Foliations and a class of metrics on tangent bundle

Esmaeil PEYGHAN∗, Leila NOURMOHAMMADI FAR
Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran

Received: 23.02.2011 • Accepted: 12.11.2011 • Published Online: 19.03.2013 • Printed: 22.04.2013

Abstract: Let M be a smooth manifold with Finsler metric F, and let TM^0 be the slit tangent bundle of M with a generalized Riemannian metric G, which is induced by F. In this paper, we extract many natural foliations of (TM^0, G) and study some of their geometric properties. Next we use this approach to obtain new characterizations of Finsler manifolds with positive constant curvature.

Key words: Finsler manifold, foliation, constant curvature, Riemannian metric

1. Introduction
Several monographs present methods of differential geometry used in the study of Finsler manifolds [1, 2, 3, 5, 6]. As the geometric objects that occur in Finsler geometry depend on both point and direction, the tangent bundle of a Finsler manifold plays a major role in this study. To emphasize this Bejancu and Farran in [4], by using Sasaki-Finsler metric G_{S}, initiate a study of interrelations between the geometry of foliations on the tangent bundle of a Finsler manifold and the geometry of the Finsler manifold itself. Then, Peyghan and Tayebi introduce new metric G on slit bundle of Finsler manifold and they study geometric properties of this metric [10]. In this paper, we use this metric on TM^0 and we show that the vertical and horizontal Liouville vector fields L and L^* determine three totally geodesic foliations on (TM^0, G). Finally, the main properties of the two foliations defined by F on (TM^0, G) are presented in Propositions 1 and 2. In the last section, for any $c > 0$ we consider the indicatrix-bundle $IM^0(c)$ and by using the horizontal Liouville foliation on $(IM^0(c), G)$ and the curvature-angular form we obtain three new characterizations of Finsler manifolds of positive constant curvature.

2. Preliminaries
Let (M, F) be a Finsler manifold, where M is a real n-dimensional smooth manifold and F is the fundamental function of (M, F) [2]. Consider $TM^0 = TM \setminus \{0\}$ and denote by VTM^0 the vertical vector bundle over TM^0, that is, $VTM^0 = \ker \pi_*$, where π_* is the tangent mapping of the canonical projection $\pi : TM^0 \to M$.

We may think of the Finsler metric $(g = g_{ij}(x, y))$, where we set $g_{ij}(x, y) = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}$ as a Riemannian metric on VTM^0. The canonical nonlinear connection $HTM^0 = (N^j_i(x, y))$ of (M, F) is given by $N^j_i = \frac{\partial G^j}{\partial y^i}$, where $G^j = \frac{1}{4} g^{ih}(\frac{\partial^2 F^2}{\partial y^i \partial y^j} y^h - \frac{\partial F^2}{\partial y^i} y^h)$. Then on any coordinate neighborhood $u \subset TM^0$ the vector fields

*Correspondence: epeyghan@gmail.com
2000 AMS Mathematics Subject Classification: Primary 53C20, 53C22.
Theorem 1 ([7]) A Finsler manifold \((M,F)\) is of constant curvature \(k\) if and only if the following holds
\[
R_{ij} = kF^2h_{ij}, \quad i,j = 1,\ldots,n.
\] (2.5)

Consider now the energy density \(2t(x,y) = F^2 = g_{ij}(x,y)y^iy^j\) defined by the Finsler metric \(F\) and also the smooth functions \(u,v:[0,\infty) \rightarrow \mathbb{R}\) such that \(u + 2tv > 0\) for every \(t\). The above conditions assure that the symmetric \((0,2)\)-type tensor field of \(TM^c\), \(G_{ij} = u(t)g_{ij} + v(t)y_iy_j\) is positive definite. The inverse of this matrix has the entries \(H^{kl} = \frac{1}{2}g^{kl} + \omega(t)y^ky^l\), where \((g^{kl})\) are the components of the inverse of the matrix \((g_{ij})\) and \(\omega(t) = -\frac{v}{u(a+2tv)}\). The components \(H^{kl}\) define symmetric \((0,2)\)-type tensor field of \(TM^c\). It is easy to see that if the matrix \((G_{ij})\) is positive definite, then matrix \(H^{kl}\) is positive definite, too. We use also the components \(H_{ij}\) of symmetric \((0,2)\)-type tensor field of \(TM^c\) obtained from the components \(H^{kl}\) by “lowering” the indices \(H_{ij} = g_{ik}H^{kl}g_{lj} = \frac{1}{2}g_{ij} + \omega y_iy_j\), where \(y_i = g_{ik}y^k\). The following Riemannian metric may be considered on \(TM^c\) (cf. [8]):
\[
G \left(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j} \right) = G_{ij}, \quad G \left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j} \right) = H_{ij}, \quad G \left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^j} \right) = G \left(\frac{\partial}{\partial y^i}, \frac{\delta}{\delta x^j} \right) = 0.
\] (2.6)

