Top generalized local cohomology modules

Amir Mafi

Abstract

Let \((R, \mathfrak{m})\) be a commutative Noetherian local ring and \(M, N\) two non-zero finitely generated \(R\)-modules with \(\text{pd}(M) = n < \infty\) and \(\dim(N) = d\). In this paper, we show that if the top generalized local cohomology module \(H^{n+d}_\mathfrak{m}(M, N) \neq 0\), then the following statements are equivalent:

(i) \(\text{Ann}(0 : H^{d}_\mathfrak{m}(N)) = \mathfrak{p}\) for all \(\mathfrak{p} \in \text{Var}(\text{Ann}(H^{d}_\mathfrak{m}(N)))\);

(ii) \(\text{Ann}(0 : H^{n+d}_\mathfrak{m}(M, N)) = \mathfrak{p}\) for all \(\mathfrak{p} \in \text{Var}(\text{Ann}(H^{n+d}_\mathfrak{m}(M, N)))\).

Key Words: Artinian module, Generalized local cohomology.

1. Introduction

Throughout this paper, we assume that \((R, \mathfrak{m})\) is a commutative Noetherian local ring and \(M, N\) two non-zero finitely generated \(R\)-modules with \(\text{pd}(M) = n < \infty\) and \(\dim(N) = d\). For each \(i \geq 0\), the generalized local cohomology module \(H^i_\mathfrak{m}(M, N) = \lim_{\longrightarrow} \text{Ext}^i_R(M/\mathfrak{m}^n M, N)\), was introduced by Herzog [8] and studied further by Suzuki [16]. With \(M = R\), one clearly obtains the ordinary local cohomology module which was introduced by Grothendieck; see for example [4]. There are several well-known properties concerning the generalized local cohomology modules. It is well known that \(H^{n+d}_\mathfrak{m}(M, N)\) is Artinian and \(H^i_\mathfrak{m}(M, N) = 0\) for all \(i > n + d\); see for example [12] and [14].

An elementary property of finitely generated modules is that \(\text{Ann}(N/\mathfrak{p}N) = \mathfrak{p}\) for all \(\mathfrak{p} \in \text{Var}(\text{Ann}(N))\). For any Artinian \(R\)-module \(A\), the dual property is as follows:

\(\text{Ann}(0 : A/\mathfrak{p}) = \mathfrak{p}\) for all \(\mathfrak{p} \in \text{Var}(\text{Ann}(A))\).

If \(R\) is complete with respect to \(\mathfrak{m}\)-adic topology, it follows by Matlis duality that the property (*) is satisfied for all Artinian \(R\)-modules. However, there are Artinian modules which do not satisfy this property. For example, let \(R\) be the Noetherian local domain of dimension 2 constructed by Ferrand and Raynaud [7].
such that its \mathfrak{m}-adic completion \hat{R} has an associated prime \hat{q} of dimension 1. Then the Artinian R-module $A = H^1_{\mathfrak{m}}(R)$ does not satisfy the property (*); cf. Cuong and Nhan [6]. However, it seems to us that the property (*) is an important property of Artinian modules. For example, the property (*) is closely related to some questions on dimension for Artinian modules. In [6], it shown that $\text{N-dim}(A) = \dim(R/\text{Ann}(A))$ provided A satisfies the property (*), where $\text{N-dim}(A)$ is the Noetherian dimension of A defined by Roberts [15] (see also [9]). Note that this equality does not hold in general. Concretely, with the Artinian A satisfies the property (*). Notice that the property (*) has been studied by many authors (see, for example, [5, 2, 3]).

The purpose of this paper is to prove the following theorem.

Theorem 1.1 Let the generalized local cohomology module $H^{n+d}_{\mathfrak{m}}(M, N) \neq 0$. Then the following statements are equivalent:

1. $\text{Ann}(0 : H^d_{\mathfrak{m}}(N)) = \mathfrak{p}$ for all $\mathfrak{p} \in \text{Var}(\text{Ann}(H^d_{\mathfrak{m}}(N)))$;
2. $\text{Ann}(0 : H^{n+d}_{\mathfrak{m}}(M, N)) = \mathfrak{p}$ for all $\mathfrak{p} \in \text{Var}(\text{Ann}(H^{n+d}_{\mathfrak{m}}(M, N)))$.

2. The results

Following Macdonald [10], every Artinian module A has a minimal secondary representation $A = A_1 + \ldots + A_n$, where A_i is \mathfrak{p}_i-secondary. The set $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ is independent of the choice of the minimal secondary representation of A. This set is called the set of *attached prime ideals* of A, and denoted by $\text{Att}(A)$. The *cohomological dimension* of M and N with respect to \mathfrak{m} is defined as

$$\text{cd}(\mathfrak{m}, M, N) = \sup\{i : H^i_{\mathfrak{m}}(M, N) \neq 0\}.$$

The following theorem extends [11, Theorem 2.2].

