Weak-projective dimensions

Mohammad Javad Nikmehr, Zahra Poormahmood and Reza Nikandish

Abstract

In this paper, the notions of weak-projective modules and weak-projective dimension over commutative domain R are given. It is shown that over semisimple rings with weak global dimension 1, these modules are equivalent to weak-injective modules. The weak-projective dimension measures how far away a domain is from being a Prüfer domain. Several properties of these modules are also presented.

Key Words: Semi-Dedekind domain; Weak-injective modules; Weak-projective dimension, projective modules; Prüfer domain

1. Introduction

In this note, R will denote a commutative domain with identity and Q ($\neq R$) will denote its field of quotients. The R-module Q/R will be denoted by K. Lee in [5] studied the structure of weak-injective modules. An R-module M is called weak-injective if $\text{Ext}^1_R(N,M) = 0$ for all R-modules N of weak dimension ≤ 1. In section 2, we introduce a class of R-modules under the name of weak-projective R-modules. We show that weak-projective R-modules are identical to projective R-modules if and only if R is semisimple. Recall that R is called Prüfer domain if every finitely generated ideal of R is projective. There are numerous characterizations of Prüfer domains, which can be found in [3]. We show that each weak-projective R-module is FP-projective when R is a Noetherian ring. The domain R is called semi-Dedekind if every h-divisible R-module is pure-injective. For more details of these domains, we refer the reader to [4].

In section 3, we introduce the concept weak-projective dimension $wpd(M)$ of an R-module M and give some results. We show that this dimension has the properties that we expect of a “dimension” when the domain is semi-Dedekind.

Throughout this paper, M is an R-module. The notation $(w.)D(R)$ stands for the (weak) global dimension of R. Also, $pd(M)$ and $id(M)$ denote the projective and injective dimension of M, respectively. The character module $\text{Hom}_Z(M, \mathbb{Q}/\mathbb{Z})$ of an R-module M will be denoted by M^b.

2000 AMS Mathematics Subject Classification: 16E10, 18G20.
2. Weak-projective modules

Recall that an R-module M is called weak-injective if $\text{Ext}^1_R(N,M) = 0$, for all R-modules N of weak dimension ≤ 1.

Definition 2.1 An R-module M is called weak-projective if $\text{Ext}^1_R(M,N) = 0$, for every weak-injective R-module N.

Evidently, direct products and summands of weak-projective R-modules are again weak-projective. All projective R-modules are trivially weak-projective, but the converse is not true. For example, \mathbb{Q}/\mathbb{Z} as a \mathbb{Z}-module is weak-projective, but is not projective. Over a semisimple ring R, weak-projective R-modules are projective.

It is obvious that if R is a semisimple ring with $w.D(R) = 1$, then every R-module M is weak-projective if and only if M is weak-injective. Also, if R is semisimple and M is a weak-projective R-module, then $\text{Ext}^1_R(M,R) = 0$.

A well-known result states that an R-module F is flat if and only if its character module F^b is injective. The following lemma is an analog of this equivalence.

Lemma 2.2 (Lee [5, Lemma 3.1]) An R-module A is torsion-free if and only if A^b is weak-injective.

An R-module M is called FP-injective if $\text{Ext}^1_R(N,M) = 0$ for all finitely presented R-modules N.

Lemma 2.3 (Lee[5, Lemma 3.2]) For a domain R, the following are equivalent:
(a) R is Prüfer;
(b) Every weak-injective R-module is FP-injective;
(c) Every weak-injective R-module is injective.

We may obtain some elementary results on the notion of the weak-projective modules.

Recall that the R-module M is called FP-projective [6] if $\text{Ext}^1_R(M,N) = 0$, for every FP-injective R-module N.

Lemma 2.4 If R is a Noetherian ring and M a weak-projective R-module, then M is FP-projective.

