi : M \oplus K \rightarrow K$ be the canonical projection and let $\mu : N \rightarrow M$ and $\rho : M \rightarrow M \oplus K$ be the inclusion maps. Then $\rho \mu \varphi \pi$ is a nonzero endomorphism of $M \oplus K$ such that $\text{Im}(\rho \mu \varphi \pi) = N \oplus 0 \ll M \oplus K$. \hfill \Box

It is easy to see that every module with zero Jacobson radical is T-noncosingular and that the converse is not true, in general (e.g., for any prime integer p, the \mathbb{Z}-module $\mathbb{Z}(p^\infty)$ is T-noncosingular, but $\text{Rad}(\mathbb{Z}(p^\infty)) = \mathbb{Z}(p^\infty)$). In the next 3 results we present conditions under which the converse holds.

Proposition 2.9 Let M be a module such that every nonzero submodule contains a simple submodule. If $M \oplus S$ is T-noncosingular for every simple small submodule $S \leq M$, then $\text{Rad}(M) = 0$. 31
Proof Assume that $\text{Rad}(M) \neq 0$. Then $\text{Rad}(M)$ contains a simple submodule S. Thus, $S \preccurlyeq M$. From Proposition 2.8 it follows that $M \oplus S$ is not T-noncosingular. This completes the proof.

Definition 2.10 A module M is said to be retractable if for every submodule $N \leq M$, $\text{Hom}(M,N) \neq 0$.

Retractable modules have been studied extensively by different authors (see, e.g., [6, 7, 8, 9, 17]).

Proposition 2.11 Let M be a retractable module. If M is T-noncosingular, then $\text{Rad}(M) = 0$.

Proof Suppose that $\text{Rad}(M) \neq 0$. Then M contains a nonzero submodule N such that $N \preccurlyeq M$. Since M is retractable, there exists a nonzero endomorphism $f : M \rightarrow M$ with $\text{Im} f \subseteq N$. This contradicts the T-noncosingularity of M.

A ring R is said to be right semi-Artinian if every nonzero right R-module contains a simple submodule. Recall that if R is any ring, then a right R-module M is nonsingular if $mE \neq 0$ for every nonzero element m of M and essential right ideal E of R.

Corollary 2.12 If M is a nonzero module that satisfies one of the following conditions:

(i) M is a module over a commutative semi-Artinian ring,
(ii) M is a projective module over a commutative Noetherian ring,
(iii) M is a finitely generated module over a commutative ring,
(iv) M is a nonsingular module over a right self-injective ring,

then M is T-noncosingular if and only if $\text{Rad}(M) = 0$.

Proof By Proposition 2.11 [5, Theorems 2.7 and 2.8] and [17, Proposition 1.17 and Corollary 2.12].

Corollary 2.13 The following are equivalent for a commutative ring R:

(i) Every cyclic R-module is T-noncosingular;
(ii) R is a von Neumann regular ring.

Proof (i) \Rightarrow (ii) Let I be an ideal of R. By hypothesis, the R-module R/I is T-noncosingular. Then $\text{Rad}(R/I) = 0$ by Corollary 2.12. So R is a V-ring (see [19, Theorem 22.1]). Thus, R is von Neumann regular since R is commutative (see [19, Theorem 22.4]).

(ii) \Rightarrow (i) This follows from [20, Proposition 2.13] and [19, Theorem 22.4].

Following [18], a module M is called noncosingular if $\text{Z}(M) = \cap\{N \mid M/N$ is small in its injective hull$\} = M$. That is, for every nonzero module N and every nonzero homomorphism $f : M \rightarrow N$, $\text{Im} f$ is not a small submodule of N. This is obviously equivalent to the condition that M is T-noncosingular relative to N for every module N. Clearly, every noncosingular module is T-noncosingular. It is easy to check that if S is a simple module that is not injective, then S is T-noncosingular but not noncosingular. In the next result, we give conditions under which the T-noncosingularity of a module implies its noncosingularity. The following condition was studied in [1] as a dual notion of the retractability.

Definition 2.14 A module M is called coretractable if, for any proper submodule K of M, there exists a nonzero homomorphism $f : M \rightarrow M$ with $f(K) = 0$, that is, $\text{Hom}_R(M/K, M) \neq 0$.
Proposition 2.15 Let M be a coretractable injective module. If M is \mathcal{T}-noncosingular, then M is noncosingular.