If \(u = 1\) and \(v(t) = 0\), then the above metric gives us the Sasaki-Finsler metric \(G_S\) as follows [4]:
\[
G_S \left(\frac{\delta}{\delta x^i}, \frac{\delta}{\delta x^j} \right) = G_S \left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j} \right) = g_{ij}, \quad G_S \left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^j} \right) = G_S \left(\frac{\partial}{\partial y^i}, \frac{\delta}{\delta x^j} \right) = 0.
\] (2.7)
Lemma 1 The Levi-Civita connection of the Riemannian metric G defined by (2.6) is as follows:

\[
\nabla_{\partial_i} \partial_j = \frac{1}{u^2} (-F^s_{ij} + G^s_{ij}) \frac{\delta}{\delta x^s} + (C^s_{ij} + \alpha_1 y_i y_j + \alpha_2 y_i \delta^s_j + \alpha_3 y_i y_j + \alpha_4 y_i y_j + \alpha_5 y_i y_j + \alpha_6 y_i y_j)
\]

\[
+ \alpha_7 y_i y_j y^s + \alpha_8 y_i y_j y^s + \alpha_9 y_i y_j y^s + \frac{1}{2u} R_{ij} H^{ks} \frac{\delta}{\delta x^s} + (F^s_{ij} - G^s_{ij}) \frac{\delta}{\delta y^s}, \tag{2.8}
\]

\[
\nabla_{\partial_i} \partial_j = (C^s_{ij} + \alpha_{10} y_i y_j y^s + \alpha_{11} y_i y_j y^s + \alpha_{12} y_i y_j y^s + \frac{1}{2u} R_{ij} H^{ks} \frac{\delta}{\delta x^s} + F^s_{ij} \frac{\delta}{\delta y^s}, \tag{2.9}
\]

where $\alpha_1 = \frac{u'}{2u}$, $\alpha_2 = \frac{u''}{2u}$, $\alpha_3 = \frac{u'' + uu'' + uu'' + uu''}{2u^2}$, $\alpha_4 = \frac{-u^2}{2u}$, $\alpha_5 = \frac{-u'' + uu'' + uu''}{2u^2}$, $\alpha_6 = \frac{u''}{2u}$, $\alpha_7 = \frac{uu'' + uu'' + uu''}{2u}$, $\alpha_8 = \frac{u(1 + 2uu)}{2u}$, $\alpha_9 = \frac{-u}{2u}$ and C^s_{ij} is the h-covariant derivative of C^s_{ij} with respect to Cartan connection.

3. **Foliations on** (TM°, G)

In this section, we shall study various kinds of foliation which are naturally associated to (TM°, G). For this purpose, we consider two globally defined vector fields on TM° locally given by

\[
L = y^i \partial_i, \tag{3.12}
\]

\[
L^* = g^i \partial_i. \tag{3.13}
\]

L and L^* are called the *vertical* and *horizontal* Liouville vector fields, respectively. The line distribution $\mathcal{L} = \text{span}\{L\}$ and $\mathcal{L}^* = \text{span}\{L^*\}$ are called the *vertical* and *horizontal* Liouville distributions, respectively.

Theorem 2 Let (M, F) be a Finsler manifold. Then we have the following assertions:

(i) The vertical Liouville vector field determines a totally geodesic foliation on (TM°, G).

(ii) The horizontal Liouville vector field determines a totally geodesic foliation on (TM°, G) if and only if u and v satisfy in

\[
u v + \frac{1}{2} u' u + t(vu' + v'u) + 2tv^2 = 0. \tag{3.14}
\]

(iii) The distribution $\Gamma(\mathcal{L} \oplus \mathcal{L}^*)$ is integrable and its tangent foliation is totally geodesic on (TM°, G).

