Erratum to: “Null Mannheim curves in the Minkowski 3-space \mathbb{E}^3_1”

Handan ÖZTEKİN,* Mahmut ERGÜT
Department of Mathematics, Fırat University, 23119 Elazı̇g, Turkey

Received: 04.04.2012 • Accepted: 23.04.2012 • Published Online: 26.04.2013 • Printed: 27.05.2013

Abstract: In this paper, Theorem 3.2 and Proposition 3.2 in the paper which is cited in the title are corrected.

We give the following Theorem 3.2* instead of Theorem 3.2 on page 111 in [1]. Its proof had been done in [2].

Theorem 3.2. A Cartan framed null curve α in \mathbb{E}^3_1 is a null Mannheim curve with timelike or spacelike Mannheim partner curve β if and only if torsion τ of α is a nonzero constant.

According to the above Theorem 3.2*, we have following proposition 3.2* instead of Proposition 3.2 which is given in [1].

Proposition 3.2. If a timelike or spacelike generalized helix is the Mannheim partner curve of some Cartan framed null curve $\alpha = \alpha(s)$, then the curvature of the Cartan framed null curve α is

$$\kappa(s) = \frac{c_2}{(s + 2c_1)^2}$$

for some nonzero constants c_1 and c_2.

Proof Let α be a null Mannheim curve and β be its timelike Mannheim partner curve. Assume that β is a timelike generalized helix; then we have

$$< B, p > = ch\theta_0$$

for some constant vector p and some constant angle θ_0. If we consider Proposition 3.1 in [1], we have

$$ch\theta_0 \neq 0 \text{ and } \frac{\kappa}{\tau} \neq \text{const.}$$

(2)

Since u is in the binormal direction of β, also we have from (1)

$$< u, p > = ch\theta_0 = \text{const.} \neq 0.$$

(3)

If we derivate of (3) with respect to s twice and use $\tau = \text{const.}$, we obtain

$$\tau < l, p > + \kappa < n, p > = 0$$

$$< n, p > = -\frac{2\kappa \tau ch\theta_0}{\kappa^2}$$

(4)

*Correspondence: handanoztekin@gmail.com
Taking the derivative second or third equation of (4), we get nonlinear differential equation

\[2\kappa\kappa'' - 3(\kappa')^2 = 0. \]

Solving this equation, we obtain

\[\kappa(s) = \frac{c_2}{(s + 2c_1)^2} \]

for some nonzero constants \(c_1 \) and \(c_2 \). Thus, the proposition is proved.

In case the spacelike generalized helix is the Mannheim partner curve of some Cartan framed null curve \(\alpha = \alpha(s) \), the proof is similar.

The authors would like to thank Professor Jaewon Lee for his invaluable comments.

References
