On ϕ-Recurrent Kenmotsu Manifolds

Uday Chand De, Ahmet Yıldız, A. Funda Yalnız

Abstract

The object of this paper is to study ϕ-recurrent Kenmotsu manifolds. Also three-dimensional locally ϕ-recurrent Kenmotsu manifolds have been considered. Among others it is proved that a locally ϕ-recurrent Kenmotsu spacetime is the Robertson-Walker spacetime. Finally we give a concrete example of a three-dimensional Kenmotsu manifold.

Key Words: Kenmotsu manifolds, ϕ-recurrent Kenmotsu manifolds, locally ϕ-recurrent Kenmotsu manifolds.

1. Introduction

The notion of local symmetry of a Riemannian manifold has been weakened by many authors in several ways to a different extent. As a weaker version of local symmetry, T. Takahashi [16] introduced the notion of locally ϕ-symmetry on a Sasakian manifold. Generalizing the notion of ϕ-symmetry, one of the authors, De, [7] introduced the notion of ϕ-recurrent Sasakian manifold. In the context of contact geometry the notion of ϕ-symmetry is introduced and studied by Boeckx, Bueken and Vanhecke [3] with several examples.

On the other hand Kenmotsu [11] defined a type of contact metric manifold which is nowadays called Kenmotsu manifold. It may be mentioned that a Kenmotsu manifold is not a Sasakian manifold. Also, a Kenmotsu manifold is not compact because of $\text{div}\xi = 2n$. In [11], Kenmotsu showed that locally a Kenmotsu manifold is a warped product $I \times f N$ of an interval I and a Kahler manifold N with warping function $f(t) = se^t$, where s is a nonzero constant.

The present paper is organized as follows: Section 2 is devoted to preliminaries. In section 3, we prove that a ϕ-recurrent Kenmotsu manifold is an Einstein manifold and a locally ϕ-recurrent Kenmotsu manifold is locally a hyperbolic space. In the next section, it is proved that a three-dimensional locally ϕ-recurrent Kenmotsu manifold is a manifold of constant curvature. In section 5, we prove that a locally ϕ-recurrent Kenmotsu spacetime is the Robertson-Walker spacetime. In the last section, we construct an example of a three-dimensional Kenmotsu manifold.

1991 AMS Mathematics Subject Classification: 53C15, 53C40
2. Preliminaries

Let $M^{2n+1}(\phi, \xi, \eta, g)$ be an almost contact Riemannian manifold, where ϕ is a $(1, 1)$ tensor field, ξ is the structure vector field, η is a 1-form and g is the Riemannian metric. It is well known that (ϕ, ξ, η, g) satisfy

$$\phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1,$$

(2.1)

$$\phi^2 X = -X + \eta(X) \xi,$$

(2.2)

$$g(X, \xi) = \eta(X),$$

(2.3)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

(2.4)

for any vector fields X and Y on M [1], [2].

If, moreover,

$$(\nabla X \phi) Y = -\eta(Y) \phi X - g(X, \phi Y) \xi, \quad X, Y \in \chi(M),$$

(2.5)

$$\nabla X \xi = X - \eta(X) \xi,$$

(2.6)

where ∇ denotes the Riemannian connection of g, then (M, ϕ, ξ, η, g) is called an almost Kenmotsu manifold [11].

Kenmotsu manifolds have been studied by many authors such as Binh, Tamassy, De and Tarafdar [4], Pitis [15], De and Pathak [5], Jun, De and Pathak [10], Ozgür [13], Ozgür and De [14], Dileo and Pastore [8] and many others.

In a Kenmotsu manifold the following relations hold: [11] .

$$(\nabla_X \eta)(Y) = g(X, Y) - \eta(X)\eta(Y),$$

(2.7)

$$\eta(R(X, Y) Z) = g(X, Z)\eta(Y) - g(Y, Z)\eta(X),$$

(2.8)

$$R(X, Y) \xi = \eta(X) Y - \eta(Y) X,$$

(2.9)

$$R(\xi, X) Y = \eta(Y) X - g(X, Y) \xi,$$

(2.10)

$$S(X, \xi) = -2n\eta(X),$$

(2.11)

$$(\nabla_Z R)(X, Y) \xi = g(X, Z) Y - g(Y, Z) X - R(X, Y) Z,$$

(2.12)

for any vector fields X, Y, Z, where R is the Riemannian curvature tensor and S is the Ricci tensor.