350
Proof By using Lemma 1, we get
\[
\tilde{\nabla}_L L = \left(1 + 2t(\alpha_1 - 2\alpha_2 + 2t\alpha_3)\right)L, \\
\tilde{\nabla}_L L^* = \left(2t(2\alpha_4 + \alpha_6 + 2t\alpha_5)\right)L, \\
\tilde{\nabla}_L L = \left(2t(\alpha_2 + \alpha_9 + \alpha_8 + 2t\alpha_7)\right)L^*, \\
\tilde{\nabla}_L L^* = \left(1 + 2t(\alpha_2 + \alpha_9 + \alpha_8 + 2t\alpha_7)\right)L^*.
\] (3.15) (3.16) (3.17) (3.18)

Relation (3.15) tells us that \(\mathcal{L} \) is totally geodesic. Also, from (3.16) we derive that \(\mathcal{L}^* \) is totally geodesic if and only if (3.14) holds. Relations (3.17) and (3.18) give us \([L, L^*] = L^* \in \Gamma(\mathcal{L} \oplus \mathcal{L}^*)\). Now let \(X = XL + X^* L^* \) and \(Y = YL + Y^* L^* \) belong to \(\Gamma(\mathcal{L} \oplus \mathcal{L}^*) \), then by Dirac calculation we obtain
\[
\tilde{\nabla}_X Y = \left(XL(Y) + X^* L^*(Y) + XY(1 + 2t(\alpha_1 - 2\alpha_2 + 2t\alpha_3))
\right.
\]
\[
+ 2tX^* Y^*(2\alpha_4 + \alpha_6 + 2t\alpha_5)\big) + \left(XL(Y^*) + X^* L^*(Y^*)
\right.
\]
\[
+ XY^*(1 + 2t(\alpha_2 + \alpha_9 + \alpha_8 + 2t\alpha_7))
\]
\[
+ 2tX^* Y(\alpha_2 + \alpha_9 + \alpha_8 + 2t\alpha_7)\big) L^*.
\]
Hence we derive that \(\tilde{\nabla}_X Y \in \Gamma(\mathcal{L} \oplus \mathcal{L}^*) \) for any \(X, Y \in \Gamma(\mathcal{L} \oplus \mathcal{L}^*) \). Therefore the foliation determined by \(\Gamma(\mathcal{L} \oplus \mathcal{L}^*) \) is totally geodesic. \(\square \)

Remark 1 It is remarkable that the foliation in (ii) is also totally geodesic with respect to the Sasaki-Finsler metric (cf. [4]).

Also, by using (2.8)–(2.9) we can conclude the following:

Lemma 2 Let \((M, F)\) be a Finsler manifold. Then we have
\[
\tilde{\nabla}_X L = X^i \left((2t\alpha_1 + \alpha_9)g_i y^k + 2t\alpha_2 \delta_i^k\right) \delta_k
\]
\[
+ X^i \left((\alpha_1 - 2t\alpha_3)y_i y^k + (1 - 2t\alpha_2) \delta_i^k\right) \delta_k,
\] (3.19)
\[
\tilde{\nabla}_X L^* = X^i \left((1 + 2t\alpha_3)\delta_i^k + (2t\alpha_7 + \alpha_8 + \alpha_2) y_i y^k + \frac{1}{2u} y^j R_{ij} H^{jk}\right) \delta_k
\]
\[
+ X^i \left(\frac{1}{2} y^j R_{ij}^{k} + 2t\alpha_4 \delta_i^k + (\alpha_4 + 2t\alpha_5 + \alpha_6) y_i y^k\right) \delta_k,
\] (3.20)
where \(X = X^i \delta_i + X^i \delta_i \in \Gamma(TTM^\circ) \).

To introduce two more foliations on \((TM^\circ, G)\) we denote by \(\mathcal{L}' \) and \(\mathcal{L}^\perp \) the complementary orthogonal distributions to \(\mathcal{L} \) in \(VTM^\circ \) and \(TTM^\circ \), respectively. Now, let \(X, Y \in \Gamma(\mathcal{L}^\perp) \). Since \(G \) is parallel with
PEYGHAN and NOURMOHAMMADI FAR/Turk J Math

respect to $\tilde{\nabla}$, then we get

$$G([X,Y], L) = G(\tilde{\nabla}X Y, L) - G(\tilde{\nabla}Y X, L) = G(X, \tilde{\nabla}Y L) - G(Y, \tilde{\nabla}X L). \quad (3.21)$$