Proof Suppose that there exists a proper submodule X of M such that $M/X \ll E(M/X)$. Let $\pi : M \rightarrow M/X$ be the canonical projection. Since M is coretractable, there exists a nonzero homomorphism $\varphi : M/X \rightarrow M$. Since M is injective, φ can be extended to a homomorphism $\psi : E(M/X) \rightarrow M$. Taking the inclusion map $\alpha : M/X \rightarrow E(M/X)$, $\varphi\alpha\pi$ is a nonzero endomorphism of M. Since $\alpha\pi(M) \ll E(M/X)$, $\varphi\alpha\pi(M) \ll M$ by [13, Lemma 4.2(3)]. This contradicts the \mathcal{T}-noncosingularity of M. Hence, M is noncosingular. \(\square\)

The next proposition can be regarded as the dual of [15, Proposition 2.18]. First we prove the following elementary known result.

Lemma 2.16 Let N be a small submodule of a module M. If L is a submodule of M such that $(L+N)/N \ll M/N$, then $L \ll M$.

Proof Let X be a submodule of M such that $L+X = M$. Then, $[(L+N)/N] + [(X+N)/N] = M/N$. By hypothesis, we have $(X+N)/N = M/N$. Therefore, $X = M$ as $N \ll M$. So, $L \ll M$. \(\square\)

Proposition 2.17 Let M be a module that has a projective cover $f : P \rightarrow M$. If P is \mathcal{T}-noncosingular, then so is M.

Proof By hypothesis, $f : P \rightarrow M$ is an epimorphism with $Q = \ker f \ll P$. Thus, $P/Q \cong M$. To prove the \mathcal{T}-noncosingularity of M, let $\varphi \in \text{End}(P/Q)$ such that $\text{Im} \varphi \ll P/Q$. Consider the natural epimorphism $\pi : P \rightarrow P/Q$. Since P is projective, there exists a homomorphism $\psi : P \rightarrow P$ such that $\varphi = \pi\psi$. Therefore, $\pi\psi(P) = \varphi(P/Q) \ll P/Q$. So $\psi(P) \ll P$ by Lemma 2.16. But P is \mathcal{T}-noncosingular. Then $\psi = 0$, and hence $\varphi = 0$. This implies that $\varphi = 0$. Thus, M is \mathcal{T}-noncosingular. \(\square\)

Proposition 2.18 The following are equivalent for a ring R:

(i) R_R is \mathcal{T}-noncosingular;

(ii) Every projective R-module is \mathcal{T}-noncosingular;

(iii) Every R-module having a projective cover is \mathcal{T}-noncosingular.

Proof (i) \Rightarrow (ii) By [20, Corollary 2.7], $\text{Jac}(R) = 0$. Let P be a projective R-module. Hence $\text{Rad}(P) = P(\text{Jac}(R)) = 0$ by [2, Proposition 17.10]. So, P is \mathcal{T}-noncosingular.

(ii) \Rightarrow (iii) This follows from Proposition 2.17.

(iii) \Rightarrow (i) This is obvious. \(\square\)

Definition 2.19 (1) A module M has D_1 property (or is called lifting) if for every submodule $N \subseteq M$, there exists a direct summand K of M with $K \subseteq N$ and $N/K \ll M/K$. M has D_3 property if for any direct summands K, L of M with $M = K + L$, $K \cap L$ is a direct summand of M.

(2) A module M satisfying D_1 and D_3 is called quasi-discrete.
Definition 2.20 A module M is said to have the strong summand sum property, SSSP, if the sum of any family of direct summands is a direct summand of M. M is said to have the summand intersection property, SIP, if the intersection of any 2 direct summands is a direct summand of M.

In the next result, we provide an application of \mathcal{T}-noncosingularity to quasi-discrete modules. It can be regarded as the dual of [15, Proposition 4.1].

Proposition 2.21 Let M be a quasi-discrete module. If M is \mathcal{T}-noncosingular, then M has SSSP and SIP.