Definition 1 A Kenmotsu manifold is said to be a locally ϕ-symmetric manifold if

$$\phi^2((\nabla_W R)(X, Y) Z) = 0,$$

(2.13)

for all vector fields X, Y, Z, W orthogonal to ξ.

This notion was introduced for Sasakian manifolds by Takahashi [16].
Definition 2 A Kenmotsu manifold is said to be a ϕ-recurrent manifold if there exists a non-zero 1-form A such that
\[\phi^2(\nabla W R)(X,Y)Z = A(W)R(X,Y)Z, \]
for arbitrary vector fields X, Y, Z, W.

If X, Y, Z, W are orthogonal to ξ, then the manifold is called locally ϕ-recurrent manifold.

If the 1-form A vanishes, then the manifold reduces to a ϕ-symmetric manifold.

3. ϕ-Recurrent Kenmotsu Manifolds

To prove the main theorem of the paper we first prove the following lemma.

Lemma 1 In a ϕ-recurrent Kenmotsu manifold (M^{2n+1}, g), $n > 1$, the characteristic vector field ξ and the vector field ρ associated to the 1-form A are co-directional and the 1-form A is given by
\[A(W) = \eta(\rho)\eta(W). \]

Proof. Two vector fields P and Q are said to be co-directional if $P = fQ$ where f is a non-zero scalar. That is,
\[g(P, X) = fg(Q, X) \quad \text{for all } X. \]

Let us consider a ϕ-recurrent Kenmotsu manifold. Then by virtue of (2.2) and (2.14), we have
\[(\nabla W R)(X,Y)Z = \eta((\nabla W R)(X,Y)Z)\xi - A(W)R(X,Y)Z. \]

From (3.16) and the Bianchi identity, we get
\[A(W)\eta(R(X,Y)Z) + A(X)\eta(R(Y,W)Z) + A(Y)\eta(R(W,X)Z) = 0. \]

Let $\{e_i\}$, $i = 1, 2, 3, ..., 2n + 1$, be an orthonormal basis of the tangent space at any point of the manifold. Putting $Y = Z = e_i$ in (3.17) and taking summation over i, $1 \leq i \leq 2n + 1$, we get by virtue of (2.8)
\[A(W)\eta(X) = A(X)\eta(W), \]
for all vector fields X, W. Replacing X by ξ in (3.18), it follows that
\[A(W) = \eta(\rho)\eta(W), \]

where $A(X) = g(X, \rho)$ and ρ is the vector field associated to the 1-form A. From (3.15) and (3.19) it is clear that ξ and ρ are co-directional.

Theorem 1 A ϕ-recurrent Kenmotsu manifold is an Einstein manifold.

Proof. From (3.16), we have
\[-g(\nabla W R)(X,Y)Z, U) + \eta((\nabla W R)(X,Y)Z)\eta(U) = A(W)g(R(X,Y)Z, U). \]
Putting $X = U = e_i$ in (3.20) and taking summation over i, $1 \leq i \leq 2n + 1$, we get
\[-(\nabla W)(Y, Z) + \sum_{i=1}^{2n+1} \eta((\nabla W R)(e_i, Y)Z)\eta(e_i) = A(W)S(Y, Z).\] (3.21)

The second term of (3.21) by putting $Z = \xi$ takes the form
\[\eta((\nabla W R)(e_i, Y)\xi)\eta(e_i) = g((\nabla W R)(e_i, Y)\xi, \xi)g(\xi, \xi),\] (3.22)
which is denoted by E. In this case E vanishes. Namely, we have
\[g((\nabla W R)(e_i, Y)\xi, \xi) = g(\nabla W R(e_i, Y)\xi, \xi) - g(R(e_i, Y)\nabla W \xi, \xi)\] (3.23)
at $p \in M$. In local coordinates $\nabla X e_i = X^j \Gamma^h_{ji}e_h$, where Γ^h_{ji} are the Christoffel symbols. Since $\{e_i\}$ is an orthonormal basis, the metric tensor $g_{ij} = \delta_{ij}$, where δ_{ij} is the Kronecker delta and hence the Christoffel symbols are zero. Therefore, $\nabla X e_i = 0$. Also we have
\[g(R(e_i, \nabla W Y)\xi, \xi) = 0,\] (3.24)
since R is skew-symmetric. Using (3.24) and $\nabla X e_i = 0$ in (3.23), we obtain
\[g((\nabla W R)(e_i, Y)\xi, \xi) = g(\nabla W R(e_i, Y)\xi, \xi) - g(R(e_i, Y)\nabla W \xi, \xi).\]

