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Abstract: Difference sets with parameters <q T L %7 4 e 1>7 where ¢ is a prime power and d > 1, are known to

exist in cyclic groups and are called classical Singer difference sets. We study a special case of this family with ¢ =7 and
d = 3 in search of more difference sets. According to GAP, there are 220 groups of order 400 out of which 10 are abelian.
E. Kopilovich and other authors showed that the remaining nine abelian groups of order 400 do not admit (400, 57, 8)
difference sets. Also, Gao and Wei used the (400, 57, 8) Singer difference set to construct four inequivalent difference
sets in a non-abelian group. In this paper, we demonstrate using group representation and factorization in cyclotomic
rings that, out of the remaining 209 non-abelian groups of order 400, only 15 could possibly admit (400, 57, 8) difference

sets.
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1. Introduction

Suppose that G is a multiplicative group of order v. A non-trivial (v, k, \) difference set D is a subset of G
consisting of k£ elements, where 1 < k < v — 1, in which every non-identity element of G can be replicated
precisely A times by the multi-set {d1d2_1 : dy,dy € D,dy # da}. The natural number n := k — X is known
as the order of the difference set. The group type determines the kind of difference set. For instance, if G
is abelian (resp. non-abelian or cyclic), then D is abelian (resp. non-abelian or cyclic) difference set. Singer

difference sets with parameters (v, k, \), where

= 7_7 (1.1)

V= ﬁ, k=
q is a prime power and d > 1, are known to exist in cyclic groups and there exist corresponding symmetric
designs with these parameters. Singer’s conjecture is that there is only one equivalence class of difference set with
parameters (1.1) when A = 1 isstill open [1]. Gao and Wei [3] used multipliers to construct non-abelian difference
sets from the Singer difference sets. In particular, in the case ¢ = 7 and d = 3 in (1.1), their construction
produced four inequivalent difference sets in the group G = Cos x C16 = {1,y : 2% = y16 = 1, yay~! = 271).
The existence or otherwise of (400, 57, 8) difference sets in 10 abelian groups of order 400 has been decided.

Our focus in this paper is on the remaining 209 non-abelian groups but our approach incorporates both abelian
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and non-abelian groups. Our search for other non-isomorphic (400, 57, 8) difference sets yields the following

main result.

Theorem 1.1 There are no non-isomorphic Singer (400, 57, 8) difference sets in other groups of order 400
except possibly in [400, en], where en = 3, 49, 50, 52, 56, 57, 58, 59, 116, 132, 133, 206, 207, 212, 2185.

[400, cn], is the GAP[4] catalog number of these groups. In this paper, G represents a group of order 400 and
N is a suitable normal subgroup of G such that G/N is isomorphic to a group of order 16, 20 or 40. Section

2 gives basic results while in sections 3 and 4 we establish the main result.

2. Preliminary results

We look at background materials.

2.1. Difference sets
Z and C denote ring of integers and field of complex numbers, respectively. Let G be a group of order v and
D be a (v, k,\) difference set in a group G. For convenience, we view the elements of D as members of the

group ring Z[G], which is a subring of the group algebra C[G]. Thus, D represents both subset of G and
element deD g of Z|G]. The sum of inverses of elements of D is D(~1) = deD g~ !. Consequently, D is a

difference set if and only if

DDV = 4+ \Gand DG = kG. (2.1)

If ¢ is a non-identity element and « is an automorphism of G, then the left translates of D, gD, and right
translates of D, Dg and D* := {a(d) : d € D} are difference sets. If we take the left translates of D as
blocks, then the resulting structure is called the development of D, Dev(D) and G is the automorphism group
of Dev(D). Difference sets are often used in the construction of symmetric design in that symmetric design
admitting a sharply transitive automorphism group G is isomorphic to the development of a difference set in G
(Theorem 4.2 [8]). The existence of symmetric designs does not necessarily imply the existence of corresponding
difference sets (see [5]). The only known (400, 57, 8) symmetric designs are those associated with Singer and

Gao et al. difference sets.
Given that D is a difference set in a group G of order v and N is a normal subgroup of G, suppose

that ¢ : G — G/N is a homomorphism. We can extend ¢ by linearity to corresponding group rings. The
difference set image in G/N is the multi-set D/N = (D) = {dN : d € D} . Let T* = {1,¢1,...,tn} be a
left transversal of N in G. We can write (D) = }_, cp. d;t; N, where the integer d; = |[DN¢;N| is known
as the intersection number of D with respect to N. In this work we shall always use the notation D for
(D), and denote the number of times d; equals i by m; > 0 and Qg/n is the set of inequivalent difference
set images in G/N. Also, the phrase group |G/N| denotes groups of order |G/N|. The following lemma is a

necessary but not sufficient condition for the existence of difference set image in G/N.

