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Abstract: Let {D1,...,D,} be a system of derivations of a k-algebra A, k a field of characteristic p > 0, defined by a
coaction § of the Hopf algebra H. = k[X1,..., X,]/(XP,...,XF), ¢ € {0,1}, the Lie Hopf algebra of the additive
group and the multiplicative group on A, respectively. If there exist x1,...,z, € A, with the Jacobian matrix
(Di(x;)) invertible, [D;,D;] = 0, DY = ¢D;, ¢ € {0,1}, 1 < 4,5 < n, we obtain elements y1,...,yn € A, such
that D;(y;) = di;(1 + cys), using properties of H.-Galois extensions. A concrete structure theorem for a commutative
k-algebra A, as a free module on the subring A% of A consisting of the coinvariant elements with respect to 4, is proved

in the additive case.
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1. Introduction
A series of articles in commutative algebra ([5], [6], [7], [8] have focused on the following problem:

(P): Let {D1,...,Dy,} be a system of derivations of a k-algebra A, k field of characteristic p > 0, such
that there exist x1,...,x, € A, with the Jacobian matriz (D;(x;)) invertible, [D;,D;] = 0, D} = cf_lDi,
ci €k, 1<i,5<n. Do elements yi1,...,yn € A exist such that D;(y;) = (1 + ¢;y;)di; ?

If a positive answer is given, structure theorems for A follow in terms of the subring of constants of
A with respect to the derivations Dy, ..., D, , the main one of which is contained in [5]. We recall that a
finite dimensional Hopf algebra over k is a k-algebra, with comultiplication A : H — H ®; H, antipode
S : H — H and counity ¢ : H — k and a coaction of H on a k-algebra A (or an H-comodule algebra
structure on A) is a morphism of algebras 6 : A — A ® H such that (1®¢)d =21 and (1® A)d = (§ ® 1)4.
Given such a coaction, the subalgebra {a € A: d(a) = a® 1} of A is called the algebra of coinvariant elements
of § and it is denoted by A% = Ac°H

In [6], surprisingly, for a local commutative algebra A, the authors prove that the jacobian condition
(which states that there are elements yi,...,y, € A such that for all 1 < m < n the m x m matrix
(Di(y;))1<i,j<m over A is invertible) is equivalent to the property for A to be an H-Galois extension over
the subring A% of the coinvariant elements of A with respect to a coaction 6 : A — A ® H, where H is a

(co)commutative Hopf algebra with underlying algebra

H=FkXy,. . X, )/(XP" . XE"), n>1, 5> >8, > 1.
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For the Lie Hopf algebra H of the additive group, from the strong jacobian condition (which states that
there are elements y1,...,y, € A such that D;(y;)1<i j<n = 0i; ) an important structure theorem follows for A
(not necessarily commutative), precisely A has an A°-basis as a left A°-module, consisting of the monomials
yitooyer a, €Ny 0 <y <p®, 1 <4 <mn, ([6], Theorem 3.1).

In this paper we consider Hopf algebras that “live” on the truncated algebra
Hy = k[Xy,. LX) J(XET L XPTY) s = (s1,...,8n). According to ([11], 14.4), the assumption is not too
restrictive because any finite-dimensional, commutative and local algebra over a perfect field has this structure.
Using the notion just mentioned, we formulate a more general theorem where we postulate the existence of the
elements y1,...,yn € A with the strong jacobian condition in the Lie algebra case of the additive group for
H=Hy =k[X1,...,X,]/(XY,...,XP), with ¢; =0 in (P), i = 1,...,n. The same result is given in the Lie
algebra case of the multiplicative group for H = H; with ¢; =1 in (P), ¢ = 1,...,n, under the hypotheses
A local and A = A% + m, where m is the maximal ideal of A. More precisely, the main result of section 1

concerns a positive answer to the previous question that can be deduced from the following theorem.