Proof. Let M be a weak-projective R-module. We must prove that $\text{Ext}^1_R(M,N) = 0$, for any FP-injective R-module N. Since R is a Noetherian ring, N is an injective R-module, and therefore N is weak-injective. □

The converse is an easy application of Lemma 2.3.

Lemma 2.5 Let R be a semi-Dedekind domain and M an R-module. Then the following are equivalent:
(a) M is weak-projective;
(b) $\text{Tor}^1_R(M,A) = 0$, for all torsion-free R-modules A;
(c) $\text{pd}(M) \leq 1$.

Proof. (a) \Rightarrow (b) The isomorphism $\text{Ext}^1_R(M,A^b) \cong \text{Hom}_R(\text{Tor}^1_R(M,A), \mathbb{Q}/\mathbb{Z})$, together with Lemma 2.2, proves the result.
(b) ⇒ (a) This follows from [4, Lemma 4.1].
(b) ⇔ (c) See [4, Lemma 4.9].

It is easy to check that the quotient \mathbb{Z}-module $\mathbb{Z}/2\mathbb{Z}$ is weak-projective.

Combining Lemma 2.5, with the simple fact that an R-module D is divisible if and only if D^b is torsion-free gives the next corollary.

Corollary 2.6 Let R be a semi-Dedekind domain and M an R-module. Then M is weak-projective if and only if $\text{Tor}_1^R(M, D^b) = 0$, for all divisible R-modules D.

The following fact can be easily verified, so we omit its proof.

Lemma 2.7 If R is a Prüfer domain, then every R-module is weak-projective.

Lemma 2.8 Let $0 \to A \to B \to C \to 0$ be an exact sequence such that A and C are weak-projective R-modules. Then B is weak-projective.

Proof. Let N be a weak-injective R-module. From the induced exact sequence

$$
\text{Ext}^1_R(C, N) \to \text{Ext}^1_R(B, N) \to \text{Ext}^1_R(A, N),
$$

we have $\text{Ext}^1_R(B, N) = 0$, since $\text{Ext}^1_R(C, N) = \text{Ext}^1_R(A, N) = 0$. □

Corollary 2.9 If every submodule and quotient of an R-module M is weak-projective, then M is weak-projective.

From the previous corollary we have the following example.

Example 2.10 The \mathbb{Z}-module \mathbb{Q} is weak-projective.

Recall that R is called a Matlis domain if the projective dimension of Q (or, equivalently, K) is 1. The R-module C is called Matlis cotorsion if $\text{Ext}^1_R(Q, C) = 0$, and M is called strongly flat if $\text{Ext}^1_R(M, C) = 0$ for every Matlis cotorsion R-module C.

The next result gives a relationship between weak-projective R-modules and strongly flat R-modules.

Lemma 2.11 If R is a Matlis domain and M a strongly flat R-module, then M is weak-projective.

Proof. If M is a strongly flat R-module, then $\text{Ext}^1_R(M, N) = 0$, for all Matlis cotorsion R-modules N. It is easy to see that if R is a Matlis domain, then every weak-injective R-module is Matlis cotorsion. □

Lemma 2.12 Let R be a semi-Dedekind domain. If M is a projective R-module and N a weak-projective R-module, then $M \otimes_R N$ is weak-projective.

Proof. The isomorphism $\text{Tor}_n^R(M \otimes N, A) \cong M \otimes \text{Tor}_n^R(N, A)$, together with Lemma 2.5, proves the result. □
The converse is true when R is a local semi-Dedekind domain.

In what follows, $\sigma_M : M \to E(M)$ denotes the injective envelope of an R-module M. Recall that an injective envelope $\sigma_M : M \to E(M)$ has the unique mapping property (see [1]) if for any homomorphism $f : M \to N$ with N injective, there exists a unique homomorphism $g : E(M) \to N$ such that $g\sigma_M = f$.

Corollary 2.13 The following statements are equivalent:

(a) R is a Prüfer domain;
(b) Every R-module is weak-projective;
(c) $\text{Ext}_R^1(M, N) = 0$, for all weak-injective R-modules N;
(d) Every weak-injective R-module has an injective envelope with the unique mapping property.