By virtue of $g(R(e_i, Y)\xi, e_i) = 0$, we have
\[g(\nabla W R(e_i, Y)\xi, \xi) + g(R(e_i, Y)\xi, \nabla W \xi) = 0,\] (3.25)
which implies
\[g((\nabla W R)(e_i, Y)\xi, \xi) = -g(R(e_i, Y)\xi, \nabla W \xi) - g(R(e_i, Y)\nabla W \xi, \xi).\]

Since R is skew-symmetric
\[g((\nabla W R)(e_i, Y)\xi, \xi) = 0.\] (3.26)

Using (3.26) from (3.21), we get
\[(\nabla W S)(Y, \xi) = -A(W)S(Y, \xi).\] (3.27)

We know that
\[(\nabla W S)(Y, \xi) = \nabla W S(Y, \xi) - S(\nabla W Y, \xi) - S(Y, \nabla W \xi).\]

Again using (2.6), (2.7) and (2.11), we get
\[(\nabla W S)(Y, \xi) = -2n g(Y, W) - S(Y, W).\] (3.28)

Now using (3.28) in (3.27), we obtain
\[S(Y, W) = -2n A(W)\eta(Y) - 2n g(Y, W).\] (3.29)

Applying Lemma 1, equation (3.29) reduces to
\[S(Y, W) = -2n g(Y, W) - 2n \eta(\rho)\eta(Y)\eta(W),\]
which implies that the manifold is an η-Einstein manifold.
In Corollary 9 of Proposition 8 of [11], it is proved that if a Kenmotsu manifold is an η-Einstein manifold of type \(S = ag + b\eta \otimes \eta \) and if \(b = \text{constant} \) (or \(a = \text{constant} \)) then \(M \) is an Einstein manifold. Hence by the above result a \(\phi \)-recurrent Kenmotsu manifold is an Einstein manifold.

Theorem 2 A locally \(\phi \)-recurrent Kenmotsu manifold \((M^{2n+1}, g), n > 1\), is a manifold of constant curvature \(-1\), i.e., it is locally a hyperbolic space.

Proof. From (2.12), we have

\[
(\nabla_W R)(X, Y)\xi = g(W, X)Y - g(W, Y)X - R(X, Y)W. \tag{3.30}
\]

By virtue of (2.8), it follows from (3.30) that

\[
\eta((\nabla_W R)(X, Y)\xi) = 0. \tag{3.31}
\]

In view of (3.30) and (3.31), we obtain from (3.16)

\[-(\nabla_W R)(X, Y)\xi = A(W)R(X, Y)\xi, \tag{3.32}
\]

from which by using (2.12), it follows that

\[-g(X, W)Y + g(Y, W)X + R(X, Y)W = A(W)R(X, Y)\xi. \]

Hence if \(X \) and \(Y \) are orthogonal to \(\xi \), then we get from (2.9)

\[R(X, Y)\xi = 0.
\]

Thus, we obtain

\[R(X, Y)W = -[g(Y, W)X - g(X, W)Y],
\]

for all \(X, Y, W \). \(\square \)

Remark. It may be mentioned that a semi-symmetric \((R(X, Y)\cdot R = 0)\) Kenmotsu manifold and a conformally flat Kenmotsu manifold of dimension \(> 3 \) are of constant sectional curvature [11]. Also De and Pathak [5] proved that three dimensional Ricci semi-symmetric \((R(X, Y) \cdot S = 0)\) Kenmotsu manifold is of constant sectional curvature.