Proof Since M is \mathcal{T}-noncosingular lifting, M has SSSP by [21, Theorems 2.1 and 2.14]. To prove SIP, let K_1 and K_2 be 2 direct summands of M. Then $K = K_1 + K_2$ is a direct summand of M. Since M has (D_3), K has (D_3) by [13, Lemma 4.7]. Therefore, $K_1 \cap K_2$ is a direct summand of K. Hence, $K_1 \cap K_2$ is a direct summand of M.

Recall that a ring R is said to be semilocal if the factor ring $R/Jac(R)$ is semisimple.

We conclude this section by describing the structure of some classes of \mathcal{T}-noncosingular modules over commutative semilocal rings. First we prove the following lemma.

Lemma 2.22 Let I be a nil ideal of a commutative ring R. If M is \mathcal{T}-noncosingular, then $MI = 0$.

Proof Let $a \in I$ and consider the endomorphism φ_a of M defined by $\varphi_a(x) = xa$ for all $x \in M$. Clearly, we have $Im\varphi_a = Ma$. Let X be a submodule of M such that $M = Ma + X$. By induction, we have $M = Ma^n + X$ for every integer $n \geq 1$. Then $X = M$ since the ideal I is nil. It follows that $Ma \ll M$. Thus, $Ma = 0$ as M is \mathcal{T}-noncosingular.

Theorem 2.23 Let R be a commutative semilocal ring such that $Jac(R)$ is a nil ideal of R. Then an R-module M is \mathcal{T}-noncosingular if and only if M is semisimple.

Proof Let M be a \mathcal{T}-noncosingular module. Since R is semilocal, we have $Rad(M) = MJac(R)$ and $M/Rad(M)$ is semisimple by [2, Corollary 15.18]. Therefore, $Rad(M) = 0$ by Lemma 2.22. Thus, M is semisimple. The converse is immediate.

Corollary 2.24 Let R be a commutative perfect ring. Then an R-module M is \mathcal{T}-noncosingular if and only if M is semisimple.

Proof By Theorem 2.23 and [2, Theorem 28.4].

Theorem 2.25 The following statements are equivalent for a commutative ring R:

(i) Every \mathcal{T}-noncosingular R-module M with $Rad(M) \ll M$ is semisimple;

(ii) Every finitely generated \mathcal{T}-noncosingular module is semisimple;

(iii) R is semilocal.

Proof (i) \Rightarrow (ii) This is clear.

(ii) \Rightarrow (iii) Since $Rad(R/Jac(R)) = 0$, the R-module $R/Jac(R)$ is \mathcal{T}-noncosingular. The result follows by (ii).
(iii) \Rightarrow (i) Let M be a T-noncosingular R-module with $Rad(M) \ll M$. Since R is semilocal, $M/Rad(M)$ is semisimple and $Rad(M) = MJac(R)$ by [2, Corollary 15.18]. If $a \in Jac(R)$ and φ_a is the endomorphism of M defined by $\varphi_a(x) = xa$ for all $x \in M$, then we have $\text{Im} \varphi_a = M \varphi_a \subseteq MJac(R) \ll M$. But by T-noncosingularity, $Ma = 0$. Thus, $Rad(M) = 0$. This implies that M is semisimple.

3. Direct sums of T-noncosingular modules

It is shown in [20, Example 2.12] that, in general, a direct sum of 2 T-noncosingular modules is not T-noncosingular. In this section we prove that for a simple module S, $E(S) \oplus S$ is T-noncosingular if and only if S is injective (Proposition 3.4). The class of perfect rings for which arbitrary direct sums of T-noncosingular modules are T-noncosingular is shown to be exactly that of the primary decomposable rings (Theorem 3.7).

We begin with the next proposition, which is a direct consequence of [20, Corollary 2.7 and Proposition 2.11].

Proposition 3.1 (i) If M is a T-noncosingular module, then every direct sum of copies of M is a T-noncosingular module.

(ii) If R is a ring with $Jac(R) = 0$, then every free R-module is T-noncosingular.

Next, we provide a characterization for an arbitrary direct sum of T-noncosingular modules to be T-noncosingular when each module is fully invariant in the direct sum.