Lemma 2.1 (The Variance Technique). Suppose that G is a group of order v and N is a normal subgroup

of G. Suppose that D is a difference set in G and its image in G/N is D. Suppose also that T* is a left
transversal of N in G such that {d;} is a sequence of intersection numbers and {m;}, where m; the number

of times d; equals i. Then
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[N [N [N

Sy = [G/NES imy = ks S (i — 1my = A(N| - 1) (2.2)
1=0 =0 =0

2.2. A little about representation and algebraic number theories

A C-representation of G is a homomorphism x : G — GL(d,C), where GL(d,C) is the group of invertible
d x d matrices over C. The positive integer d is the degree of x. A linear representation (character) is a
representation of degree one. The set of all linear representations of G is denoted by G*. G* is an abelian
group under multiplication and if G’ is the derived group of G, then G* is isomorphic to G/G’. Two characters
of G are algebraic conjugate if and only if they have the same kernel and we denote the set of equivalence
classes of G* by G*/ ~. Suppose that G is a group with exponent m’, then K, := Q((,) is the cyclotomic
extension of the field of rational numbers, Q, where (, := ewri s a primitive m’-th root of unity. Without
loss of generality, we may replace C by the field K,,,,. This field is a Galois extension of degree ¢(m’), where
2oy

m’o

¢ is the Euler function. If G is a cyclic group, then a basis for K, over Q is S = {1, (p,
S is also the integral basis for Z[(y’]. The central primitive idempotents in C[G] is

(1 1 e
ex, = X|é|) > xilgg ™! = e > xi@)g. (2.3)

geG geG

where x; is an irreducible character of G and the set {ey, : x; € G*} is a basis for C[G]. Two difference sets
D and D' are equivalent if there exists a group element g and automorphism o such that D = go (D).
Aliases are members of group ring and they enable us to transfer information from C[G] to group algebra
Q[G] and then to Z[G]. Let G be an abelian group and Q = {x1,x2,...,xn} be the set of characters of
G. The element § € Z[G] is known as Q-alias if for A € Z[G] and all x; € Q, x:(A) = xi(3). Since
A= ZXeG* x(A)e, , we can replace the occurrence of x(A), which is a complex number, by Q-alias, and 3 is
an element of Z[G]. If K,/ is the Galois over Q, then central rational idempotents in Q[G] are obtained
by summing over the equivalence classes X; = {ey,|x; ~ x;} € G*/ ~ on the e, ’s under the action of the

Galois group of K,,» over Q. That is,

ley,] = Z ey i=1,...,8.

er cX;

In particular, if G is a cyclic group of the form Cpm = (z : " = 1) (p is prime) whose characters are of the

form x;(x) = Czijm,i =0,...,p™ — 1, then the rational idempotents are
1
[exo] = == (@) (2.4)
p
1 pWL—j pWL—j—l .
[expj]:}ﬁ pla? ) —(x )),0<j<m-—1 (25)

The following is the general formula employed in the search of difference set [12].
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Theorem 2.2 Let G be an abelian group and G*/ ~ the set of equivalence classes of characters. Suppose
that {XosX1,---sXs} 1S a system of distinct representatives for the equivalence classes of G*/ ~. Then for
A € Z|G], we have

A=Y ey, (2.6)

where «; is any x; -alias for A.

Equation (2.6) is known as the rational idempotent decomposition of A.

The following lemma extends the properties of D to D.

Lemma 2.3 Let D be a difference set in a group G and N be a normal subgroup of G. Suppose that
¥ : G — G/N is a natural epimorphism. Then

1. DDEY =n-1g/x + |[N|MG/N)

2. Y d?=n+|N|\

3. x(D)x(D) =n-1g/n, where x is a non-trivial representation of G/N .
The method used in this paper is known as a representation theoretic method made popular by Leibler
[12]. Some authors like liams and Smith [6, 18] have used this method in search of difference sets. This approach
entails obtaining comprehensive lists {2,y , of difference set image distribution in factor groups of G'. We start
by finding difference set image in factor group of least order and garner more information about D as we
gradually increase the size of the factor group.

To successfully obtain the difference set images, we need the aliases. In our case, if x is not a principal

character, then |x(D)| = 7 and we require how the ideal generated by 7 factors in Z[(n], m’ = 2, 4, 5, 8, 10,

16, 20 and 50. Let § := x(D). By (2.6), we seek a group ring Z[G/N] element, say « such that y(a) = 4.
The task of solving the algebraic equation 66 = n is sometimes made easier if we consider the factorization
of principal ideals (6)(§) = (n). Suppose we are able to find § = Zf:(?,)_l diCt., € Z[¢ms] such that 66 = n,
where ¢ is the Euler ¢-function. We use a theorem due to Kronecker [16, 17] that states that any algebraic
integer whose conjugates have absolute value 1 must be a root of unity. If there is any other solution to the
algebraic equation, then it must be of the form ¢ = du[13], where u = :I:Cf;z, is a unit. To construct alias from
this information, we choose a group element ¢ that is mapped to (, and set « := Zi:?,)_l d;g* such that
x(a) = §. Hence, the set of complete aliases is {+ag’ : j =0,1,...,m' —1}.