Theorem Let H. be the Hopf algebra defined as before, ¢ € {0,1}, A a right H.-comodule algebra with
structure map 6 : A — A ® H.. If there are y1,...,yn € A with §(y;) = v @ 1 + (1 4 cy;) ® z;, for all
1 <i < n, then the map

7:A5®Hc—>A,T®x“l—>ry“,r€A5,a€A,x“:xfl---x%”,y“:yfl Ceeyom,

where o = (aq,...,an) € A, A the set of all multiindices o = (a1 ..., ), with 0 < «a; <p, 1<i<n,isa
left A -linear and right H,-colinear isomorphism. In particular, the elements y®, o € A, form an A% -basis of
A as a left A% -module.

By using the previous theorem we are able to prove Theorem 2.5, where the property of H.-Galois
extension permits, starting from the strong jacobian condition on n — 1 elements ¥,...,y,—1 of A, to have

the strong jacobian condition on n elements of A, assuming there exists y € A such that D,(y) = 1+ cy,
¢ € {0,1}. In section 2 we use Theorem 2.5 in the additive case and for a commutative k-algebra A, to give
“explicitly” 91,...,yn € A, the special elements that verify the strong condition D;(y;) = d;; of derivability,
1 < 4,7 < n. Some consequences are discussed in section 3, where we consider the structure of A as an

A% = AtP1-Dn} _algebra, A{P1-DPnl the constant subring of A with respect to the derivations Dy, ..., D,.

2. Coactions of a Hopf algebra H and H-Galois type extensions

Throughout the paper, k is an arbitrary field of characteristic p > 0. All vector spaces, algebras, coalgebras are
over k and maps between them are at least k-linear. We refer to the books by Montgomery [4] and Sweedler [10]
for general Hopf algebra theory and to the book by Schauenburg and Schneider [9] for Galois type extensions
of Hopf algebras. In this section we recall some definitions and theorems and we establish a structure theorem
for the Hopf algebra of the multiplicative group. For H = Hj the result is known [6]. Let H be a Hopf algebra
over the field k£, with comultiplication A : H — H ® H, counit ¢ : H — k, antipode S : H — H. The
augmentation ideal of H will be denoted by H' = ker ¢. If A is a right H-comodule algebra, with structure
map 0 : A — A® H, then

AT = A% .= {a € A|d(a) =a® 1}
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is the algebra of H -coinvariant elements of A. We are interested in algebra extensions B C A in a Hopf

algebraic context. Precisely, A°°® C A. In fact, by definition, the sequence

)
—

Al S, 4 T A9 H

11
is exact, that is A" C A is the difference kernel of the maps § and i1 : A — AQ H, a—a®1.

Definition 2.1 [2] Let A be a right H-comodule algebra with structure map 6 : A — A ® H. Then the

extension A C A is a right H-Galois extension if the canonical map can : A ® yecor A — A®y, H given by
a®bi— (a®1)d(b) = aby ® b(1) is bijective.

In the following we will consider commutative Hopf algebras with underlying algebra:
H=FkX.,..., X/ (Xfxg) R

We denote by A the set of all multiindices o = (a1,...,a,) with 0 < a; < p*,1 < i < n. For § =
(617--'7671)7’7 = (717'-'7771) e N” we define

B+vy= 0B+, Bn+ ), and [B] = 1 + -+ B

If we denote by z; the residue class of X; in H, for all ¢, then the elements z® := z7" ...z0", a € A form
a k-basis of H. Let A be an algebra, § : A — A ® H be an algebra map and a right H-comodule algebra
structure on A. We will write

d(a) = Z Dy (a) ® 2, for all a € A.
a€hA

Thus for all & € A and a,be A,

Da(ab) = > Dg(a)Dy(b), and Dy,...0) = id.
Bt+y=a

ByEA
For all 4, let &; = (dij)1<j<n € A, where §;; = 1, if j = 4, and §;; = 0, otherwise. We put
D; = D;s;,1 < i < n. Thus the linear maps D; : A — A are derivations of the algebra A, and for all