Proposition 3.2 Let $M = \oplus_{i \in I} M_i$ be the direct sum of fully invariant submodules M_i. Then M is T-noncosingular if and only if M_i is T-noncosingular for all $i \in I$.

Proof The necessity follows from [20, Proposition 2.3]. Conversely, we need only to show that M_i is a T-noncosingular module relative to M_j for all $i, j \in I$ with $i \neq j$ (see [20, Proposition 2.11]). Let $f : M_i \to M_j$ ($i \neq j$) be a homomorphism. Let $\pi_i : M \to M_i$ be the projection map and $\alpha_j : M_j \to M$ be the inclusion map. Then $g = \alpha_j f \pi_i \in \text{End}_R(M)$ and $g(M) \subseteq M_j$. Since M_i is fully invariant in M, we have $g(M_i) \subseteq M_i$. So, $g(M_i) \subseteq M_i \cap M_j = 0$. Hence, $f = 0$. Consequently, M is T-noncosingular.

Proposition 3.3 Let $M = N \oplus (\oplus_{i \in I} S_i)$ such that $S_i (i \in I)$ are simple modules. The following are equivalent:

(i) M is T-noncosingular;

(ii) (a) N is T-noncosingular, and

(b) For every simple small submodule S of N, $S \not\cong S_i$ for all $i \in I$.

Proof (i) \Rightarrow (ii) By [20, Proposition 2.3], N and $N \oplus S_i$ are T-noncosingular modules for all $i \in I$. Proposition 2.8 now shows that condition (b) holds.

(ii) \Rightarrow (i) By (b), each S_i is T-noncosingular relative to N. Applying [20, Proposition 2.11], we obtain that M is T-noncosingular.

Let R be a Dedekind domain that is not a field and P be a nonzero prime ideal of R. Let $R(P^\infty)$ denote the P-primary component of the torsion R-module K/R, where K is the quotient field of R. In [20, Example 2.12] it is proven that the R-module $R(P^\infty) \oplus R/P$ is not T-noncosingular. That is, $E(R/P) \oplus R/P$
is not T-noncogulsingular. In the next result we provide a necessary and sufficient condition for $E(S) \oplus S$ to be T-noncogulsingular, where S is a simple module.

Proposition 3.4 Let S be a simple module. Then the module $M = E(S) \oplus S$ is T-noncogulsingular if and only if S is injective.

Proof The sufficiency is obvious. Conversely, suppose that S is not injective. Then $S \ll E(S)$. Thus, M is not T-noncogulsingular by Proposition 2.8.

By combining [20, Proposition 2.13] and Proposition 3.4, we get the following result.

Corollary 3.5 The following are equivalent for a ring R:

(i) Every R-module is T-noncogulsingular;

(ii) For every simple R-module S, the module $E(S) \oplus S$ is T-noncogulsingular;

(iii) The ring R is a right V-ring.

Next, we present other examples that show that the property of T-noncogulsingularity does not go to direct sums of T-noncogulsingular modules.

Example 3.6 (1) Let R be a right hereditary ring that is not a right V-ring. Therefore, R has a simple R-module S that is not injective (e.g., we can take a Dedekind domain R that is not a field and S any simple R-module). Then $E(S)$ and S are both T-noncogulsingular R-modules by [20, Example 2.1]. However, the R-module $M = E(S) \oplus S$ is not T-noncogulsingular by Proposition 3.4.

(2) Let R be an almost DVR with maximal ideal m and quotient field Q (i.e. R is a commutative local Noetherian domain of Krull dimension 1 and the integral closure R' of R in Q is a finitely generated R-module and is a discrete valuation ring). Note that $E(R/m)$ is a simple radical R-module by [11, Proposition 4]. Therefore, $E(R/m)$ is a T-noncogulsingular R-module (see Example 2.2). Further, the R-module R/m is T-noncogulsingular. On the other hand, the R-module $E(R/m) \oplus R/m$ is not T-noncogulsingular, since otherwise R will be a V-ring and $m = 0$ by Corollary 3.5.