4. Three-Dimensional Kenmotsu Manifolds

It is known that in a three-dimensional Kenmotsu manifold the curvature tensor has the following form [5]

\[
R(X, Y)Z = \frac{(r + 4)}{2}[g(Y, Z)X - g(X, Z)Y] \\
-\frac{(r + 6)}{2}[g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y]. \tag{4.33}
\]
Taking the covariant differentiation of the equation (4.33), we have

$$(\nabla_W R)(X, Y)Z = \frac{dr(W)}{2}[g(Y, Z)X - g(X, Z)Y] - \frac{dr(W)}{2}[g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi$$

\[+ \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y - \left(\frac{r + 6}{2}\right)[g(Y, Z)(\nabla_W \eta)(X)\xi + g(Y, Z)\eta(X)\nabla_W \xi - g(X, Z)(\nabla_W \eta)(Y)\xi + (\nabla_W \eta)(Y)\eta(Z)X + \eta(Y)(\nabla_W \eta)(Z)X$$

\[-(\nabla_W \eta)(X)\eta(Z)Y - \eta(X)(\nabla_W \eta)(Z)Y].$$

(4.34)

Now applying ϕ^2 to the both sides of (4.34), we obtain

$$\phi^2(\nabla_W R)(X, Y)Z = -\frac{dr(W)}{2}[g(Y, Z)X - g(X, Z)Y - g(Y, Z)\eta(X)\xi + g(X, Z)\eta(Y)\xi + \eta(X)\eta(Z)Y$$

\[-\eta(Y)\eta(Z)X + \left(\frac{r + 6}{2}\right)(\nabla_W \eta)(Y)\eta(Z)X + \eta(Y)(\nabla_W \eta)(Z)X - (\nabla_W \eta)(X)\eta(Z)Y$$

\[-\eta(X)(\nabla_W \eta)(Z)Y - (\nabla_W \eta)(Y)\eta(Z)X + (\nabla_W \eta)(X)\eta(Y)\xi].$$

(4.35)

Taking X, Y, Z, W orthogonal to ξ and using (2.14), we finally get from (4.35)

$$A(W)R(X, Y)Z = -\frac{dr(W)}{2}[g(Y, Z)X - g(X, Z)Y].$$

(4.36)

Putting $W = \{e_i\}$ in (4.36), where $\{e_i\}, i = 1, 2, 3,$ is an orthonormal basis of the tangent space at any point of the manifold and taking summation over i, $1 \leq i \leq 3$, we obtain

$$R(X, Y)Z = \lambda[g(Y, Z)X - g(X, Z)Y],$$

where $\lambda = -\frac{dr(e_i)}{2\lambda(e_i)}$ is a scalar, since A is a non-zero 1-form. Then by Schur’s theorem λ will be a constant on the manifold. Therefore, M^3 is of constant curvature λ. Thus we get the following theorem.

Theorem 3 A three-dimensional locally ϕ-recurrent Kenmotsu manifold is of constant curvature.

5. **Locally ϕ-Recurrent Kenmotsu Spacetime**

In this section we consider locally ϕ-recurrent Kenmotsu spacetime. By a spacetime, we mean a 4-dimensional semi-Riemannian manifold endowed with Lorentzian metric of signature $(-+++)$. In a recent paper one of the authors De and Pathak [6] prove that the characteristic vector field ξ in a Kenmotsu manifold is a concircular vector field [18]. Also from Theorem 2, we can easily prove that a locally ϕ-recurrent Kenmotsu manifold is conformally flat. Hence $\text{div}C = 0$, where C denotes the conformal curvature tensor and “div” denotes divergence.

Hence, we have

$$(\nabla_X S)(Y, Z) - (\nabla_Y S)(X, Z) = \frac{1}{2(n - 1)}[g(Y, Z)dr(X) - g(X, Z)dr(Y)].$$

(5.37)
Yano [17], prove that, in order that a Riemannian space admits a concircular vector field, it is necessary and sufficient that there exists a coordinate system with respect to which the fundamental quadratic differential form may be written in the form

\[ds^2 = (dx^1)^2 + e^q g_{\alpha\beta}^* dx^\alpha dx^\beta, \]

where \(g_{\alpha\beta}^* = g_{\alpha\beta}(x') \) are the functions of \(x' \) only (\(\alpha, \beta, r = 2, 3, ..., n \)) and \(q = q(x') \neq \text{constant} \) is a function of \(x^1 \) only. In the semi-Riemannian space, we can prove that

\[ds^2 = -(dx^1)^2 + e^q g_{\alpha\beta}^* dx^\alpha dx^\beta. \]