Theorem 2.1 Let the generalized local cohomology module $H^{n+d}_{\mathfrak{m}}(M, N) \neq 0$. Then $\text{Att}(H^{n+d}_{\mathfrak{m}}(M, N)) = \{\mathfrak{p} \in \text{Ass}(N) : \dim R/\mathfrak{p} = d\}$. In particular, $\text{Att}(H^{n+d}_{\mathfrak{m}}(M, N)) = \text{Att}(H^d_{\mathfrak{m}}(N))$.

Proof. We use induction on d. If $d = 0$, the module N has finite length and so is annihilated by some power of \mathfrak{m}. Hence, by [13, Lemma 3.2], $H^n_{\mathfrak{m}}(M, N) \cong \text{Ext}^n_R(M, N)$ and so $$\text{Att}(H^n_{\mathfrak{m}}(M, N)) = \{\mathfrak{m}\} = \text{Ass}(N) = \{\mathfrak{p} \in \text{Ass}(N) : \dim R/\mathfrak{p} = 0\}.$$ The result has been proved in this case. Suppose, inductively, that $d \geq 1$ and that the result has been proved for non-zero, finitely generated R-modules of dimension $d-1$. Let L be a largest submodule of N with $\dim(L) < d$. (Note that, for two submodules N_1 and N_2 of N, and for any positive integer t, if $\dim(N_1) \leq t$ and $\dim(N_2) \leq t$, then $\dim(N_1 + N_2) \leq t$ and so L is well defined.) Thus by the exact sequence $0 \rightarrow L \rightarrow N \rightarrow N/L \rightarrow 0$ we have $\dim(N) = \dim(N/L)$. It is easy to prove that N/L has no non-zero submodule K with $\dim(K) < d$ and so $\text{Ass}(N/L) \subseteq \{\mathfrak{p} \in \text{Supp}(N/L) : \dim R/\mathfrak{p} = d\}$. In addition, $\text{min}(\text{Supp}(N/L)) \subseteq \text{Ass}(N/L)$ and $\text{min}(\text{Supp}(N)) \subseteq \text{Ass}(N)$. Therefore $\text{Ass}(N/L) = \{\mathfrak{p} \in \text{Supp}(N/L) : \dim R/\mathfrak{p} = d\} \subseteq \{\mathfrak{p} \in \text{Ass}(N) : \dim R/\mathfrak{p} = d\}$.
dim \(R/p = d\). If \(p \in \text{Ass}(N)\) and \(\dim R/p = d\), then \(p \notin \text{Supp}(L)\), otherwise \(\dim R/p \leq \dim L < d\). Thus \(p \in \text{Supp}(N/L)\) and so \(\{p \in \text{Supp}(N/L) : \dim R/p = d\} = \{p \in \text{Ass}(N) : \dim R/p = d\}\). From the exact sequence

\[
H^{n+d}_m(M, L) \longrightarrow H^{n+d}_m(M, N) \longrightarrow H^{n+d}_m(M, N/L) \longrightarrow H^{n+d+1}_m(M, L),
\]
we have \(H^{n+d}_m(M, N) \cong H^{n+d}_m(M, N/L)\). Hence by this assumption our aim is to show that \(\text{Att}(H^{n+d}_m(M, N)) = \text{Ass}(N)\). Since \(d \geq 1\), from the exact sequence

\[
0 \longrightarrow \Gamma_m(N) \longrightarrow N \longrightarrow N/\Gamma_m(N) \longrightarrow 0,
\]
and [13, Lemma 3.2], we get that \(H^{n+d}_m(M, N) \cong H^{n+d}_m(M, N/\Gamma_m(N))\). Therefore we can assume that \(N\) is \(m\)-torsion free, and so \(\text{depth}(N) \geq 1\) by [4, Lemma 2.1.1]. Thus, for each \(x \in m\) which is a non-zero divisor on \(N\), we have \(\text{cd}(m, M, N/xN) \leq n + d - 1\), so that \(H^{n+d}_m(M, N/xN) = 0\), and the exact sequence

\[
0 \longrightarrow N \xrightarrow{x} N \longrightarrow N/xN \longrightarrow 0
\]
yields that \(H^{n+d}_m(M, N) = xH^{n+d}_m(M, N)\). It therefore follows form [4, Proposition 7.2.11] that \(\bigcup_{q \in \text{Att}(H^{n+d}_m(M, N))} q \subseteq \bigcup_{p \in \text{Ass}(N)} p\). Let \(q \in \text{Att}(H^{n+d}_m(M, N))\); it follows the above inclusion relation that \(q \subseteq p\) for some \(p \in \text{Ass}(N)\). Since \(H^{n+d}_m(-, -)\) is an \(R\)-linear functor, it follows that \(\text{Ann}(N) \subseteq \text{Ann}(H^{n+d}_m(M, N)) \subseteq q \subseteq p\). As \(d = \dim R/\text{Ann}(N) = \dim R/p\), it follows that \(q = p\). Therefore \(\text{Att}(H^{n+d}_m(M, N)) \subseteq \text{Ass}(N)\).

