On the Normalizer of the Congruence Subgroup $H_5^5(I)$ of the Hecke Group H^5

Süleyman Uzun

Abstract

Let $\lambda = 2 \cos \frac{\pi}{5}$ and let H^5 be the Hecke group associated to λ. In this paper, the normalizers of the congruence subgroups $H_5^5(I)$ in $PSL(2, \mathbb{Z}[\lambda])$ are studied in the case where $I = (2)^\alpha I'$, $(2, I') = 1$ and I' is a prime ideal.

Key Words: Normalizer, Congruence subgroup, Hecke group.

1. Introduction

The congruence subgroups of the Hecke group $H^q (q = 3, 4, 6)$ and the normalizers of these groups in H^q, in $PSL(2, \mathbb{Z}[\lambda])$ and in $PSL(2, \mathbb{R})$ were studied by various authors (see [1], [2], [4], [5], [8], [9], [16]). The normalizers of the congruence subgroups of the Hecke group H^5 in $PSL(2, \mathbb{R})$ were given for prime ideals (see [11],[12]). In this paper, we investigate the normalizer of the congruence subgroup $H_5^5(I)$ of the Hecke group H^5 in $PSL(2, \mathbb{Z}[\lambda])$. Furthermore, in [8], it is conjectured that the normalizer of $H_5^5(I)$ in H^5 is $H_5^5((2)^\alpha I')$, where $I = (2)^\alpha I'$ is an ideal of $\mathbb{Z}[\lambda]$, $(2, I') = 1$ and $\alpha' = \alpha - \min (2, \lceil \frac{\alpha}{2} \rceil)$. We give a proof to the conjecture in the case where I' is a prime ideal.

We start by recalling definitions, notations, and some preliminary results of these concepts. By a Hecke group we mean a discrete subgroup of $PSL(2, \mathbb{R})$ generated by T and U_q, where T and U_q are the Möbius transformations given by $T(z) = -\frac{1}{z}$, and $U_q(z) = z + \lambda_q$. Hecke [6] showed that these groups are discrete if and only if $\lambda_q = 2 \cos \frac{\pi}{q}$.

MSC: 11F06, 20H05
or $\lambda_q > 2$. This group is denoted by H^q. It is known that a presentation for H^q is

$$\langle T, U_q \rangle = \langle T, S_q | T^2 = S_q^q = I \rangle,$$

where $S_q = TU_q$, and so H^q is isomorphic to the free product $C_2 * C_q$.

We have the following table of the values of λ_q for small q:

<table>
<thead>
<tr>
<th>q</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_q</td>
<td>1</td>
<td>$\sqrt{2}$</td>
<td>$1+\sqrt{5}/2$</td>
<td>$\sqrt{3}$</td>
</tr>
</tbody>
</table>

The best known example is when $q = 3$, and H^3 is the modular group $\Gamma = \text{PSL}(2, \mathbb{Z})$ so the above can be thought of as a natural generalization of Γ. Furthermore, we have the following geometric interpretation: the modular group Γ is the triangle group $(2, 3, \infty)$ and the Hecke group H^q is the triangle group $(2, q, \infty)$.

Let $\mathbb{H} := \{ z \in \mathbb{C} | \text{Im}(z) > 0 \}$ and $\hat{\mathbb{H}} := \mathbb{H} \cup \mathbb{Q}(\lambda_q) \cup \{ \infty \}$. Then the Hecke group H^q, namely a subgroup of $SL_2(\mathbb{Z}[\lambda_q]) / \{ \pm I \}$, acts on $\hat{\mathbb{H}}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}.$$

As usual, we denote an element of H^q as a 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ remembering to identify any such matrix with its negative.

Let I be an ideal of $\mathbb{Z}[\lambda_q]$. The principal congruence subgroup of level I is

$$H^q(I) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H^q | a-1, b, c, d-1 \equiv 0 (\text{mod} I) \right\}$$

and any subgroup Λ^q of H^q containing $H^q(I)$ is called a congruence subgroup of level I. The two most important of these are

$$H^q_0(I) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H^q | c \equiv 0 (\text{mod} I) \right\}$$

and

$$H^q_1(I) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H^q | a-1, c, d-1 \equiv 0 (\text{mod} I) \right\}.$$
It is easy to see that we have the inclusions $H^q(I) \leq H^q_0(I) \leq H^q(I) \leq H^q_0(I)$ and we can also see that $H^q(I)$ is normal in H^q and $H^q_0(I)$ is normal in $H^q_0(I)$.

Again, $H^q_0(I)$ is a natural generalization of the congruence subgroups $\Gamma_0(n)$ of Γ. It works because the elements of H^q sit naturally in the ring $\mathbb{Z}[\lambda]$.