Proof. It is enough to show that (d) \Rightarrow (a).

(d) \Rightarrow (a) Let M be any weak-injective R-module. We have the following exact commutative diagram:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & M & \overset{\sigma_M}{\longrightarrow} & E(M) & \overset{\gamma}{\longrightarrow} & L & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & E(L) & \cong & E(L) & \cong & E(L) & & \\
\end{array}
\]

Note that $\sigma_L \gamma \sigma_M = 0 = 0 \sigma_M$, so $\sigma_L \gamma = 0$ by (d). Therefore $L = \text{im}(\gamma) \subseteq \ker(\sigma_L) = 0$, and hence M is injective. Thus (a) follows. \qed

We end this section with the following characterizations of weak-projective R-modules.

Let ℓ be a class of R-modules and M an R-module. A homomorphism $\phi \in \text{Hom}_R(N, M)$ with $N \in \ell$ is called an ℓ-precover of M if the induced map

\[\text{Hom}_R(1_{N'}, \phi) : \text{Hom}_R(N', N) \to \text{Hom}_R(N', M)\]

is surjective for all $N' \in \ell$. An ℓ-precover $\phi \in \text{Hom}_R(N, M)$ is called an ℓ-cover if each $\gamma \in \text{Hom}_R(N, N)$ satisfying $\phi = \phi \gamma$ is an automorphism of N. The class ℓ is called a precover(cover) class if every R-module has an ℓ-precover(ℓ-cover).

The ℓ-preenvelope, ℓ-envelope, preenvelope and envelope classes are defined dually (see [9]). In particular, if ℓ is the class of weak-injective R-modules, an ℓ-envelope is called a weak-injective envelope.

Proposition 2.14 If M is an R-module, then the following are equivalent:

(a) M is weak-projective;
(b) M is projective with respect to every exact sequence $0 \to A \to B \to C \to 0$, where A is weak-injective;
(c) For every exact sequence $0 \to K \to F \to M \to 0$, where F is weak-injective, $K \to F$ is a weak-injective preenvelope of K;
(d) M is cokernel of a weak-injective preenvelope $K \to F$ with F projective.

630
Proof. (a) ⇒ (b) Let $0 \to A \to B \to C \to 0$ be an exact sequence, where A is weak-injective. Then $\text{Ext}_R^1(M, A) = 0$ by (a). Thus $\text{Hom}_R(M, B) \to \text{Hom}_R(M, C) \to 0$ is exact, and (b) holds.

(b) ⇒ (a) For every weak-injective R-module N, there is a short exact sequence $0 \to N \to E \to L \to 0$ with E injective, which induces an exact sequence $\text{Hom}_R(M, E) \to \text{Hom}_R(M, L) \to \text{Ext}_R^1(M, N) \to 0$. Since $\text{Hom}_R(M, E) \to \text{Hom}_R(M, L) \to 0$ is exact by (b), we have $\text{Ext}_R^1(M, N) = 0$, and (a) follows.

(a) ⇒ (c) is easy to verify.

(c) ⇒ (d) Let $0 \to K \to P \to M \to 0$ be an exact sequence with P projective. Note that P is weak-injective by hypothesis, thus $K \to P$ is a weak-injective preenvelope.

(d) ⇒ (a) By (d), there is an exact sequence $0 \to K \to P \to M \to 0$, where $K \to P$ is a weak-injective preenvelope with P projective. It gives rise to the exactness of $\text{Hom}_R(P, N) \to \text{Hom}_R(K, N) \to \text{Ext}_R^1(K, N) \to 0$, for each weak-injective R-module N. Note that $\text{Hom}_R(P, N) \to \text{Hom}_R(K, N) \to 0$ is exact by (d). Hence $\text{Ext}_R^1(M, N) = 0$, as desired. \hfill \Box

3. The weak-projective dimension over semi-Dedekind domains

We begin this section with the definition of weak-injective dimension.