By using (3.19), we derive

$$G(X, \tilde{\nabla}Y L) = \left[((\alpha_9 + \alpha_8 + 2t\alpha_7)(u + 2tv) + 2t\alpha_2)g_{ij} + 2tu\alpha_2 g_{ij}\right] \dot{X}^i \dot{Y}^j$$

$$+ \left[\alpha_1 - \alpha_2 + 2t\alpha_3\right]\left(\frac{t}{u} + 2tw\right) + w(1 - 2t\alpha_2)\left[g_{ij}\right]$$

$$+ \frac{1}{u}(1 - 2t\alpha_2)g_{ij} \dot{X}^i \dot{Y}^j. \quad (3.22)$$

Similarly we have

$$G(Y, \tilde{\nabla}X L) = \left[\left(\alpha_9 + \alpha_8 + 2t\alpha_7\right)(u + 2tv) + 2t\alpha_2 g_{ij}\right] Y^i X^j$$

$$+ \left[\alpha_1 - \alpha_2 + 2t\alpha_3\right]\left(\frac{t}{u} + 2tw\right) + w(1 - 2t\alpha_2)\left[g_{ij}\right]$$

$$+ \frac{1}{u}(1 - 2t\alpha_2)g_{ij} \dot{Y}^i \dot{X}^j. \quad (3.23)$$

Since i, j, k in (3.22) and (3.23) are summation indices, then (3.22) is equal (3.23). Therefore, by according to (3.21) we infer

$$G([X,Y], L) = 0. \quad (3.24)$$

Hence $[X,Y] \in \Gamma(L^\perp)$, that is, L^\perp is integrable. It is obvious that L' is integrable, too. Therefore, we have the following theorem.

Theorem 3 Let (M, F) be a Finsler manifold. Then both distributions L^\perp and L' are integrable.

Also, similar to the proof of Proposition 2.1 in [4], we can prove the following:

Proposition 1 (i) The fundamental foliation F_F determined by the level hypersurfaces of the fundamental function F of the Finsler manifold (M, F) is just the foliation determined by the integrable distribution L^\perp.

(ii) The vertical Liouville vector field is orthogonal to foliation F_F.

(iii) The horizontal Liouville vector field is tangent to foliation F_F.

Next, we consider a fixed point $x_0 = (x_0^i)$ in M and the hypersurfaces $I_{x_0}M(c) \subset T_{x_0}M^\circ = T_{x_0}M - \{0\}$ given by the equation

$$F(x_0, y) = c, \quad \forall y \in T_{x_0}M^\circ,$$

where c is a positive constant. We call it the c-indicatrix of (M, F) at x_0. Then the set of all c-indicatrices at x_0 determines a foliation of codimension one of the m-dimensional Riemannian manifold $(T_{x_0}M^\circ, g_{x_0})$, where $g_{x_0} = (g_{ij}(x_0, y))$ (see [4]). Now, let

$$l = \frac{1}{F}\sqrt{u + 2tvL} = \sqrt{u + 2tv^i \dot{\theta}_i}, \quad l^i = \frac{y^i}{F}.$$
then we have $G(l, l) = 1$. Also, we denote by the same symbol g_{x_0} the induced Riemannian metric by g_{x_0} on $I_{x_0}M(c)$. Now, we put
\[
\tilde{\nabla}_X Y = \nabla_X Y + b(X, Y),
\]
\[
\nabla'_X Y = \nabla''_X Y + B(X, Y)l,
\] (3.25) (3.26)
for any $X, Y \in \Gamma(TM)$, where ∇' and ∇'' are the Levi-Civita connections on $(T_{x_0}M^o, g_{x_0})$ and $(I_{x_0}M(c), g_{x_0})$, respectively, while $h(\cdot, \cdot)$ and $B(\cdot, \cdot)l$ are the second fundamental forms of $T_{x_0}M^o$ and $I_{x_0}M(c)$ as submanifolds of (TM^o, G) and $(T_{x_0}M^o, g_{x_0})$, respectively. Since l is orthogonal to $I_{x_0}M(c)$, then we have $g_{x_0}(\nabla''_X Y, l) = 0$. Hence by using (3.26), we obtain
\[
g_{x_0}(\nabla'_X Y, l) = g_{x_0}(B(X, Y)l, l) = \frac{u + 2tv}{2t} B(X, Y) y^i y_j \dot{g}_{ij} = (u + 2tv) B(X, Y). \tag{3.27}
\]
Now, let $\tilde{\nabla}_X Y = (\tilde{\nabla}_X Y)\dot{i}_i + (\tilde{\nabla}_X Y)\dot{j}_j$. According to (2.6), we get
\[
G(\tilde{\nabla}_X Y, l) = G(((\tilde{\nabla}_X Y)\dot{i}_i + (\tilde{\nabla}_X Y)\dot{j}_j, \frac{1}{F}\sqrt{u + 2tv} \dot{y}_j)
= (\tilde{\nabla}_X Y)\dot{i}_i \sqrt{u + 2tv} y_j (\frac{1}{u} g_{ij} - \frac{v}{u(u + 2tv)} y_i y_j)
= \frac{1}{F\sqrt{u + 2tv}} (\tilde{\nabla}_X Y)\dot{i}_i y_j. \tag{3.28}
\]
Similarly, we obtain
\[
g_{x_0}(\tilde{\nabla}_X Y, l) = g_{x_0}(((\tilde{\nabla}_X Y)\dot{i}_i + (\tilde{\nabla}_X Y)\dot{j}_j, \frac{1}{F}\sqrt{u + 2tv} \dot{y}_j)
= (\tilde{\nabla}_X Y)\dot{i}_i \sqrt{u + 2tv} y_j \dot{g}_{ij} = (\tilde{\nabla}_X Y)\dot{i}_i \sqrt{u + 2tv} y_j. \tag{3.29}
\]
The relations (3.27), (3.28) and (3.29) give us
\[
B(X, Y) = \frac{1}{u + 2tv} g_{x_0}(\nabla'_X Y, l) = G(\tilde{\nabla}_X Y, l) = -G(Y, \tilde{\nabla}_X l)
= -G(Y, X(\sqrt{u + 2tv} \dot{Y}) + \sqrt{u + 2tv} \tilde{\nabla}_X Y)
= -\frac{\sqrt{u + 2tv}}{F} G(Y, \tilde{\nabla}_X Y). \tag{3.30}
\]
Let $X = \dot{X}^i \dot{i}_i \in \Gamma(TM)$. Since L is orthogonal to $I_{x_0}M(c)$, then we have
\[
0 = G(X, L) = G(\dot{X}^i \dot{i}_i, y^j \dot{j}_j) = \dot{X}^i y^j (\frac{1}{u} g_{ij} - \frac{v}{u(u + 2tv)} y_i y_j) = \frac{1}{u + 2tv} \dot{X}^i y_i. \tag{3.31}
\]
Hence we infer that
\[
\dot{X}^i y_i = 0, \tag{3.31}
\]
because \(u + 2tv \neq 0 \). By using (3.19) and (3.31), we deduce