We use the following result to determine the number of factors of an ideal in a ring. Suppose p is any
prime and m’ is an integer such that ged (p,m’) = 1. Suppose that d is the order of p in the multiplicative

group Z!, of the modular number ring Z,, . Then the number of prime ideal factors of the principal ideal (p)

in the cyclotomic integer ring Z[(] is ¢(?,), where ¢ is the Euler ¢-function, i.e. ¢(m’) = |Z,| [9]. For
instance, the ideal generated by 2 has two factors in Z[(7], the ideal generated by 7 has four factors in Z[(16],
while the ideal generated by 7 has two factors in Z[(20]. On the other hand, since 2° is a power of 2, then the

ideal generated by 2 is said to completely ramify as power of (1 — (as) = (1 — (2s) in Z[(2s].
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According to Turyn [19], an integer n is said to be semi-primitive modulo m’ if for every prime factor
p of n, there is an integer 7 such that p’ = —1 mod m’. In this case, —1 belongs to the multiplicative group

generated by p. Furthermore, n is self conjugate modulo m’ if every prime divisor of n is semi-primitive

!’

modulo my,,

m; is the largest divisor of m/ relatively prime to p. This means that every prime ideals over n in
Z[(m'] are fixed by complex conjugation. For instance, 72 = —1 (mod m'), where m’ = 5,10,50 and 7 = —1
(mod m'), m’ = 2,4,8. Thus (7) is fixed by conjugation in Z[(,/], m' = 2,4,5,8,10,50. In this paper, we

shall use the phrase m factors trivially in Z[(,] if the ideal generated by m is prime (or ramifies) in Z[(/]

or m is self conjugate modulo m’. Consequently, if D is the difference set image of order n = m? in the cyclic
factor group G/N, a group with exponent m/, where m’ = 2,4,5,8,10,50 and x is a non-trivial representation
of G/N, then x(D) =m¢l,, (m is the m’-th root of unity [17].
The ideal generated by 7 has four factors in Z[(16]. Suppose o € Gal(Q((16)/Q), where o(Ci6) = ({5-
This automorphism split the basis elements of Q((16) into four orbits as (16 + (T, (s + (P, (U6 + (g and
16 + (1§ It is easy to see that (7) = (1 + Ci6 + ({6)(1 + (Fs + (T6)(1 + CP6 + ({5)(1 + Cig + ¢i§). Put
m = (1+Ce+Clg) and mo = (1 + (G5 + (Pg)- Let 61 =1+ Ci6 + ({g and d2 = 1 + (55 + (7 be representatives
of these ideals. Then the nine solutions to 66 = 72 are 81020102 = 7, 5262, 5%5%, 5%5%, 5%5%, 626962, 5%5151,
626969 or 028101. The Galois automorphism o(C16) = (i divides the solution set into three equivalence classes:
81026100 = T; 6362, 6262, 0262, 02625 620202, 630101, 6320202 or 630101 . As we need solutions up to equivalence,
we pick a representative from each class. Thus, § = 7, 6705 = —1 + 2(16 — 43 — 2C5 — 2¢0 + 4C%6 + 2({4 or
52628, = —1 + 4Cig + 202 + 2035 + 203, — 2¢5, + 4¢T,. Similarly, in Z[Cao] if 0 = Coo + 3y + Iy + 3y, then
60=7,2+30, —2+ 30 or their conjugates. In summary, suppose that Disa (400, 57, 8) difference set image

in C,, and x is any non-trivial character of C,, such that y(D)x(D) = 49. If
o m' =24,58,10,50, then x(D) is one of £7u,u is appropriate root of unity.

o m' =16, then x(D) is one of £7¢{g, £(—1+ 216 — 4% — 23 — 2¢56 + 4¢% + 2¢76)Clg, £(—1+4G16 +
203 + 2¢5s + 2¢55 — 2¢% + 4¢e) s, 5 =0,...,15.

o m' = 20, then x(D) is +£7¢, (2 + 3(Coo + o + (3o + (0)Co or (=2 + 3C0 + Gy + o + (30) G0,
j=0,...,19.

Consequently, for (400, 57, 8) difference sets in Cig, the alias « in the rational idempotent decomposition of

D is one of the two forms:

1. oo =+£T727,

2. +(—1+2x —42% — 223 — 225 + 426+ 227)2d | £(—1+ 42 + 222 + 223+ 22° — 228 +427)27 |, j=0,...,15.
Other aliases for the remaining cases are obtained in a similar manner.

2.3. Characteristics of difference set images in subgroup of a group

Dillon [2] proved the following results which will be used to obtain difference set images in dihedral group of a

certain order if the difference images in the cyclic group of same order are known.
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Theorem 2.4 (Dillon Dihedral Trick) Let H be an abelian group and let G be the generalized dihedral
extension of H. That is, G = (¢, H : ¢> = 1,qhq = h™1,Yh € H). If G contains a difference set, then so does

every abelian group which contains H as a subgroup of index 2.

Corollary 2.5 If the cyclic group Za,, does not contain a (non-trivial) difference set, then neither does the

dihedral group of order 2m.

The next result describes geometrically how properties of a factor group of a group can be lifted, under

certain conditions, to the group itself [15].