Definition 3.1 (a) For any R-module M, let weak-injective dimension $\text{wid}(M)$ of M, denote the smallest integer $n \geq 0$ such that $\text{Ext}_R^{n+1}(N, M) = 0$ for every R-module N of weak dimension ≤ 1. (If no such n exists, set $\text{wid}(M) = \infty$).

(b) $\text{wid}(R) = \text{sup}\{\text{wid}(M) : M \text{ is an } R\text{-module}\}$.

Lemma 3.2 Let R be a semi-Dedekind domain. For an R-module M, the following statements are equivalent:

(a) $\text{wid}(M) \leq n$;

(b) $\text{Ext}_R^{n+1}(N, M) = 0$ for all R-modules N of weak dimension ≤ 1;

(c) If the sequence $0 \to M \to E_0 \to E_1 \to \cdots \to E_n \to 0$ is exact with $E_0, E_1, \cdots, E_{n-1}$ weak-injective, then also E_n is weak-injective.

Proof. (a) ⇒ (b) Use induction on n. Clear if $\text{wid}(M) = n$. If $\text{wid}(M) \leq n - 1$ resolve N by $0 \to K \to P \to N \to 0$ with K and P flat. K have weak dimension ≤ 1 by $[4$, Corollary 4.4$]$, and $\text{Ext}_R^{n+1}(N, M) \cong \text{Ext}_R^n(K, M) = 0$ by induction hypothesis.

(b) ⇔ (c) follows from the isomorphism $\text{Ext}_R^{n+1}(N, M) \cong \text{Ext}_R^1(N, E_n)$.

(b) ⇒ (a) are trivial. \hfill \Box

Definition 3.3 For an R-module M, let $\text{wpd}(M)$ denotes the smallest integer $n \geq 0$ such that $\text{Ext}_R^{n+1}(M, N) = 0$ for every weak-injective R-module N and call $\text{wpd}(M)$ the weak-projective dimension of M. If no such n exists, set $\text{wpd}(M) = \infty$.

631
Put \(\text{rwpD}(R) = \sup\{ \text{wpd}(M) : M \text{ is a right } R\text{-module} \} \) and call \(\text{rwpD}(R) \) the right weak-projective dimension of \(R \). Similarly, we have \(\text{lwpD}(R) \) (we drop the unneeded letters \(r \) and \(l \), because \(R \) is commutative).

\(M \) is called weak-projective if \(\text{wpd}(M) = 0 \), i.e., \(\text{Ext}^1_R(M, N) = 0 \) for every weak-injective \(R\)-module \(N \).

\textbf{Remark 3.4} For every ring \(R \) and every \(R\)-module \(M \), the inequalities \(\text{wpD}(R) \leq D(R) \) and \(\text{wpd}(M) \leq \text{pd}(M) \) are valid. It is easy to see that \(\text{wpd}(M) = \text{pd}(M) \) for any \(R\)-module \(M \) if and only if every weak-projective \(R\)-module is projective.

\textbf{Proposition 3.5} Let \(R \) be a semi-Dedekind domain. For any \(R\)-module \(M \) and an integer \(n \geq 0 \), the following are equivalent:

(a) \(\text{wpd}(M) \leq n \);
(b) \(\text{Ext}^{n+1}_R(M, N) = 0 \) for any weak-injective \(R\)-module \(N \);
(c) \(\text{Ext}^{n+j}_R(M, N) = 0 \) for any weak-injective \(R\)-module \(N \) and \(j \geq 1 \);
(d) There exists an exact sequence \(0 \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0 \), where each \(P_i \) is weak-projective.

\textbf{Proof.} (c) \(\Rightarrow \) (a) is obvious.