Recall that H^q is commensurable with $\text{PSL}(2, \mathbb{Z})$ if and only if $q = 4$ and 6. The elements of such groups are completely known (see [17]).

Suppose H^q is not commensurable with $\text{PSL}(2, \mathbb{Z})$. By the result of A. Leutbecher ([14],[15]), $\mathbb{Q}(\lambda) \cup \{ \infty \}$ is the set of cusps of H^q if and only if $q = 5$. Also, 5 is the only q other than 4, 6 for which $\mathbb{Q}(\lambda)$ is a quadratic field. For all other q's, the degree is > 2. As a consequence, $q = 5$ is the next most workable and interesting q. Some of the classical results on the modular group can be generalized to H^5 (see [3], [9], [10], [11]).

From now on, q will be 5, so $\lambda := \lambda_5$, then $\mathbb{Z}[\lambda] = \mathbb{Z}[\lambda_5]$ and $U := U_5$, or $U = \left(\begin{array}{cc} 1 & \lambda \\ 0 & 1 \end{array} \right)$.

The main facts used in our proofs:

(a) $\mathbb{Z}[\lambda]$ is a principal ideal domain. The norm of any element $u + v\lambda$ of $\mathbb{Z}[\lambda]$ is defined by $\text{Nor}(u + v\lambda) = u^2 - v^2 + uv$. Let I be a non-zero ideal of $\mathbb{Z}[\lambda]$, we say that a and I are relatively prime if there exist elements $x \in \mathbb{Z}[\lambda]$ and $b \in I$ such that $ax + b = 1$, and this is denoted by $(a, I) = 1$.

Let $a, b \in \mathbb{Z}[\lambda]$. The element a is said to be congruent to b modulo I (denoted by $a \equiv b \text{ (mod } I)$) if $a - b \in I$.

(b) The set of cusps of H^5 is $\mathbb{Q}(\lambda) \cup \{ \infty \}$ ([14],[15]). Furthermore, if $x \in \mathbb{Q}(\lambda)$ is a cusp, x has a unique reduced form $x = \frac{a}{b}$ ([13]). By definition, this means that $a, c \in \mathbb{Z}[\lambda]$ with $c \geq 0$ and there exists $b, d \in \mathbb{Z}[\lambda]$ such that $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in H^5$. Clearly, $(a, c) = 1$ so that if $x = \frac{a}{b}$ with $(a', c') = 1$, then $a = \mu a'$, $c = \mu c'$ where μ is a unit in $\mathbb{Z}[\lambda]$.

(c) (Corollary 5 of [13]) $\left(\begin{array}{cc} 1 & b \\ c & 1 \end{array} \right) \in H^5$ if and only if $b = m\lambda$, $m \in \mathbb{Z}$.

Slightly, $\left(\begin{array}{cc} 1 & 0 \\ c & 1 \end{array} \right) \in H^5$ if and only if $c = n\lambda$, $n \in \mathbb{Z}$.

(d) (Proposition 6 of [13]) Suppose x_i, x_j are H^5-rationals with reduced form $\frac{a_i}{b_i}$ and $\frac{b_j}{d_j}$, respectively, and suppose that $x_i < x_j$. Then the following statements are equivalent:
UZUN

(i) \(\begin{pmatrix} a_i & b_j \\ c_i & d_j \end{pmatrix} \in H^5 \);

(ii) \((x_i, x_j)\) is an even line, that is, it is the image of the complete hyperbolic geodesic with ends at 0 and \(\infty\) under the action of some \(A \in H^5\);

(iii) \(a_id_j - bjc_i = 1\).

(e) \(A \in H\) if and only if it is a finite word in the generators \(T\) and \(U\). The word can be written as

\[
A = U^{r_0}TU^{r_1}T \ldots TU^{r_{n+1}} \tag{1.1}
\]

where \(r_i\) are non-zero integers except \(r_0\) and \(r_{n+1}\) which may be 0. The word in turn gives rise to the matrix \(A\). By judicious applications of the generators the word can be made unique ([18]).

(f) (Lemma 1 of [3]) If \(I\) is a non-zero ideal of \(Z[\lambda]\), then

\[
[H^5 : H^0_I] = N(I) \prod_{P \mid I} \left(1 + \frac{1}{N(P)} \right),
\]

where the product is over the set of all prime ideals \(P\) which divide \(I\). Here, for a non-zero ideal \(I\) of \(Z[\lambda]\), \(N(I)\) denotes the absolute norm of \(I\).

(g) (Theorem 4.5 of [7]) If \(K, H, G\) are groups with \(K < H < G\), then \([G : K] = [G : H][H : K]\). If any two of these indices are finite, then so is the third.