Recall that a ring R is called left (resp. right) perfect if it is semilocal and every nonzero left R-module contains a maximal (resp. simple) submodule. A ring R is said to be perfect if it is right and left perfect. A perfect ring is said to be primary if the ring $R/Jac(R)$ is simple Artinian. A perfect ring is called primary decomposable if it is isomorphic to a finite product of primary rings. A module M is called supplemented if, for every submodule N of M, there exists a submodule $K \leq M$ such that $M = N + K$ and $N \cap K \ll K$ (see, e.g., [3], [13], and [22]). It is easy to check that if M is a module with zero Jacobson radical, then M is supplemented if and only if M is semisimple.

In the next result, we characterize the class of perfect rings R for which arbitrary direct sums of T-noncogulsingular R-modules are T-noncogulsingular.

Theorem 3.7 The following assertions are equivalent for a perfect ring R:

(i) Every T-noncogulsingular R-module is semisimple;

(ii) Every direct sum of T-noncogulsingular R-modules is T-noncogulsingular;

(iii) R is primary decomposable.
Proof (i) ⇒ (ii) This is clear.

(ii) ⇒ (iii) Let \(M \) be a module such that \(S = \text{End}_R(M) \) is a division ring. Clearly, \(M \) is an indecomposable \(\mathcal{T} \)-noncosingular module. Since \(R \) is perfect, every \(R \)-module contains a simple submodule. Noting that \(M \oplus S \) is \(\mathcal{T} \)-noncosingular for every simple \(R \)-module \(S \), we conclude from Proposition 2.9 that \(\text{Rad}(M) = 0 \). Since \(R \) is perfect, \(M \) is supplemented by [13, Theorem 4.41]. Thus, \(M \) is semisimple, but \(M \) is indecomposable. Then \(M \) is simple. So \(R \) is primary decomposable by [10, Theorem 1.2].

(iii) ⇒ (i) By hypothesis, \(R = R_1 \oplus \cdots \oplus R_n \) is a direct sum of perfect primary rings \(R_i \) \((1 \leq i \leq n)\). We can write \(1_R = e_1 + e_2 + \cdots + e_n \), where \(1_R \) is the identity element of \(R \) and for each \(i \), \(e_i \in R_i \). Then for each \(i \), \(e_i \) is the identity element of the ring \(R_i \). Let \(M \) be an \(R \)-module. Then \(M = Me_1 + Me_2 + \cdots + Me_n \).

Also, \(Me_1 \) can be regarded as an \(R_i \)-module as well as an \(R \)-module, and its submodules are the same in both cases, because \(xe_i(r_1 + r_2 + \cdots + r_n) = xe_i r_i \), where \(x \in M \) and \(r_j \in R_j \) for each \(j \), \(1 \leq j \leq n \). Now assume that \(R \) has a \(\mathcal{T} \)-noncosingular module \(M \) that is not semisimple. Without loss of generality we can assume that \(M_1 = Me_1 \) is not semisimple. Note that \(\text{End}_{R_i}(M_1) = \text{End}_R(M_1) \). So \((M_1)_{R_i} \) is \(\mathcal{T} \)-noncosingular by [20, Proposition 2.3]. Since \(R_i \) is a perfect ring, \((M_1)_{R_i} \) is supplemented by [13, Theorem 4.41]. Therefore, \(\text{Rad}_{R_i}(M_1) \neq 0 \). Hence, \(\text{Rad}_{R_i}(M_1) \) contains a simple submodule \(S_1 \). Moreover, \((M_1)_{R_i} \) contains a maximal submodule \(K_i \) since \(R_1 \) is perfect. Consider the natural epimorphism \(\pi : M_1 \rightarrow M_1/K_1 \) and the inclusion map \(\alpha : S_1 \rightarrow M_1 \). Since \(R_1 \) is primary, \(R_1 \) has a unique isomorphism class of simple modules. So, there exists an isomorphism \(\theta : M_1/K_1 \rightarrow S_1 \). It follows that \(\varphi = \alpha \theta \pi \) is a nonzero endomorphism of \(M_1 \) such that \(\varphi(M_1) = S_1 \leq M_1 \). This shows that \((M_1)_{R_1} \) is not \(\mathcal{T} \)-noncosingular, a contradiction. \(\square \)

Corollary 3.8 If \(R \) is a finite product of local perfect rings (e.g., \(R \) is commutative perfect), then every \(\mathcal{T} \)-noncosingular module is semisimple.