(b) \(\Rightarrow \) (c) For any weak-injective \(R\)-module \(N \), there is a short exact sequence \(0 \to N \to E \to L \to 0 \), where \(E \) is injective. Then the sequence \(\text{Ext}^{n+1}_R(M, L) \to \text{Ext}^{n+2}_R(M, N) \to \text{Ext}^{n+2}_R(M, E) = 0 \) is exact. Note that \(L \) is weak-injective by Lemma 3.2, so \(\text{Ext}^{n+1}_R(M, L) = 0 \) by (b). Hence \(\text{Ext}^{n+2}_R(M, N) = 0 \), and (c) follows by induction.

The proof of (a) \(\Rightarrow \) (b) is similar to that of (b) \(\Rightarrow \) (c).

(a) \(\Leftrightarrow \) (d) is straightforward. \(\square \)

\textbf{Proposition 3.6} For an \(R\)-module \(M \), the following are equivalent:

(a) \(\text{wpD}(R) = 0 \);
(b) \(\text{Tor}^1_R(M, A) = 0 \), for all torsion-free \(R\)-modules \(A \);
(c) \(M \) has weak dimension \(\leq 1 \);
(d) \(R \) is Prüfer;
(e) Every \(R\)-module is weak-projective.

\textbf{Proof.} (a) \(\Rightarrow \) (b) The isomorphism \(\text{Ext}^1_R(M, A^b) \cong \text{Hom}_R(\text{Tor}^1_R(M, A), Q/Z) \), together with Lemma 2.2, proves the result.

(b) \(\Rightarrow \) (c) see [5, Corollary 2.4].

(c) \(\Rightarrow \) (d) is trivial.

(d) \(\Rightarrow \) (e) see Lemma 2.7.

(e) \(\Rightarrow \) (a) is trivial. \(\square \)

632
Remark 3.7 (a) By Proposition 3.6, $wpD(R)$ measures how far away a domain R is from being a Prüfer domain.

(b) It is well known that R is semihereditary domain if and only if R is Prüfer domain.

The proof of the next proposition is standard homological algebra.

Proposition 3.8 Let R be a semi-Dedekind domain, $0 \to A \to B \to C \to 0$ an exact sequence of R-modules. If two of $wpD(A)$, $wpD(B)$, and $wpD(C)$ are finite, so is the third. Moreover,

(a) $wpD(B) \leq \max\{wpD(A), wpD(C)\}$.

(b) $wpD(A) \leq \max\{wpD(B), wpD(C) - 1\}$.

(c) $wpD(C) \leq \max\{wpD(B), wpD(A) + 1\}$.

Corollary 3.9 Let R be a semi-Dedekind domain.

(a) If $0 \to A \to B \to C \to 0$ is an exact sequence of R-modules, where $0 < wpD(A) < \infty$ and B is weak-projective, then $wpD(C) = wpD(A) + 1$.

(b) $wpD(R) = n$ if and only if $\text{sup}\{wpD(I): I \text{ is any ideal of } R\} = n - 1$ for any integer $n \geq 2$.

Proof. (a) is true by Proposition 3.8.

(b) For an ideal of R, consider the exact sequence $0 \to I \to R \to R/I \to 0$. Then (b) follows from (a).

Theorem 3.10 Let R be a semi-Dedekind domain. Then the following values are identical:

(a) $wpD(R)$;

(b) $\text{sup}\{wpD(M): M \text{ is a cyclic } R\text{-module}\}$;

(c) $\text{sup}\{wpD(M): M \text{ is any } R\text{-module}\}$;

(d) $\text{sup}\{id(F): F \text{ is a weak-injective } R\text{-module}\}$.

Proof. (b) \leq (a) \leq (c) are obvious.

(c) \leq (d) We may assume $\text{sup}\{id(F): F \text{ is a weak-injective } R\text{-module}\} = m < \infty$. Let M be any R-module and N any weak-injective R-module. Since $id(N) \leq m$, it follows that $Ext_R^{m+1}(M, N) = 0$. Hence $wpD(M) \leq m$.