Theorem 2.6 Let D be a (v, k,\) difference set in group G with a factor group H . Suppose that q is a prime
such that ¢° | |H| and E C C(H) is an elementary abelian subgroup of order ¢™, m < s. Suppose also that

Ei,FEs, ..., E;, where t = qm_d(q:_—_ll) are the subgroups of E and their cosets, each of order ¢%,d < m with

D and 51- being the corresponding difference set images in H and H/E; respectively. Suppose there exists an
integer a and prime p with p | (k—\) such that for each i, ﬁi = a(H/E;) mod p, then there exists an integer
K such that D = a(k')"'H mod p.

Proof See [14] or [15]. O

It turns out that &' = ¢¢. We will use this result to determine the non-existence of (400, 57, 8) difference set
images in some groups of order 16 with ¢ =2, p=7, ¥ =2, m=2 and d = 1.

Finally, suppose that H is a group of order 2h with a central involution z. Wetake T'={t; : i =1,...,h}
to be the transversal of (z) in H so that every element in H is viewed as t;2/,0 <i < h,j = 0,1. Denote the
set of all integral combinations, Z?Zl a;t; of elements of T,a; € Z by Z[T]. Using the two representations of

subgroup (z) and Frobenius reciprocity theorem [10], we may write any element X of the group ring Z[H] in

X:X<1;Z>+X<1;Z>. (2.7)

Furthermore, let A be the group ring element created by replacing every occurrence of z in X by 1. Also, let

the form

B be the group ring element created by replacing every occurrence of z in H by —1. Then

() 4 5(252), )

where A = 2?21 a;t; and B = 2?21 bjti,a;,b; € Z. As X € Z[H], A and B are both in Z[T] and A = B
mod 2. We may equate A with the homomorphic image of X in G/(z). Consequently, if X is a difference
set, then the coefficients of ¢; in the expression for A will be intersection number of X in the coset (z). In

particular, it can be shown that if K is a subgroup of a group H such that
H >~ K x (z), (2.9)

then the difference set image in H is

ﬁ:A(%) +gB<2_2<Z>>, (2.10)
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er\/lﬁ or o = %, B = A— aK and k is the size of the

difference set. (2.10) is true as long as |K| | (k + /n) or |K| | (k — y/n). In the next two sections, we shall

analyze the non-existence of difference set images in factor groups of orders 16, 20 and 40.

where g € H, A is a difference set in K, a =

3. Some group 16 images do not exist
3.1. The Group 8 images

We first obtain (400, 57, 8) difference set images in groups of order 8.

3.1.1. The C5 image

Suppose that G/N = Cy = (z : 22 = 1) and D = dy + dyz is the (400, 57, 8) difference set image in G/N.
The distribution scheme, Q¢, for Cy consists of A = 32+ 25x.

3.1.2. The C; image

Suppose that G/N = Cy = (z: z* =1) and D = Zi:o dsxz® is the (400, 57, 8) difference set image in G/N.
We view this group ring element as a 1 x 4 matrix with columns indexed by powers of x. The distribution

scheme, Q¢, for Cy (up to translation), consists of only A; = —7 + 16(x).

3.1.3. The Cs x (s image

Using (2.10) with a = 32, K = Cy and |K| = 2, the difference set image in Cy x Co = (z,y: 22 =y =1 =
[z,y]) is Ay = =T+ 16(1 +z)(1 + y).

3.1.4. The Cg images

Suppose that G/N = Cy = (z: z* =1) and D = Zi:o dsxz® is the (400, 57, 8) difference set image in G/N.
Up to translation, the only element in Q¢ is A" = —7 + 8(x).

3.1.5. The D, image

Suppose that G/N = Dy = (z,y:2* = 3> = 1,yzy = 7 1). Let D= Z;O Zi:o dgx®yt be the difference set
image in G/N. Using the Dillon Dihedral trick, it can be shown that B} = —7 + 8(z)(y) is the only element

of Qp, up to equivalence.

3.1.6. The C; x (s image

Consider G/N = Cy x Cy = (m,y : 2* = 4> = 1 = [z,y]). We view the difference set image D =
Z?:o Z;:o dijx'y? in Cq x Cy as a 2 X 4 array with columns indexed by powers of z and rows indexed

by powers of y. Using (2.10) with « = 16, |K| =4, and By = A; — 16K, where A; € Q¢,, B, = =7+ 8(z)(y)

is the only viable difference set image in Cy x C up to equivalence.
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3.1.7. The (C3)? image
Suppose that G/N 2 (Cs)3 = (a,b,c:a> =b? =c* =1 = [a,b] = [b,c| = [a, c]). Take K = (C3)?, |K| =4, and
By = A—16K, where A € Qc,xc,. By (2.10), B, = -7+ 8(1+ a)(1 +b)(1 4 ¢) is the only viable difference

set image in (C3)3 up to equivalence.

Remark 1 Notice that the characteristics of the difference set images in (C2)* and Cy x Cy are described by
Theorem 2.6, but we need more than that in this paper. The difference set images in (Co)? and Cy satisfy
A =2 (mod 7). If we choose a =2, p=1T and k' =2, then the difference set images in (C2)* and Cy x Cq
satisfy the condition B; =1 (mod 7). This condition is also satisfied by the difference set image in Dy .