a € A we have

da)=a®1+ Z D;(a) @ x; + Z D, (a) ® 2. (1)
1<i<n l(xlEA
al|>2

From now we will consider the Hopf algebra H, of the additive group, that is
H, = k[X1,..., X0/ (Xfxg) S T 2)

with comultiplication
Alz)=2;,914+1Qx;, 1<i<n 3)
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and the Hopf algebra of the multiplicative group, that is
Hy = K[X1,. .., X0/ (Xfxp) N1, s> > >0, (4)

with comultiplication
Alz))=2,01+1Qz;+z;Q@x;, 1<i<n (5)
We call these algebras H., ¢ € {0,1}, respectively. In the Lie algebra case of the additive group, that is

Ho = k[X1,..., X,]/(XP, ..., XP), (6)

coactions have a special form. Precisely they are derivations Dy, ..., D,, € Der(A) with D;D; = D;D;, DY =0

and

Dy Do

D, -
. (6778

, a=(a1,...,0n), 0<a; <p, 1<i<n.

In the Lie algebra case of the multiplicative group, that is
Hy =k[Xq,..., X,/ (X}, ..., XD), (7)

coactions are derivations Ds,..., D, € Der(A) with D;D; = D;D;, Df =D, and

1520 (Dy =) [1525 (D2 — 52)  T157Zg (Do — jn) _

D, = .
ay! ao! Q!
-1 .
. [T} H;’X::O (D¢ — jt)
N a!
with a = (a1,...,0,), 0 < a; <p, 1 <i<n and a!l = ajlas! ... a,! (see [1], Theorem 3.3).

Theorem 2.2 Let H., ¢ € {0,1}, be the Hopf algebra in the Lie cases, defined as before and A a right H.-

comodule algebra with structure map § : A — A®QH.. Let R = A®He . Assume, for c=1, A is a commutative

local algebra with mazimal ideal m and R+ m = A.
(a) The following are equivalent:

(i) RC A is a faithfully flat H.-Galois extension.

(ii) There are y1,...,yn € A with 6(y;) =y @1+ (14 y) @y, forall 1 <i<n
(b) Suppose (ii) holds. Then
RoH — A ra*—ry*, reR ac Ay =y yom, a=(a1,...,an) €A

is a left R-linear and right H,-colinear isomorphism.

In particular, the elements y*, a € A, form an R-basis of A as a left R-module.
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Proof For ¢ =0, see [6], Theorem 3.1.

For ¢ =1, (a) is proved in [1], Proposition 4.2. To prove (b) we observe that the coradical C' of H; is
the k-subalgebra of Hi:

C=k®kr1® - ®kx,, x =X, + (X7, ..., XD).
For this, it is sufficient to prove for i =1 that C = k @ kx, Hy = k[X]/(X?) = k[x].
AQl+2)=A)+A@)=101+10s+201l=>1+2)(1+2)cCaC.

Moreover, the vector subspaces of Hy, k and kx, are the only simple coalgebras of H;. Hence the assertion.
Suppose (ii) of (a) holds. Then we define a k-linear map v : Hy — A by v: 2% — ry® for all a € A.

Since A and § are algebra maps and, for all 7,
A@) =z@l+1@zi+tz; @2,  0(y) =1 @1+ (1+y) @z,

v is right Hj-colinear. If we prove that the map + is convolution invertible, the H;-extension R C A is
H1-cleft, hence H;-Galois and

R®H — A rez—ry®, reRacl

is bijective ([9], 8.2.4, 7.2.3). To prove that v € Hom(A, A) is invertible with respect to the convolution *, it
is sufficient to prove that +,, is invertible as an element of Hom(C, A). For f € Hom(C,A), i =1,...,n, it

results in
fry(l+z) = m(feNAl+z)=m(f@i(l@z;+2;01+z; ®x;))
= m(f(1) @ y(x:i) + f(z:) @0(1) + f(2:) @ (xi)) = Layi + f(@i) + f(i)yi
= yi+ fxa) (1 + i)
and

ue(l+z;) = u(e(l) + e(x;)) = u(l) = 14,
with m : Hy ® Hi — H; and u : k — H; being the multiplication and the unit maps of H;, respectively. If

we put f(x;) = };;’Z , we have y; + f(a;)(1 +y;) = 1, v is left invertible and its inverse map is f. Hence the

conclusion follows. O

Remark 2.3 The result contained in Theorem 2.2, (b) can be deduced from (ii), under the hypotheses that

the elements 1+ y;,1 < i < n, are invertible, A not necessarily local.