(d) \leq (b) We may assume $\text{sup}\{wpD(M): M \text{ is a cyclic } R\text{-module}\} = n < \infty$. Let N be a weak-injective R-module and I any ideal, then $wpD(R/I) \leq n$. By Proposition 3.5, $Ext_R^{n+1}(R/I, N) = 0$, and so $id(N) \leq n$.

Proposition 3.11 Let R be a semi-Dedekind domain. Then the following are equivalent:

(a) $wpD(R) \leq 1$;

(b) Every submodule of a (weak-)projective R-module is weak-projective;

(c) Every ideal of R is weak-projective.

Proof. (a) \Rightarrow (b) Let N be a submodule of a weak-projective R-module M. Then, for any weak-injective R-module L, we get an exact sequence

$$0 = Ext_R^1(M, L) \to Ext_R^1(N, L) \to Ext_R^2(M/N, L).$$
Note that the last term is zero by (a), hence $\text{Ext}_1^R(N, L) = 0$, and (b) follows.

(b) \Rightarrow (c) is trivial.

(c) \Rightarrow (a) Let I be an ideal of R. The exact sequence $0 \to I \to R \to R/I \to 0$ implies $\text{wpd}(R/I) \leq 1$ by Proposition 3.5. So (a) follows from Theorem 3.10 (b).

It is well known that if M is finitely generated projective R-module, then $\text{Hom}_R(M, R)$ is finitely generated projective R-module. Here we have the following corollary.

Corollary 3.12 If R is a semi-Dedekind domain with $\text{wpD}(R) \leq 1$, then the dual module $\text{Hom}_R(M, R)$ of any finitely generated R-module M is weak-projective.

In addition, if $w.D(R) = 1$, then the following are equivalent:

(a) Every torsion-free R-module is weak-projective;

(b) M^b is weak-projective for every injective R-module M;

(c) N^{bb} is weak-projective for every torsion-free R-module N.

Proof. Let M be a finitely generated R-module. Then there exists an exact sequence $P \to M \to 0$ with P finitely generated projective. So we have an R-module exact sequence $0 \to \text{Hom}_R(M, R) \to \text{Hom}_R(P, R)$.

Also, if $w.D(R) = 1$, then (a) \Rightarrow (b) \Rightarrow (c) are clear.

(c) \Rightarrow (a) Let N be any torsion-free R-module. There exists an exact sequence $0 \to N \to N^{bb}$. Since $\text{wpD}(R) \leq 1$ and N^{bb} is weak-projective by (c), we have that N is weak-projective by Proposition 3.11.

A ring R is called semi-Artinian if every nonzero cyclic R-module has a nonzero socle. The following proposition shows that we may compute the weak-projective dimension of semi-Artinian ring using just the weak-projective dimension of simple modules.

Proposition 3.13 If R is a semi-Artinian semi-Dedekind domain, then $\text{wpD}(R) = \sup \{ \text{wpd}(M) : M$ is a simple R-module $\}$.

Proof. It suffices to show that $\text{wpD}(R) \leq \sup \{ \text{wpd}(M) : M$ is a simple R-module $\}$. We may assume that $\sup \{ \text{wpd}(M) : M$ is a simple R-module $\} = n < \infty$. Let N be a weak-injective R-module and I a maximal ideal of R. Consider the injective resolution of N

$$0 \to N \to E^0 \to E^1 \to E^2 \to \cdots \to E^{n-1} \to E^n \to \cdots.$$

Write $L = \text{coker}(E^{n-2} \to E^{n-1})$. Then $\text{Ext}_R^1(R/I, L) = \text{Ext}_R^{n+1}(R/I, N) = 0$ by Proposition 3.5. Therefore L is injective by [8, Lemma 4], since R is semi-Artinian. So $\text{id}(N) \leq n$, and hence $\text{wpD}(R) \leq n$ by Theorem 3.10.