3.1.8. The @4 image

Consider G/N = Q4 = (z,y : 2* = 1,2y = yz~1, 22 = y?). The derived subgroup of G/N is isomorphic to
(z?). Let the difference set image in G/N be D= Z;O Zi:o dgx®yt. We view this object as a 2 x 4 matrix
with rows indexed by powers of y and columns indexed by powers of x. Since Q4/(x?) = Cy x Cy, G/N has
four characters. By applying these four characters to D, we get A* = %{9 + 162 + 922 + 1622 + 16{x)y}. The
only degree two representation of G/N is

iz 1 0. oy 0 1 .
0 —i -1 0

In a non-abelian group like this, the idempotents are obtained by applying the diagonal entries of x to D.
Thus, the idempotents are

=)
<. O
=
—_

| o
~

| IS

Therefore, the two rational idempotents (from x) are

s 1[20 =20 B : 1[00 0 0
[f]_f+f_1[o 0 0 o]and[fy]_fy+fy_4[2 0 —2 0]
Consequently, the difference set equation is
D = A" + ay[f] + azlf,], (3.1)

where aj,j = 1,2 is an alias. To find the aliases, o, we apply x to D so that

x(f))=<; I;)

where z = (doo - dgo) + (dIO - d30)i and w = (d01 - d21) + (dll - d31)i, w, z € Z[l] Thus

X(D)(xD)

[ ZZ+ww 0
- 0 2Z + ww

) — 4915,

382



OSIFODUNRIN/Turk J Math

where I is the 2 x 2 identity matrix and 2Z + ww = 49. By expanding this equation, we get
(doo — d20)2 + (do — d30)2 + (do1 — d21)2 + (d11 — d31)2 = 49. (3.2)

Up to permutations, the set of all possible values satisfying (3.2) is listed in Table 1.

Table 1. Up to permutations, the set of all possible coefficients satisfying (3.2).

S/N | doo — dao | dio —dso || dor —d21 | di1 —ds1

i. +7 0 0 0

ii. + 6 +3 +2 0

iii. +5 +4 +2 +2
iv. +4 +4 +4 +1

Our next task is to find all sets of equivalent solutions to (3.2). The following facts assist with this

objective:

1. {1,4} is a basis of Z[i] and we can replace either z or w with 2i* or wi’/ or their conjugates, where i is

the fourth root of unity, if necessary.

2. In (3.1), observe that 2 entries of A* are congruent to 1 mod 2 while 6 entries are congruent to zero

modulo mod 2.

3. The sum of the last two terms in (3.1) must have the above property, also.

Hence, up to negatives and permutations, we consider only the coefficients in Table 2.

By choosing aliases according to values in Table 2 and up to equivalence, the elements of {2g, are
o Fy = —T+8(x)y), Fo =6+ 11x + 322 + 523 + 9y + 8xy + 7oy + 8z3y;

F3 =3+ 8z + 622+ 823 + 11y + 9y + 522y + T2y, Fy = 6+ 92 + 322 + 723 + 11y + S8xy + 522y + 823y;

Fy = 5+ 10z + 422 4 623 + 10y + 10zy + 622y + 623y, Fg = 74 10x + 222 + 623 + 9y + 9y + 722y + 723y

Fr =749z + 222 + 723 + 10y + 92y + 622y + T23y.

Table 2. Possible coefficients.

S/N | doo — dao | dio —dso || dor —d21 | di1 —ds1
i. -7 0 0 0
ii. 3 6 2 0
iii. 3 2 6 0
iv. 3 0 6 2
V. 1 4 4 4
vi. 5 4 2 2
vii. 5 2 4 2
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3.2. The (4 images

S

Consider the group G/N = C16 = (v : 2% = 1). Suppose that the difference image in this group is Zlio dsx®.
We view this element as a 1 x 16 matrix. Using (2.4) and (2.5), the five rational idempotents of Cyg are

T 2z?)—(x 2(x*)— (22 2—(z8 2(x®) —(z*
lexo) = 42 [exe] = B ey, ) = 2L ey ] = 255 and [e,,] = HE)

idempotents have (z®) in their kernel and we write their linear combination as

Yo S eyl =21,

J=0,2,4,8

. Four of these rational

where A’ € Qc¢, and a,; is an alias. Hence, the difference set equation is

D =Y + aylex), (3.3)
where o, € {£72°, fa12¥, *asz’}, a1 = —1+ 2z — 42? — 223 — 22° + 42% + 227, ay = —1 + 4w + 22% + 223 +
20° — 22% 4+ 427, 5,6 = 0,...,15. Define Z; =7 [ey,] = 2(2 — (2%)), Zo = a1[ey,] = (1 + 22 — 4% — 22° —
22° + 425 +227)(1 — 28) and Z3 = asley,| = (=1 +4x + 222 4 223 + 225 — 225 4+ 427)(1 — 2%) . Rewrite (3.3) as
D=Y+2'Z,,k=1,2,3:1=0,...,15. (3.4)
The fractions in Y compelled (3.4) to be
D=Y+2'Z,,k=1,2,3;1=0,8. (3.5)
The solutions to (3.5) are

1. By = —7+4(x), By = bx+222+ 323 +42* + 3205+ 620+ 507+ 28+ 3%+ 6210+ 501 +-4212 + 5213+ 2014 4-3215

2. Eq =6z + 522 + 5a3 + 4z + 52° 4+ 32% 4+ 627 4+ 28 + 229 + 3210 + 321 + 4212 + 3213 4 3214 4 2215,

As intersection number cannot be negative, up to equivalence, the elements of ¢, are Ej, k= 2,3.