Thus a Kenmotsu spacetime can be expressed as a warped product \(-I \times_{e^q} M^*\), where \(M^* \) is a three-dimensional Riemannian manifold. But Gebarowski [9] prove that warped product \(-I \times_{e^q} M^*\) satisfies (5.37) if and only if \(M^* \) is an Einstein manifold. Thus a locally \(\phi \)-recurrent Kenmotsu spacetime must be warped product \(-I \times_{e^q} M^*\), where \(M^* \) is an Einstein manifold. It is known that a three-dimensional Einstein manifold is a manifold of constant curvature. Hence a locally \(\phi \)-recurrent Kenmotsu spacetime is the warped product \(-I \times_{e^q} M^*\), where \(M^* \) is a manifold of constant curvature. But such a warped product is the Robertson-Walker spacetime [12].

Thus we have the following theorem.

Theorem 4 A locally \(\phi \)-recurrent Kenmotsu spacetime is the Robertson-Walker spacetime.

6. Example of a Three-Dimensional Kenmotsu Manifold

We consider the three-dimensional manifold \(M = \{(x, y, z) \in \mathbb{R}^3 \}, \ z \neq 0 \) where \((x, y, z)\) are the standard coordinates of \(\mathbb{R}^3 \). The vector fields

\[e_1 = z \frac{\partial}{\partial x}, \quad e_2 = z \frac{\partial}{\partial y}, \quad e_3 = -z \frac{\partial}{\partial z}, \]

are linearly independent at each point of \(M \). Let \(g \) be the Riemannian metric defined by

\[g(e_1, e_1) = g(e_1, e_2) = g(e_2, e_3) = 0, \]
\[g(e_3, e_3) = 1. \]

That is, the form of the metric becomes

\[g = \frac{(dx^2 + dy^2 + dz^2)}{z^2}. \]

Let \(\eta \) be the 1-form defined by \(\eta(Z) = g(Z, e_3) \) for any \(Z \in \chi(M) \). Let \(\phi \) be the (1,1)-tensor field defined by

\[\phi(e_1) = -e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0. \]

Then using the linearity of \(\phi \) and \(g \), we have

\[\eta(e_3) = 1, \]
\[\phi^2 Z = -Z + \eta(Z)e_3, \]
\[g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W), \]

23
for any $Z, W \in \chi(M)$. Then for $e_3 = \xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

$$[e_1, e_2] = 0, \quad [e_1, e_3] = e_1, \quad [e_2, e_3] = e_2.$$

The Riemannian connection ∇ of the metric g is given by

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]),$$

which is known as Koszul’s formula. Using this formula we obtain

\[
\begin{align*}
\nabla_{e_1} e_3 &= e_1, & \nabla_{e_2} e_3 &= e_2, \\
\nabla_{e_1} e_2 &= 0, & \nabla_{e_2} e_2 &= -e_3, \\
\nabla_{e_2} e_2 &= -e_3, & \nabla_{e_2} e_2 &= -e_3, \\
\nabla_{e_1} e_1 &= -e_3, & \nabla_{e_2} e_1 &= 0, \\
\nabla_{e_2} e_1 &= 0, & \nabla_{e_2} e_2 &= 0, \\
\nabla_{e_3} e_3 &= 0.
\end{align*}
\]

Thus (2.6) is satisfied. It is straightforward computation to verify that the manifold under consideration is a three-dimensional Kenmotsu manifold.

Acknowledgement

The authors are thankful to the referee for valuable suggestions towards the improvement of this paper.

References

Uday Chand DE
Department of Mathematics
University of Kalyani
Kalyani-741235
West Bengal-INDIA
e-mail: uc_de@yahoo.com

Ahmet YILDIZ
Art and Science Faculty
Department of Mathematics
Dumlupinar University
Kütahya, TURKEY
e-mail: ahmetyildiz@dumlupinar.edu.tr

A. Funda YALINIZ
Art and Science Faculty
Department of Mathematics
Dumlupinar University
Kütahya, TURKEY
e-mail: fyaliniz@dumlupinar.edu.tr

Received 21.11.2007