In the following, for ¢ = 1, we will suppose that A is commutative, local and A = R + m, where R is the

coinvariant subring of A with respect to the coaction § and m is the maximal ideal of A.

Corollary 2.4 Let H,. be the Hopf Lie algebra of the group H., A an algebra and § : A — A® H,. a coaction.
Put Dy,..., D, the derivations defined by (1) and R := A°He . The following are equivalent:

(1) R C A is a faithfully flat H.-Galois extension.

(2) There are y1,...,yn € A with D;(y;) = 6;;(L 4+ cyi), for all 1 <i,5 <n.

431



RESTUCCIA and UTANO/Turk J Math

(8) If A is local there are y1,...,yn € A such that for all 1 <m <n, the m x m matriz (D;(y;))1<i,j<m
over A is invertible.
Proof For ¢ =0 the result is in [6], Corollary 3.3 and Theorem 4.1.
For ¢ =1, (1) <= (2) by Theorem 1.8(a), (1) <= (3) by Theorem 4.1 in [6]. O
Recall that an H-Galois extension R C A is faithfully flat if A is faithfully flat over R as a left (or
equivalently right) module over R. Recently Schauenburg and Schuneider ([9], Theorem 4.5.1) have proved a

theorem which allows one to reduce questions about faithfully flat Hopf Galois extensions for H to the case of

Hopf subalgebras and quotient algebras of H. We use it to prove the following:

Theorem 2.5 Let A be a k-algebra, k a field of characteristic p >0 and let {D1,...,D,} C Dery(A) such
that D;D; = D;D;, DY = ¢D;, ¢ € {0,1}, for all i,5,1 <i,j <n. Suppose that

1) There exist z1,...,2p—1 € A such that D;(z;) = 0;;(1 +cz;), 1 <i,j <n-—1.
2) There exists y € A such that Dy, (y) =1+ cy.

Then R := AHe C A is a faithfully flat H.-Galois extension and, consequently, there are yi,...,yn € A with
D;(y;) = 0i;(1 +cy;) forall 1 <i,j<mn.

Proof The set of derivations comes from a comodule structure of A on H., H = k[z1,...,2,], ¥ =0, given
by 6§ :A— A® H,,

da)=a®1+ Z D;(a) @ x; + Z D, (a) ® 2. (8)
1<i<n |a|e>A2

a €N g9 =g -.2% . Let R = A°He< be the coinvariant subring of A with respect to § and let H. = k[z,,],
2 =0, B = AHe the coinvariant subring of A with respect to 6 : A — A® H., H, = H.,/KTH,,
K =klz,...,2p1], 27 =0,i=1,...,n—1, Kt = (21,...,2,-1). Consider the extension R C B C A.

B C A is H-Galois extension (Corollary 2.4). By hypothesis 2) and by Corollary 2.4, R C B is
a K-Galois extension. By Theorem 4.5.1 [9], R C A is a faithfully flat H.-Galois extension and, by Corol-
lary 2.4, there exist y1,...,yn € A with D;(y;) = 0;;(1+cy;) for all 1 <4, j <n. By 2) the assertion follows. O

3. A constructive theorem

We will describe, in the additive case, the special elements 1, ...,y, that appear in Theorem 2.5 and satisfy
a strong condition on the derivability. Following the same direction of research contained in the papers by
Matsumura, Restuccia and Utano [5], [8], where the elements are computed, we obtain the result contained in
[8] without the hypotheses that A is local, regular and k a separably closed field, but requiring that the last

derivation evaluates to one on an element ¢t € U(A).