Proof This is a direct consequence of Theorem 3.7. \(\square \)

4. The endomorphism ring of a \(\mathcal{T} \)-noncosingular module

We conclude this paper by investigating the connection of the \(\mathcal{T} \)-noncosingularity of a module to its endomorphism ring. Recall that a ring \(R \) is called reduced if it has no nonzero nilpotent elements.

Proposition 4.1 Let \(M \) be a quasi-discrete module with \(S = \text{End}_R(M) \). If \(M \) is \(\mathcal{T} \)-noncosingular, then \(S = S_1 \times S_2 \) such that \(S_1 \) is von Neumann regular and \(S_2 \) is reduced.

Proof Let \(\nabla(M) = \{ \varphi \in S : \text{Im} \varphi \leq M \} \). By [13, Proposition 5.7], \(S/\nabla(M) = S_1 \times S_2 \) such that \(S_1 \) is von Neumann regular and \(S_2 \) is reduced. However, since \(M \) is \(\mathcal{T} \)-noncosingular, \(\nabla(M) = 0 \). \(\square \)

Proposition 4.2 Let \(P \) be a quasi-projective module with \(S = \text{End}_R(P) \). The following are equivalent:

(i) \(P \) is \(\mathcal{T} \)-noncosingular;

(ii) \(\text{Jac}(S) = 0 \);

(iii) \(SS \) is \(\mathcal{T} \)-noncosingular.

Proof This follows from [20, Corollary 2.7] and the fact that \(\varphi \in \text{Jac}(S) \) if and only if \(\text{Im} \varphi \leq P \) (see, e.g., [22, 22.2]). \(\square \)
Proposition 4.2 is not true, in general, as the next example shows.

Example 4.3 Consider the \(\mathbb{Z} \)-module \(M = \mathbb{Z}(p^\infty) \), where \(p \) is a prime number. It is well known that \(S = \text{End}_\mathbb{Z}(M) \) is a local ring that is not a division ring. Then \(\text{Jac}(S) \neq 0 \), while \(M \) is \(T \)-noncosingular.

Definition 4.4 A module \(M \) has \(D_2 \) property (or is called direct projective) if, for any direct summand \(K \) of \(M \) and submodule \(N \) of \(M \) with \(M/N \cong K \), \(N \) is a direct summand of \(M \).

Proposition 4.5 Let \(M \) be a direct projective module with \(S = \text{End}_R(M) \). If \(\text{Jac}(S) = 0 \), then \(M \) is \(T \)-noncosingular.

Proof By [22, 41.19(1)]. \(\square \)

Proposition 4.6 Let \(R \) be a commutative ring. If \(R \) is \(T \)-noncosingular, then \(R \) is \(K \)-nonsingular.

Proof By [15, Proposition 2.7], it suffices to show that \(R \) is nonsingular. Since \(R \) is \(T \)-noncosingular, we have \(\text{Jac}(R) = 0 \) by [20, Corollary 2.7]. So, \(R \) is a semiprime ring. Therefore, \(Z(R) = 0 \) by [4, Proposition 1.27(b)]. \(\square \)

The converse of Proposition 4.6 is not true, in general, as shown below.

Example 4.7 Let \(R \) be a discrete valuation ring with maximal ideal \(m \). It is clear that \(Z(R) = 0 \), while \(\text{Jac}(R) = m \). So \(R \) is \(K \)-nonsingular, but \(R \) is not \(T \)-noncosingular by [20, Corollary 2.7] and [15, Proposition 2.7].

Following [22, p. 261], a module \(M \) is called semi-injective if for any monomorphism \(f : N \to M \), where \(N \) is a factor module of \(M \), and for any homomorphism \(g : N \to M \), there exists \(h : M \to M \) such that \(hf = g \). Note that every quasi-injective module is semi-injective.

In the next result, we provide a condition under which Proposition 4.6 holds true for modules.

Proposition 4.8 Let \(M \) be a coretractable module and let \(S = \text{End}_R(M) \). If \(M \) is \(T \)-noncosingular, then \(SS \) is \(K \)-nonsingular. The converse holds when \(M \) is semi-injective.

Proof This follows from [1, Corollary 4.8] and [15, Proposition 2.7]. \(\square \)

References