\[\tilde{\nabla}_X L = (1 - 2t\alpha_2)X. \quad (3.32) \]

The relation (3.32) in (3.30) implies

\[B(X, Y) = (2t\alpha^2 - 1)\sqrt{u + 2tv}G(X, Y). \quad (3.33) \]

But by direct calculation we derive

\[G(X, Y) = \frac{1}{u}g_{x_0}(X, Y). \]

Thus for any \(X, Y \in \Gamma(T_{x_0}M) \) we obtain

\[B(X, Y) = (2t\alpha^2 - 1)\sqrt{u + 2tv}g_{x_0}(X, Y). \]

Therefore any \(c \)-indicatrix at \(x_0 \) is a totally umbilical manifold immersed in \((T_{x_0}M^c, g_{x_0}) \). Finally, we deduce that the leaves of the integrable distribution \(L' \) are \(c \)-indicatrices, because \(L \) is the normal vector field to each \(c \)-indicatrix.

Proposition 2 Let \((M, F)\) be a Finsler manifold. Then we have the following assertions:

(i) At any point \(x \in M \), the indicatrix foliation \(I_x M \) is a totally umbilical foliation of \((T_x M, g_x)\).

(ii) The foliation \(F_{L'} \) determined by the integrable distribution \(L' \) are \(c \)-indicatrices of \((M, F)\).

(iii) The foliation \(F_{L'} \) is a totally umbilical subfoliation of the vertical foliation \(F_V \).

4. Finsler manifolds of positive constant curvature

In this section, we give some necessary and sufficient conditions for \((M, F)\) to be of constant curvature.

Let \((M, F)\) be a Finsler manifold and consider the symmetric tensor fields \(R = (R_{ij}) \) and \(h = (h_{ij}) \), where \(R_{ij} \) and \(h_{ij} \) are given by (2.2) and (2.4). We define the symmetric Finsler tensor field \(\Lambda = (\Lambda_{ij}) \) by

\[\Lambda_{ij} = R_{ij} - h_{ij}. \quad (4.34) \]

We consider \(\Lambda \) as a symmetric bilinear form on the \(\mathcal{F}(TM^c) \)-module \(\Gamma(HTM^c) \) and call it the curvature-angular form of \((M, F)\) (see [4]).