3.3. There is no Dg image

Suppose that G/N = Dg = 0,y : 08 = > = 1,90y = 671!) and the difference set image is D =
ZZ:O Z;O ds:0°yt. This group ring element is perceived as a 2 x 8 matrix. In order to take advan-
tage of the Dillon Dihedral trick using the difference set images in Cijg = (v : 2! = 1), set § = 2?2 in
Ci6 and rewrite each of the two difference images as a 2 x 8 matrix. For instance, Es € {l¢,, becomes
By = (50 4 40% + 30 4+ 0* + 3605 4+ 4605 + 207) + (6 + 50 + 502 + 66° + 20* + 3605 4 30° + 207)y. The factor group

G/N has two equivalent degree two representations. One of them is:

) s 0 0 1
X:0— ( 0 ) y=1 1 o
We now apply this degree two representation to the transformed Cig difference set image E;, J = 2,3 and

verify whether or not x(E})x(Ej) = 491,57 = 2,3. In the case of Ej, x(FE3) = ( g % ), where a =
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201 — (s — 2+ ¢3) #0, B=—4V2i,i = (2. Notice that x(FE2)x(FE2) # 491, since af = —16(¢s — (2) # 0.

Similarly, x(E%)x(Es) # 4915, where E% is the transformed E3. Thus, Ds does not admit (400, 57, 8) difference
set.

3.4. There is no Cg x C; image

Let G/N =2 Cygx Cy = (z: 2% = 9?2 = 1 = [2,9]) = K x (y), K = (2) and suppose that the difference
set image D = ZZ:O Z;O dsiryt exists in G/N. Since this group is of the form (2.9), we choose o = 8,
K =Csg, |[K|=8 and B= A" — 8K, where A’ is the unique difference set image in Cg. Thus, (2.10) becomes
A'(HTy) + gB(l_Ty), where g € Cg x Co. However, this equation has no integer solution because A'(HTy)
has 14 integer entries with 2 fractions while B(l_Ty) has 2 integer entries with 14 fractions. Hence, Qcyxc, is

empty.

3.5. There is no Cy x_; Cy image

Suppose G/N 2 Cy x_1Cy = H = (z,y : 2* = y* = 1,yxy~! = 271). We assume that this factor group

has a difference image, say, D= ZZ’ ‘=0 dgz®yt. Consequently, to each point xiyj in H, we assign a weight
d;; equal to the size of the intersection of the coset x'y/ N and putative difference set D. The center of H is
C(H) = {1,2%,y* 2%y?} =2 Cy x Oy, which is an elementary abelian 2-group of order 4. The three non-trivial
subgroups of C(H) are {1,z%}, {1,4?} and {1,2%y*}. It turns out that these three subgroups are in fact
normal subgroups of H. Thus, H/(y?) = Dy, H/{(z?) = C4 x Cy and H/{x?y?) = Q4. The center of H, C(H)
along with its three cosets generates four copies of a (4, 6, 3, 2, 1) design. These designs are viewed as a plane

in the form

di; doti,j
diotj | dotiotj

where 7,j = 0,1. The terminology row sum denotes the sum d; ; + day; j or d; 24+ doyi24;; column sum
denotes the sum d; ; + d; o4 or dais j + dotioqj; diagonal sum represents d; j + dotiotj Or dioyj + doyi
and plane weight is the sum 8 = d; ; + d244,; + di 245 + dati2+;. We also use the abbreviation #-plane for
plane of weight $[6]. The fact that H/(y*) = Dy, H/{(z?) = Cy x Cy and H/(x?y?) = @, implies that the
sets of row, column and diagonal sums of each of the planes are valid sets of intersection numbers in Qc,xc, ,
Qp,, and Qg, respectively. Also, as H/C(H) = Cy x Cy, each plane weight is a valid intersection number of
the unique difference set image in Cs x C5. Hence, the possible plane weights are 9 and 16. Precisely, in the
collection of these four planes, there are three 16-planes and one 9-plane. Without loss of generality, take row
sums to be intersection numbers of difference set image in Cy x Cy and column sums to be intersection numbers
of difference set image in D4. Finally, the diagonal sums will be intersection numbers of difference set images
in Q4. Q4 has seven difference set images. We split these seven difference set images F,s=1,...,7 into two
categories. In the first case, we look at 9-plane and, in the other, we look at one of the three 16-planes.