Theorem 3.1 Let A be a commutative k-algebra, k a field of characteristic p > 0 and let {D1,...,Dp} C
Dery(A) such that D;Dj = D;D;, DY =0 for all i,5,1 <4,j <n. Suppose that

1) There exist z1,...,2n—1 € A such that D;(z;) = 0;5, 1 <i,j <n—1.

2) There exists y € A such that Dy(y) = 1.
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Then there exists t € A such that D,(t) =1 and D;(t) =0, foralli=1,...,n—1.

Proof The set of derivations comes from a comodule structure of A on H, H = klz1,...,2,), ¥ =0, z;

primitive, given by 6 : A — A® H,

fa)=a®1+ Z Di(a) @ x; + Z Dy (a) ® z°. (9)
1<i<n |a|e>A2

a €N g% =g afn.

Let R = A°H be the coinvariant subring of A with respect to § and let H = k[z,], 22 =0, B = AcoH
the coinvariant subring of A with respect to 0: A — A® H, H= H/K*H, K = klx1,...,2,-1], 20 =0,
i=1,...,n— 1. Consider the extensions R C B C A. By 2), B C A is H-Galois and 1,y,¢%,...,y?" ! is
a basis of A on B = AP». By 1), R € B is K-Galois and the monomials z* - - - zf{‘_’f, 1<5 <p-1,
i=1,...,n—1, are a basis of B on R. We want to find ¢ € A such that D, (t) = 1 and D;(t) = 0 for all
i=1,...,n—1. Put t= Zf;ol biy'. Then D, (t) =1= Zf;ol biiy'~! implies by =1 and b; = 0, for all 4 > 1.
We can rewrite t = bg+y as t =y — b, b € B. Then we need an element b € B such that D;(y) = D;(b),
i=1,...,n—1. Moreover for i =1,...,n—1, D;(y) € B, since D,(D;(y)) = D;(D,(y)) = D;(1) =0, for all

i=1,...,n—1. Then we can write:

. _ . . i1 in—l . _ L. .
Dj(y) = E Sjitsemin 121 - Fno1y, J=L..on—=1,84 ., €R.

0<i;<p—1
Since DY =0, forall j =1,...,n—1, we have:
p—1 — _ . . p—1 (_i1 in—1
DY (D1(y)) = 0 = E S1yit,eenyin-1 D1 (21 ) ceeZp—1s
0<i;<p—1
p—1 _ _ X X i1 p—1 Tn—1
Dn—l(Dn—l(y)) = 0 = E Sn—1yit,in_121 - Dp_1 (Zn—l) .
0<i;<p—1
Hence we get the relations
_ X X _ ig in—l
0 - : : Slvp_17127-~~7171—1(p 1)”22 . 'zn—l )
0<i;<p—1
i#1
§ : i in—2
0 = Sn_17i17_“7p_1(p — 1)!211 .. zn"_2 s
0<i;<p—1
j#n—1
and
S1,p—1,i2, .. in-1 = 0 0<ig,..)ip_1<p—1
Sn—1,i1yeyin_sp—1 = 0 0<idy,...,0p2<p—1
Writing

— . . J1 Jn—1
b= : t]l7-~~7]n—121 t 'zn—l ’

0<ji<p—1
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b is uniquely determined by coefficients ¢;, . ;. .,
Di(b) =
0<j;<p—1