Proposition 3 For any \(X \in \Gamma(HTM^c) \) we have

\[\Lambda(L^*, X) = 0 = R(L^*, X). \quad (4.35) \]

Proof Let \(X = X^i\delta_i \in \Gamma(HTM^c) \). Using (ii) of (2.3) and (2.4), we have

\[\Lambda(L^*, X) = g^i X^j\Lambda_{ij} = X^j g^i R_{ij} - X^j g^i g_{ij} + X^j g^i \frac{y_i y_j}{F^2} = -X^j y_i + X^j y_j = 0. \]

(4.36)

Also, part (ii) of (2.3) gives us

\[R(L^*, X) = X^j g^i R_{ij} = 0. \]

(4.37)

The relations (4.36) and (4.37) imply (4.35). \(\square \)
Next, we consider a leaf $IM(c)$ of the fundamental foliation \mathcal{F}_F on (TM°, G). As we can write

$$IM(c) = \bigcup_{x \in M} I_x M(c),$$

we call $IM(c)$ the c-indicatrix bundle over M. Also, we consider the horizontal Liouville foliation \mathcal{F}_{L^*} determined by the integral curves of L^*. According to Theorem 2, \mathcal{F}_{L^*} is a totally geodesic foliation on (TM°, G) if and only if

$$uv + \frac{1}{2} u'u + t(vu' + v'u) + 2t^2 v + 2tu^2 = 0.$$

Therefore we infer that \mathcal{F}_{L^*} is totally geodesic on any c-indicatrix bundle $(IM(c), G)$ if and only if

$$uv + \frac{1}{2} u'u + \frac{1}{2} (vu' + v'u) + \frac{1}{2} v'u + v^2 = 0.$$

Here and in the sequel, we denote by the same symbol G the Riemannian metric on $IM(c)$ which is induced by the metric G on TM°.

Theorem 4 Let (M, F) be a Finsler manifold and $IM(c)$ be a c-indicatrix over M. Then the Riemannian metric G on $IM(c)$ is bundle-like for horizontal Liouville foliation \mathcal{F}_{L^*} on $IM(c)$ if and only if $\Lambda = (1 - \frac{1}{2t})R$ on $IM(c)$.

Proof First, we note that all the vector bundles in this proof are considered to be over $IM(c)$. Let \mathcal{L}' be the complementary orthogonal distribution to the horizontal Liouville distribution \mathcal{L}^* in HTM°. Then $\mathcal{L}^\perp = \mathcal{L}' \oplus \mathcal{L}'' \oplus \mathcal{L}^*$ is the tangent bundle of $IM(c)$. It is known that the Riemannian metric G is bundle-like for \mathcal{F}_{L^*} on $IM(c)$ if and only if

$$G(\nabla_X Y, L^*) + G(\nabla_Y X, L^*) = 0,$$

(4.38)

where $X, Y \in \Gamma(L' \oplus L'')$ and ∇ is the Levi-Civita connection on $(IM(c), G)$. Since ∇ is parallel with respect to G and $G(X, L^*) = G(Y, L^*) = 0$, then we have $G(\nabla_X Y, L^*) = G(Y, \nabla_X L^*)$ and $G(\nabla_Y X, L^*) = G(X, \nabla_Y L^*)$. Therefore (4.38) is equivalent to

$$G(\nabla_X L^*, Y) + G(\nabla_Y L^*, X) = 0, \ \forall X, Y \in \Gamma(L' \oplus L''),$$

(4.39)

where ∇ is the Levi-Civita connection on $(IM(c), G)$. Since L is the normal bundle to $IM(c)$, then (4.39) is equivalent to

$$G(\nabla_X L^*, Y) + G(\nabla_Y L^*, X) = 0, \ \forall X, Y \in \Gamma(L' \oplus L''),$$

(4.40)

where ∇ is the Levi-Civita connection on (TM°, G).

Now, we consider three cases to analyze (4.40). In the first case, let X and Y belong to $\Gamma(L')$. Then by using (3.20), we conclude that $\nabla_X L^*$ and $\nabla_Y L^*$ belong to $\Gamma(HTM^\circ)$. Thus we have $G(\nabla_X L^*, Y) = G(\nabla_Y L^*, X) = 0$, because L' and HTM° are orthogonal vector bundles with respect to G. Consequently, in this case (4.40) is identically satisfied. In the second case, we let X and Y belong to $\Gamma(L'')$. Then by using (3.20), we conclude that $\nabla_X L^*$ and $\nabla_Y L^*$ belong to $\Gamma(VTM^\circ)$. Similar to the previous case, we can deduce
that (4.40) is again identically satisfied. In the third case, we let $X = X^i \partial_i \in \Gamma(\mathcal{L}')$ and $Y = Y^i \delta_i \in \Gamma(\mathcal{L}'')$. Since \mathcal{L}'' is the complementary orthogonal distribution to \mathcal{L}^* in HTM°, then we have

$$0 = G(Y, L^*) = Y^i y^j G(\delta_i, \delta_j) = Y^i y^j (ug_{ij} + vy_{ij}) = (u + 2tv)Y^i y_i.$$ \hfill (4.41)