Case 1: Fs,s # 6,7 We rearrange the four plane, if necessary, such that the 9-plane is

doo | dao
do2 | da2
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As C4 x Cy and D, have unique difference set image, the row and column sums of the 9-plane must be of
5 3

or (up to

the form ! (up to equivalence) while the diagonal sums must be one of the forms é v 6

8
equivalence). Thus, the system doo + d2o = c1, do2 + da22 = ca, doo + doz2 = 3, d2o + d22 = c4, doo + daz = ¢5
and doz + dap = ¢g does not have a solution, where ¢y, ¢a,c3,¢4 € {1,8}, ¢5,c6 € {1,8}. Similar result holds
for ¢5,c6 € {3,6} or cs5,c6 € {4,5}.

Case 2: Fs,s =6,7 Consider the 16-plane.

do1 | do1
do3 | do3

The diagonal sums are of the form 160 or 2 (up to equivalence). In particular, take the diagonal sums to

8
. g then the system

do1 +d21 = c1, doz+daz = c2, do1 +doz = c3, do1 +do3 = c4, do1 +dog = ¢5 and do3 + d21 = ¢ does not have

be of the form ) . As the row and column sums of this plane are always of the form

a solution, where c¢1, co,c3,c4 € {8,8}, ¢5,c6 € {7,9}. The same conclusion holds for the other diagonal sums.

Hence, Q¢,xc, is empty.

3.6. There are no Cy x Cy,Cy x (C3)?, Dy x Oy, (C2)* or (C4 x C) x Cy images

Let N be an appropriate normal subgroup of G such that G/N = H, where H is one of the above groups.
Each H has a normal subgroup that is isomorphic to (C2)? and let h be a non-trivial element of this normal
subgroup. Then H/(h) is isomorphic to Dy, (Co)3 or Cy x Co (see remark 1). Theorem 2.6 with p=7, a =1
and k' = 2 indicates that the difference set image in H satisfies D=3 (mod 7). We verify this claim using

the variance trick, Lemma 2.1. Since |N| =25 and D=3 (mod 7), the intersection numbers in D must be 3,

10, 17 or 24. Thus, we use variance trick to find the values of m;, where i = 3,10,17,24 and

m3 + myg +mi7 + maq = 16 (3.6)

ms + 3mig + 17my7 + 24meoy = 57
6ms 4+ 90mo + 272my7 + 552meos = 192.
The coefficients of my7 and mg4 in the third equation are more than 192. Consequently, my7 = moq4 = 0 and
system (3.6) becomes
ms + myo = 16 (3.7)
ms + 3myg = 57
6ms + 90mo = 192.

The system (3.7) has no viable solution and G/N does not admit (400, 57, 8) difference sets.

4. Difference set images in groups of orders 20 and 40

In this section, we show that some factor groups of order 20 and 40 do not admit (400, 57, 8) difference sets.
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4.1. The C5 image
Suppose that G/N = Cs = (x : 2% = 1). Then the difference set image is A’ = 7 + 10(z).

4.2. The Cyy and D; images

Suppose that G/N =2 C19 = (x,y: 2° = y? = [x,9] = 1). Then the difference set image is E = 7+ 5(z)(y). We

can also show using the Dillon trick that E is the only difference set image in G/N = D5 = (z,y : 2% = y? =

yryxr = 1).

4.3. The C35 image
If G/N =2 Cy; = (x : %% = 1), then the unique difference set image is 7 + 2(x).

4.4. The (5 image
If G/N =2 Cy; = (x,y: 2% = y? = [z,y] = 1), then the unique difference set image is 7+ () (y).

4.5. There are no Cig x Co and Dy images

Suppose that N are normal subgroups of G such that G/N = Cio X Cy or G/N = D1y = D5 x Cy. These
groups are of the form (2.9) and we choose K = Cy9 or D5, « = 5, |K| = 10, and B = E — 5K, where
E € Qp, or E € Q¢,,. Let z be the generator of Cy. Then, by (2.10)

D:E<<;—>> +gB<2_2<Z>>, (4.1)

g € Dyg or g € Cqg x Cy. Notice that E(%) consists of 2 integers and 18 fractions while B(2_2<Z>) consists of

18 integers and 2 fractions. These observations show that the two terms on the right-hand side of (4.1) are not

compatible to produce integer solutions. Hence, (C3)? x C5 and Djo do not admit (400, 57, 8) difference set.

4.6. There are no (59 x Cs and Ds5 x Cy images

It can be shown that if G/N = Cjo x Cy or Das x Cy, then G does not admit (400, 57, 8) difference sets.

4.7. The Cy image
Consider G/N = Coo = (z,y: 2° = y* =1 = [x,y]). We view the difference set in G/N, D = Zf:o Zﬁ:o xSyt

as a 4 x 5 matrix with the columns indexed by the powers of x and rows indexed by powers of y. This group

has 6 rational idempotents out of which four have (y?) in their kernel. The linear combination of these four

rational idempotent is 375 o1 > p_0.0 W [€xg) = L(y?), where E is the difference set image in Cyo and

Qx; y 18 an alias. The remaining two rational idempotents are

1

(5= @)1 ).

exon] = 7561 =17) and ey, )] =

Thus, the difference set image in Coq is

~ B
D = §<y2> + aX(O,l) [eX(0,1)] + CYX(1,1) [eX(1,1)] (42)