>

0<j1<p—2
0< i <p—1,i#1
Dn_1(b) =
0<ji<p—1

-y

From D;(y) = D;(b), for i =1,...,n—1, it follows

>

0<j1<p—2
0<fi<p—1,i#1

b

0<jn—1<p—2
0<ji<p—1L,iz#n—1

. J1
tj17j27--~7jn—1+1(]n—1 + 1)21 s

Hence we get the relations

tj1+1,j2,...,jn,1 (]1 + 1) =

tj17j27--~7jnf1+1(jn—1 + 1) =

0<jn—1<p—2
0<ji <p—1L,iz#n—1

. . . ; J1 Jn—1
t]1+17]27--~7.7n—1(]1 + 1)21 cee R

jn—l

T

z

Sn—1,51,..,in—1 0 < jn—l < p— 270 < ji < p— 177’ 7& n—1

0 < j; <p—1. By derivation, we obtain

: . o J1—1 Jn—1
Z tjh“'v]n—l]lzl N Zn_l R

jnfl

) ) ) ; J1
t]1+17]27---7.7n—1 (]1 + 1)21 s Bp—1-

. . . . jl jn—l_l
E Uit dzysino1 Jn—121" « - 254

) J1
tiveogna1(n—1 + 121t 2"

_ E . . J1 Jn—1

- 817.717--'7]717121 e zn—l )
0<j1<p—2

0<j:i<p1,i#1

. . J1 jn—l
Sn_17]17--~7]717121 e zn—l .
0<jn—1<p—2
0<ji<p—1,i#n—1

$1g1sdna 0SSP =2,0<j; <p—1i#1,

(10)

From the conditions Dy Dy = DyDy for 1 < ¢ < k <n — 1 we obtain the compatibility relations

TkS0,41 52 dersdirninot = (30 F 1)Sk g1 oo dotldi—1 g

with 0 < jo, <p—2,
(10) give, for £ =1,k =2

tj1+17j27--~7jn—1(]1 + 1) = 817j17--~7j71—1

iy Gatdojna (G2 + 1) = 8251 jny

We rewrite the relations (12) and (13)

Uit dzyerino1J1 = S1j1—1,52,0din—1

l<jr<p-10<ji<p-1li#Lk,

(11)

1<V < k<n-—1. The first two relations of

0<ji<p-1i1#1,0<j<p-2 (12)

0<ji<p—1,i#20<j<p-—2. (13)

Ogjzgp_lvl#lvlgjl SP_Q»

tj17j27--~7j71—1j2 = 52,51,52— 1, dn—1> 0< ji <p- 1,4 7& 2,1< j2 <p-— 2,

obtaining

]1]2tj17j27--~7jn—1 = ]2817j1_17j27--~jn—1 = ]1827j17j2_17---7j7171 :

Likewise, we can deduce

]1 . ']n—ltjhj%--wjnfl
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S =J172 - Jn—28n—1,41,jarin1+1,  fOr 0< g <p—1

Hence, the elements t;, ... are determined and, as a consequence, the element b is obtained. O

In—1

Corollary 3.2 Let A be a k-algebra, k a field of characteristic p >0 and let {D1,...,Dp} C Dery(A) such
that D;D; = D;D;, D¥ =0 for all i,5,1 <4,j <n.
Suppose that

1) There exist z1,...,2n—1 € A such that D;(z;) = 0;5, 1 <i,j <n—1.
2) There exists y € A such that Dy(y) = 1.

Then there exist z1,. .., 2n—1, 2n such that D;(z;) = &;;.

Proof Follows from Theorem 3.1, with z, = ¢. O

Corollary 3.3 Let A be a k-algebra, k a field of characteristic p >0 and let {D1,...,Dp} C Dery(A) such
that D;D; = D;D;, D¥ =0 for all i,5,1 <4,j <n.
Suppose that:

1) There exist z1,...,2n—1 € A such that D;(z;) = 0;5, 1 <i,j <n—1.
2) There exists y € A such that Dy(y) = 1.

sDn} can be

Then the set {z1,...,2,_1} of p-independent elements of A on the subring of constants AP
completed to a p-basis B of n elements of A on AtP1DPn} gnd A = A{D1-Dna}(B],

Proof It is easy to prove that z1,...,2n_1, 2, With z, as in Corollary 3.2, verify D;(z;) = 6;;,1 <i<j <
n, DY = 0,[D;, Dj] = 0 and form a p-basis of A on A{P1+Pn}  The structure of A follows by definition of

p-basis [3]). O
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