Also, (3.31) gives us

$$X^i y_i = 0.$$ \hfill (4.42)

According to (3.20), we get

$$G(\tilde{\nabla}_X L^*, Y) = (u + tv)X^k Y^r g_{kr} - \frac{1}{2u} X^i Y^r R_{ir}.$$ \hfill (4.43)

Similarly, we obtain

$$G(\tilde{\nabla}_Y L^*, X) = -tv X^r Y^i g_{ir} - \frac{1}{2u} Y^i R_{ri} X^r.$$ \hfill (4.44)

Using (4.43) and (4.44), we obtain the following expression of (4.40):

$$\left(ug_{ij} - \frac{1}{u} R_{ij}\right) X^i Y^j = 0.$$ \hfill (4.45)

On the other hand, (4.42) implies

$$h_{ij} X^i Y^j = g_{ij} X^i Y^j.$$ \hfill (4.46)

By using (4.43), (4.45) and (4.46) we obtain

$$\Lambda_{ij} X^i Y^j = R_{ij} X^i Y^j - h_{ij} X^i Y^j = R_{ij} X^i Y^j - g_{ij} X^i Y^j$$

$$= R_{ij} X^i Y^j - \frac{1}{u^2} R_{ij} X^i Y^j = \left(1 - \frac{1}{u^2}\right) R_{ij} X^i Y^j.$$ \hfill (4.47)

Now, we consider the isomorphism of vector bundles $\Phi : \mathcal{L}' \to \mathcal{L}''$ defined by $\Phi(X^i \partial_i) = X^i \delta_i = X^*$. Then (4.47) is equivalent to

$$\Lambda(X^*, Y) = (1 - \frac{1}{u^2}) R(X^*, Y), \quad \forall X^*, Y \in \Gamma(\mathcal{L}'').$$ \hfill (4.48)

Finally, from (4.35) and (4.48) we deduce that (4.40) is equivalent to $\Lambda = (1 - \frac{1}{u^2}) R$ on $IM(c)$. \hfill \square

Taking into account that \mathcal{L}^\perp is orthogonal to the vertical Liouville distribution \mathcal{L} we deduce that L^* is a Killing vector field on $IM(c)$ if and only if (see [11])

$$G(\tilde{\nabla}_X L^*, Y) + G(\tilde{\nabla}_Y L^*, X) = 0, \quad \forall X, Y \in \Gamma(\mathcal{L}^\perp).$$ \hfill (4.49)

Now, we can prove the following theorem.

Theorem 5 Let (M, F) be a Finsler manifold and $IM(c)$ be a c-indicatrix bundle over M. Then the horizontal Liouville vector field L^* is a Killing vector field on $IM(c)$ if and only if $\Lambda = (1 - \frac{1}{u^2}) R$ on $IM(c)$.

356
Proof If \(L^* \) is a Killing vector field on \(IM(c) \), then according to (4.49), the relation (4.40) is held and consequently from Theorem 4 we infer that \(\Lambda = (1 - \frac{1}{u^2})R \) on \(IM(c) \). Conversely let \(\Lambda = (1 - \frac{1}{u^2})R \) on \(IM(c) \). Then (4.40) gives us (4.49), only for any \(X, Y \) belong to \(\Gamma(\mathcal{L}' \oplus \mathcal{L}'') \). Also, if \(X = Y = L^* \) then (3.16) implies (4.49). Hence in order to complete the proof we need to show that (4.49) is held for \(X = L^* \) and \(Y \in \Gamma(\mathcal{L}' \oplus \mathcal{L}'') \). According to (3.16), since \(\tilde{\nabla}_{L^*}L^* = 2t(2\alpha_4 + \alpha_6 + 2t\alpha_5)L \) then we deduce that we should prove that

\[
G(\tilde{\nabla}_Y L^*, L^*) = 0, \quad \forall Y \in \Gamma(\mathcal{L}' \oplus \mathcal{L}'').
\]

We consider two cases to analyze (4.50).

Case 1. \(Y \in \Gamma(\mathcal{L}'') \). Then from (3.20) we infer that \(\tilde{\nabla}_Y L^* \in \Gamma(VTM^s) \), and consequently (4.50) is held in this case.

