Remarks on the paper ”On some new inequalities for convex functions” by M. Tunç

Alfred WITKOWSKI
Institute of Mathematics and Physics, University of Technology and Life Sciences, Al. Prof. Kaliskiego 7, 85-796 Bydgoszcz, Poland

Received: 03.07.2012 • Accepted: 03.10.2012 • Published Online: 26.08.2013 • Printed: 23.09.2013

Abstract: In this note, we slightly generalize Theorem 2 in the paper by M. Tunç and point out that the assumption of Theorem 3 is not sufficient.

A misuse of the term 'mean' is also discussed.

Key words: Convex function, mean

In the paper [3] the author proves the following theorem:

Theorem 1 (Theorem 2, [3]) If \(f, g : [a, b] \rightarrow \mathbb{R} \) are convex, then

\[
\frac{1}{(b-a)^2} \int_a^b (b-x)[f(a)g(x) + f(x)g(a)]dx + \frac{1}{(b-a)^2} \int_a^b (x-a)[f(b)g(x) + f(x)g(b)]dx \leq \frac{M(a,b)}{3} + \frac{N(a,b)}{6} + \frac{1}{b-a} \int_a^b f(x)g(x)dx,
\]

where \(M(a,b) = f(a)g(a) + f(b)g(b), N(a,b) = f(a)g(b) + f(b)g(a) \).

In fact, this theorem can be restated as follows:

Theorem 2 If \(f, g : [a, b] \rightarrow \mathbb{R} \) are of the same convexity (i.e. both convex or both concave), then (1) holds. If \(f \) and \(g \) are of opposite convexity, then (1) is reversed.

Proof Since for \(a < x < b \) we have

\[
x = \frac{b-x}{b-a} a + \frac{x-a}{b-a} b,
\]

the inequality

\[
\left(f(x) - \frac{b-x}{b-a} f(a) - \frac{x-a}{b-a} f(b) \right) \left(g(x) - \frac{b-x}{b-a} g(a) - \frac{x-a}{b-a} g(b) \right) \geq 0
\]

(2)
holds if \(f \) and \(g \) are of the same convexity, else (2) is reversed.

Integrating the above inequality over the interval \([a, b]\), we obtain the desired result.

Theorem 3 in [3] requires correction.

Theorem 3

Let \(f, g : [a, b] \to \mathbb{M} \) be convex, nonnegative functions. Then

\[
\frac{1}{b-a} \int_a^b \left(f\left(\frac{a+b}{2}\right) + g\left(\frac{a+b}{2}\right) \right) dx \leq \frac{1}{2(b-a)} \int_a^b f(x)g(x)dx + \frac{M}{12} + \frac{N}{6} + f\left(\frac{a+b}{2}\right)g\left(\frac{a+b}{2}\right),
\]

(3)

\(M \) and \(N \) being as in Theorem 1).

The original version does not contain the nonnegativity assumption, but then it is easy to produce a counterexample: let \(g \) be convex and \(f(x) \equiv -1 \). Then the inequality (3) becomes

\[
\frac{1}{b-a} \int_a^b g(x)dx \geq \frac{g(a) + g(b)}{2}
\]

- obviously opposite to the right-hand side of the Hermite-Hadamard inequality.

As Theorem 3 is not valid in the general case, we cannot trust Proposition 5 in [3] in the case \(a, b < 0 \) (especially because \(x^n \) is not convex in the interval \((-\infty, 0)\) for odd \(n \)).

We feel obliged to comment on the use of the term 'mean' in section 3: in the mathematical literature the word 'mean' denotes a function taking values between the extremities of its argument(s). The attempt to extend the definition of the geometric, arithmetic, logarithmic, and generalised logarithmic means is only partially successful.

\[
A(a, b) = \frac{a+b}{2}, \quad G(a, b) = \sqrt{ab}, \quad L(a, b) = \frac{b-a}{\ln|b| - \ln|a|},
\]

\[
L_n(a, b) = \left(\frac{b^{n+1} - a^{n+1}}{(n+1)(b-a)} \right)^{\frac{1}{n}}, \quad K(a, b) = \sqrt{\frac{a^2 + b^2}{2}}
\]

(4)

define means for positive \(a, b \). Clearly, the expressions above make sense for some other arguments, but usually their values do not lie between the arguments: \(G(-1, -4) = 2, \quad L(e^2, -e) = e^2 + e, \quad \lim_{a \to -\infty} L_2(a, 1) = \infty \) etc., thus calling them 'means' should be regarded as a mistake.

Tracing back the cited literature for the source of this misuse, we see that the process started in the paper by Dragomir and Agarwal ([1]), the mistake was reproduced by Kirmaci ([2]) and, consequently, by Tunç.

It is worth noting that the extended logarithmic means \(L_n \) and power means \(M_n(a, b) = \left(a^n, b^n\right)^{1/n} \) can be extended to the real line in the case of positive real exponents. To this end, let \(f_n(x) = \text{sgn}(x)|x|^n \). Then \(f_n \) is a strictly increasing, odd function and we can define

\[
L_n(a, b) = f_n^{-1}\left(\frac{1}{b-a} \int_a^b f_n(t)dt \right) \quad \text{and} \quad M_n(a, b) = f_n^{-1}\left(\frac{f_n(a) + f_n(b)}{2} \right).
\]

Both definitions match the original ones for positive arguments and define means (in the case of odd natural \(n \), \(L_n \) matches the original definition). Unfortunately the power functions (with the exception of \(n = 1 \)) cannot be extended to a bijection preserving the convexity.
Clearly this method cannot be applied to negative exponents.

References