To establish the reverse inclusion, let \(p \in \text{Ass}(N)\), so that \(\text{cd}(m, M, R/p) = n + d\). By the theory of primary decomposition, there exists a \(p\)-primary submodule \(T\) of \(N\); thus \(N/T\) is a non-zero finitely generated \(R\)-module with \(\text{Ass}(N/T) = \{p\}\). By [1, Theorem B], we get that \(n + d = \text{cd}(m, M, R/p) \leq \text{cd}(m, M, N/T) \leq \text{cd}(m, M, N) = n + d\) and so \(H^{n+d}_m(M, N/T) \neq 0\). Therefore \(\emptyset \notin \text{Att}(H^{n+d}_m(M, N/T)) \subseteq \text{Ass}(N/T) = \{p\}\) and hence \(\text{Att}(H^{n+d}_m(M, N/T)) = \{p\}\). The exact sequence

\[
0 \longrightarrow T \longrightarrow N \longrightarrow N/T \longrightarrow 0
\]
induces an epimorphism \(H^{n+d}_m(M, N) \longrightarrow H^{n+d}_m(M, N/T) \longrightarrow 0\). Hence \(\{p\} \subseteq \text{Att}(H^{n+d}_m(M, N))\) and so \(\text{Ass}(N) \subseteq \text{Att}(H^{n+d}_m(M, N))\). This complete the proof that \(\text{Att}(H^{n+d}_m(M, N)) = \text{Ass}(N)\).

The following consequence immediately follows by Theorem 2.1 and [4, Proposition 7.2.11].

Corollary 2.2 Let the situations be as in Theorem 2.1. Then

\[
\text{Var}(\text{Ann}(H^d_m(N))) = \text{Var}(\text{Ann}(H^{n+d}_m(M, N))).
\]

Following [5], let \(U_N(0)\) be the largest submodule of \(N\) of dimension less than \(d\). Note that if \(0 = \bigcap_{p \in \text{Ass}(N)} N(p)\) is a reduced primary decomposition of the zero submodule of \(N\), then \(U_N(0) = \bigcap_{\dim R/p = d} N(p)\). Therefore we have \(\text{Ass} N/U_N(0) = \{p \in \text{Ass}(N) : \dim R/p = d\}\). Hence \(\text{Supp} N/U_N(0) = \bigcup_{p \in \text{Ass}(N), \dim R/p = d} \text{Var}(p)\). The set \(\text{Supp} N/U_N(0)\) is called the unmixed support of \(N\) and denoted by \(U\text{Supp}(N)\).

Corollary 2.3 Let the situations be as in Theorem 2.1. Then

\[
U\text{Supp}(N) = \text{Var}(\text{Ann}(H^{n+d}_m(M, N))).
\]
Proof. By [10] the set of all minimal prime ideals containing $\text{Ann}(H_{m}^{n+d}(M,N))$ and the set of all minimal elements of $\text{Att}(H_{m}^{n+d}(M,N))$ are the same. Therefore $\text{Var}(\text{Ann}(H_{m}^{n+d}(M,N))) = \bigcup_{p \in \text{Ass}(N), \dim R/p = d} \text{Var}(p) = \text{Usupp}(N)$. □

\textbf{Theorem 2.4} Let the situations be as in Theorem 2.1. Then the following statements are equivalent:

(i) $\text{Usupp}(N)$ is catenary;

(ii) $H_{m}^{d}(N)$ satisfies the property (\ast);

(iii) $H_{m}^{n+d}(M,N)$ satisfies the property (\ast).

Proof. By Corollaries 2.2, 2.3, we have $\text{Var}(\text{Ann}(H_{m}^{d}(N))) = \text{Var}(\text{Ann}(H_{m}^{n+d}(M,N))) = \text{Usupp}(N)$ and $\text{Var}(\text{Ann}_{R}(H_{m}^{d}(N))) = \text{Var}(\text{Ann}_{R}(H_{m}^{n+d}(M,N))) = \text{Usupp}_{R}(\hat{N})$. Hence the equivalence follows by [5, Proposition 2.2 and Theorem 3.4]. □

Acknowledgement

The author is extremely grateful to the referee for useful suggestions and comments which helped improve the presentation of the paper.

References

Amir MAFI
School of Mathematics, Institute for Research in Fundamental Science (IPM),
P. O. Box 19395-5746, Tehran-IRAN
e-mail: a.mafi@ipm.ir
Received: 05.02.2010