Proposition 3.14 Let R be a semi-Dedekind domain. Then $\sup \{ \text{pd}(M) : M$ is a weak-projective R-module $\} \leq \text{wiD}(R)$.
Proof. Let M be a weak-projective R-module. It is enough to show that $\text{pd}(M) \leq \text{wiD}(R)$. We may assume that $\text{wiD}(R) = n < \infty$. M admits a projective resolution

$$\cdots \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0.$$

Let N be any R-module. We have $\text{wid}(N) \leq n$, thus by Lemma 3.2, there is an exact sequence

$$0 \to N \to E^0 \to E^1 \to \cdots \to E^{n-1} \to E^n \to 0,$$

where E^0, E^1, \ldots, E^n are weak-injective. Therefore we form a double complex

$$0 \to 0 \to 0 \to \cdots \to 0 \to \cdots \to 0 \to 0 \to 0.$$

Note that all rows are exact except for the bottom row, since M is weak-projective and all E^i are weak-injective; also note that all columns are exact except for the left column since all P_i are projective.

Using a spectral sequence argument, we know that the two complexes

$$0 \to \text{Hom}_R(M, E^n) \to \text{Hom}_R(P_0, E^n) \to \cdots \to \text{Hom}_R(P_n, E^n) \to \cdots$$

and

$$0 \to \text{Hom}_R(M, E^0) \to \text{Hom}_R(P_0, E^0) \to \cdots \to \text{Hom}_R(P_n, E^0) \to \cdots$$

have isomorphic homology groups. Thus $\text{Ext}^{n+j}_R(M, N) = 0$ for all $j \geq 1$. Hence $\text{pd}(M) \leq n$.

It is known that $D(R) = \text{sup}\{\text{pd}(M)\}$ if R is a Prüfer domain, and it is easy to see that $D(R) = \text{wpD}(R)$ if R is a semisimple ring. In general, we have

Proposition 3.15 Let R be a semi-Dedekind domain and M be an R-module. Then $D(R) \leq \text{sup}\{\text{pd}(M)\}$ if M is a weak-projective R-module.

Proof. We may assume without loss of generality that $\text{wpD}(R)$ is finite. Let $\text{wpD}(R) = m < \infty$ and $\text{Sup}\{\text{pd}(M)\}$ if M is a weak-projective R-module} = n < \infty$. If M is an R-module, then $\text{wpD}(M) \leq m$ by Theorem 3.10. So M admits a weak-projective resolution

$$0 \to P_m \to P_{m-1} \to \cdots \to P_1 \to P_0 \to M \to 0,$$

635
where each P_i is weak-projective, $i = 0, 1, 2, \cdots, m$. Let $K_i = \text{Ker}(P_i \rightarrow P_{i-1})$, $i = 0, 1, 2, \cdots, m - 1$, $P_{-1} = M$, $K_{m-1} = P_m$. Then we have the following short exact sequence
\[
0 \rightarrow P_m \rightarrow P_{m-1} \rightarrow K_{m-2} \rightarrow 0,
\]
\[
0 \rightarrow K_{m-2} \rightarrow P_{m-2} \rightarrow K_{m-3} \rightarrow 0,
\]
\[
\vdots
\]
\[
0 \rightarrow K_0 \rightarrow P_0 \rightarrow M \rightarrow 0.
\]
It follows that $\text{pd}(K_{m-2}) \leq 1 + n$, $\text{pd}(K_{m-3}) \leq 2 + n, \cdots$, $\text{pd}(M) \leq m + n$, and hence $D(R) \leq m + n$. This completes the proof.

\section*{Acknowledgement}

The authors express their thank to the referee for his careful reading, and for helpful suggestions.

\section*{References}

Mohammad Javad NIKMEHR
Zahra POORMAHMOOD and Reza NIKANDISH
Department of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran-IRAN
e-mail: nikmehr@kntu.ac.ir, e-mail: poormahmood@sina.kntu.ac.ir e-mail: r nikandish@sina.kntu.ac.ir

Received: 27.05.2008