Case 2. \(Y \in \Gamma(\mathcal{L}') \). In this case we have \(Y = Y^i \partial_i \), where \(Y^i \) satisfy (4.42). Then by using (3.20), we obtain

\[
\tilde{\nabla}_Y L^* = Y^i \left((1 + 2t\alpha_0)\delta^k_i + \frac{1}{2u^2} y^j R_{i+j+k} \right) \delta_k.
\]

Hence we get

\[
G(\tilde{\nabla}_Y L^*, L^*) = Y^i \left((1 + 2t\alpha_0)(u + 2tv)y_i + \frac{1}{2u^2} y^j y^r R_{i+j+r} \right).
\]

But by using (ii) of (2.2), (ii) of (2.3) and (4.42) we have \(Y^k y_k = 0 \) and \(R_{i+j+r} y^j = 0 \). Hence \(G(\tilde{\nabla}_Y L^*, L^*) = 0 \), where \(Y \in \Gamma(\mathcal{L}') \).

By using the above cases, we deduce that (4.49) is identically satisfied, and therefore \(L^* \) is a Killing vector field on \(IM(c) \).

Theorem 6 A Finsler manifold \((M, F) \) is of positive constant curvature \(k \) if and only if \(\Lambda = (1 - \frac{1}{u^2})R \) on the indicatrix bundle \(IM(c) \) where \(c = \frac{1}{\sqrt{k}} \).

Proof Let \((M, F) \) be a Finsler manifold of constant curvature \(k \). Then by Theorem 1, we have

\[
R_{ij} = kF^2 h_{ij}.
\]

But on \(IM(c) \) we have \(F(x, y) = c = \frac{u}{\sqrt{k}} \). Hence we obtain \(F^2 = \frac{u^2}{k} \) or equivalently

\[
kF^2 = u^2.
\]

Substituting the above equation into (4.52), we obtain

\[
h_{ij} = \frac{1}{u^2} R_{ij}.
\]

Substituting (4.54) into (4.34), we get

\[
\Lambda_{ij} = R_{ij} - \frac{1}{u^2} R_{ij} = (1 - \frac{1}{u^2})R_{ij}.
\]
Conversely, let $\Lambda = (1 - \frac{1}{u^2})R$ on $IM(c)$. Then it follows from (4.53) and (4.34) that

$$R_{ij}(x, y) = u^2 h_{ij}(x, y) = kF^2(x, y) h_{ij}(x, y), \quad \forall(x, y) \in IM(c).$$

(4.56)

Now, we take a point $(x, y) \in TM^c \setminus IM(c)$. Since TM^c admits the fundamental foliation \mathcal{F}_F, there exist $c^* > 0$ such that $(x, y) \in IM(c^*)$, that is, $F(x, y) = c^*$. Since F is positively homogeneous of degree one, we have $F(x, \frac{c}{c^*}y) = \frac{c}{c^*}F(x, y) = c$, i.e., $(x, \frac{c}{c^*}y) \in IM(c)$. Hence by (4.56), we obtain

$$R_{ij}(x, \frac{c}{c^*}y) - h_{ij}(x, \frac{c}{c^*}y) = (1 - \frac{1}{u^2})R_{ij}(x, \frac{c}{c^*}y),$$

or equivalently

$$R_{ij}(x, \frac{c}{c^*}y) = u^2 h_{ij}(x, \frac{c}{c^*}y).$$

(4.57)

(4.58)

Since h_{ij} and R_{ij} are positively homogeneous of degree zero and two, respectively, equation (4.58) implies

$$R_{ij}(x, y) = u^2 c^2 h_{ij}(x, y).$$

(4.59)

Since $c = \frac{u}{\sqrt{k}}$ and $F(x, y) = c^*$, it follows from (4.59) that

$$R_{ij}(x, y) = kF^2(x, y) h_{ij}(x, y), \quad \forall(x, y) \in TM^c \setminus IM(c).$$

(4.60)

Thus it follows from (4.56), (4.60) and Theorem 1 that (M, F) is a Finsler manifold of positive constant curvature k.

\[\square \]

Theorem 7 Let (M, F) be a Finsler manifold, and k, c two positive numbers such that $c = \frac{u}{\sqrt{k}}$. Then the following assertions are equivalent:

(i) (M, F) is a Finsler manifold of constant curvature k.

(ii) The Sasaki-Finsler metric G on the indicatrix bundle $IM(c)$ is bundle-like for the horizontal Liouville foliation $IM(c)$.

(iii) The horizontal Liouville vector field is a Killing vector field on $(IM(c), G)$.

(iv) The curvature-angular form Λ of (M, F) satisfy $\Lambda = (1 - \frac{1}{u^2})R$ on $IM(c)$.

References