387



OSIFODUNRIN/Turk J Math

with oy, ,, € {£7(zy)?, 22+ 3(z + 2° + 27 + 27))(xy)?} and ay,,, € {£7(zy)*}, p1,p2,p3 =0,...,19.
Put

B = (2+43(xy + (z9)* + (29)" + (29)")ex 1)) = 15((10 = 2(@)) + 15(2 — &? — 2 + %) — (10 = 2(x)) —
15(x — 2% — 2% + 2%)), By = Tley, ] = L(B+ (x)) — (5+ (x))) and C = Texon) = L(x)(1 —y?). Then
(4.2) becomes

D:

v

() £y By +4°Ct=0,---,4; 5,5 =0,1,2,3; [ =1,2. (4.3)

It turns out that 18 entries of %<y2) are congruent to 10 mod 20 while the remaining entries are
congruent to 10 mod 20. Thus, (4.3) has solutions if and only if ¢t = 0 and s = j. Up to equivalence, the
unique difference set image is B = 6 + x + 422 + 423 + 2* + (4 + 32 + 322 + 323 + 32Y)y + (6 + 4o + 2% + 23 +
4zt y? + (1 + 22 + 202 + 223 + 22%)y3.

4.8. The Frob(20) image

Suppose that G/N =2 Frob(20) = Cs x Cy = (z,y : 2% = y* = 1,yx = 22y), the Frobenius group of order
20. Suppose that D= Zi:o Z?:o djkgcjyk is the difference set image in Frob(20). This group ring element is
perceived as a 4 X 5 matrix, where the rows are indexed by powers of y and columns are indexed by powers
of z. By using permutation representation of Frob(20) and Smith’s approach [18], we can show that the only
difference set image in Frob(20) is A; = 4+ 3z + 23+ 2% + (14 32 + 322 + 42° + 52%)y + (2 + 32 + 322 + 22° +
624)y? + (3 + x + 422 + 323 + 5zt)y>.

4.9. There are no Frob(20) x Cy images

Suppose that there is a normal subgroup of G such that G/N = Frob(20) x Cy = (z,y,z : 2° = y* =
22 = 1,yz = 2%y,22 = zx,yz = zy). Let D = Zi:o Z;:o Z?:o dijkr'y’ 28 be the difference set image in
Frob(20) x Cy. This group ring element is viewed as a 8 x 5 matrix. The derived group of G/N is isomorphic
to (x) and (Frob(20) x C2)/{z) = Cy x Cy. Also, (Frob(20) x C3)/(z) = Frob(20). By applying the eight

characters of Frob(20) x Cy to D, we get the following equations:

4 4 4 4
E dio0 = coo, E di10 = c10, E di20 = c20, E di30 = 30, (4.4)
i=0 i=0 1=0 i=0

4 4 4 4
E dio1 = co1, E dii1 = ci1, E di21 = ca1, E di31 = c31, -
i=0 i=0 1=0 i=0

where the 2 x 4 matrix (¢;;) is the unique difference set image in Cy x Cs. Also, using the map z — 1 we get

20 more linear equations
dioo + dio1 = bio, dito + diin = bin (4.5)
di20 + dio1 = bjo, di30 + diz1 = b;s, 1=0,...,4,

where the 4 x 5 matrix (b;;) is the unique element of Qp,op(20). One of the two equivalent degree four repre-

sentations of Frob(20) x Cy is
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C 0 0 0 010 0 -1 0 0 0

oo oo oo o -1 0 0

X o0 ¢t o | Y 000 1]| 7 o 0 -1 0 |’
00 0 ¢3 1000 0o 0 0 -1

¢ is the fifth root of unity. By applying this representation to D, we get

A B C D
b= | 7B o o) o)
o(B) o(C) o(D) o(A)

where A = Zi:o as¢*, B = Zi:o bs¢*, C = Zi:o csC®, D= Zi:o dsC®, as = dsoo — dso1, bs = ds10 — ds11,
cs = ds20 — ds21, ds = ds30 — dsz1 and o(¢) = (2.

By solving x(D)x(D) = 491, where I, is a 4 x 4 identity matrix, we get 16 equations which are
equivalent to the following system:

AA+ BB+ CC+ DD =49 (4.6)

AC + BD =0 (4.7)

Ao (D) + Bo(A) + Co(B) + Da(C) = 0 (4.8)
Ao (B) + Bo(C) + Ca(D) + Do(A) = 0 (4.9)

Conditions (4.6)-(4.9) generate 14 more linear equations. We now use a computer to search for possible values
of d;jr by combining these 14 linear equations with (4.4) and (4.5). In order to have an exhaustive search, we
fix the values of b;; from the Frob(20) image and allow cg in (4.4) to vary. This search yielded no result.
Consequently, there is no difference set image in Frob(20) x Cs.

Based on the above results and exploration with GAP, we conclude that if there are non-isomorphic (400,

57, 8) Singer difference sets, it must be in groups with GAP identification number [400, cn|, where cn = 3, 49,
50, 52, 56, 57, 58, 59, 116, 132, 133, 206, 207, 212, 213.
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