(h) (Corollary 2 of [10]) The indices of the congruence subgroups of \(H^5\) of level \(I = (2)\) are \([H^5 : H^5_I] = 10\), and \([H^5 : H^5_{I'}] = [H^5 : H^5_{I'}] = 5\).

The rest of this paper is organized as follows. In the next section, we give some results concerning congruence subgroup \(H^0_I\), where \(I = (2)^\alpha\), \((\alpha = 1, 2)\) or \(I\) is a prime ideal, which will be needed later. In section 3, we find the normalizer of the congruence subgroup \(H^0_I\) in \(PSL(2, Z[\lambda])\), where \(I = (2)^\alpha I', (2, I') = 1\), and the proof of the conjecture in [8] for this case is given in Corollary 17.

2. Congruence subgroup \(H^0_I\)

Lemma 1. Let the ideal \(I = (2) = 2Z[\lambda]\) and let \(A \in H^5\). Then

\[
A \in H^0_I if and only if A \equiv \pm \begin{pmatrix} 1 & r\lambda \\ 0 & 1 \end{pmatrix} \pmod{I},
\]

210
where $r = 0, 1$.

Proof. By using (g) and (h), we have that

$$[H^5_0(I): H^5(I)] = 2.$$

Then, since $U = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \notin H^5(I)$, the partition of $H^5_0(I)$ associated to the subgroup $H^5(I)$ is

$$H^5_0(I) = H^5(I) \cup UH^5(I). \quad (2.2)$$

Thus, for every matrix A in $H^5_0(I)$, from (2.2), there are two cases as follows.

Case 1. If $A \in H^5(I)$, then we get

$$A \equiv \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{I}.$$

Case 2. If $A \in UH^5(I)$, then we have

$$A \equiv \pm \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \pmod{I}.$$

This completes the proof of the lemma. \hfill \Box

Corollary 2. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $H^5_0(I)$. In this case,

(i) if $I = (2)$, then $a - d \equiv 0 \pmod{(2)}$

(ii) if $I = (4) = (2)^2$, then $a - d \equiv 0 \pmod{(4)}$.

Proof. (i) Since $a^2 - 1 = (a - 1)(a + 1)$, by Lemma 1, we have

$$a^2 - 1 \equiv 0 \pmod{(2)^2}. \quad (2.3)$$

Since $A \in H^5_0(2)$ and $ad - bc = 1$, we have

$$ad \equiv 1 \pmod{(2)}. \quad (2.4)$$

211
Suppose that $a - d \equiv u \pmod{2}$ for some $u \in \mathbb{Z}[\lambda]$. Multiplying by a, one has $a^2 - ad \equiv au \pmod{2})$. In this case, since $a \not\equiv 0 \pmod{2}$, by (2.3) and (2.4), we have $u \equiv 0 \pmod{2})$. This implies that $a - d \equiv 0 \pmod{2})$.

(ii) Since $A \in H_0^5(4)$ and $ad - bc = 1$, it is clear that $ad \equiv 1 \pmod{4})$. Here, using a similar argument as in the proof of (i), we have $a - d \equiv 0 \pmod{2})$.

Remark 3. Let \[
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
\] be an element of $H_0^5(2)$. Then $a - d \equiv 0 \pmod{2^2})$ is not necessarily true.

Example 4. From (1.1),

\[A = U T U^2 T = \begin{pmatrix} 1 + 2\lambda & -\lambda \\ 2\lambda & -1 \end{pmatrix} \in H_0^5(2).\]

Then, for the matrix A, we have $a - d = 2(1 + \lambda) \not\equiv 0 \pmod{2^2})$.

Remark 5. Let \[
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
\] be an element of $H_0^5(4)$. Then $a - d \equiv 0 \pmod{2^3})$ is not necessarily true.

Example 6. If we take $A = \begin{pmatrix} 1 + 2\lambda & -\lambda \\ 2\lambda & -1 \end{pmatrix}$, then, for matrices

\[A^2 = \begin{pmatrix} 3 + 6\lambda & -2 - 2\lambda \\ 4(1 + \lambda) & -1 - 2\lambda \end{pmatrix} \in H_0^5((2)^2) \text{ and } A^4 = \begin{pmatrix} 29 + 48\lambda & -4(3 + 5\lambda) \\ 8(3 + 5\lambda) & -11 - 16\lambda \end{pmatrix} \]

$\in H_0^5((2)^3)$, we have $a - d = 4(1 + \lambda) \not\equiv 0 \pmod{2^3})$ and $a - d = 4(10 + 16\lambda) \not\equiv 0 \pmod{2^3})$.

Remark 7. If the ideal $I \neq (2)$, then Corollary 2 (i) and (ii) are not true.

Example 8. Let $I = (3)$. From (1.1),

\[B = U T U^4 T U^2 T U T U^{-1} T = \begin{pmatrix} 25 + 40\lambda & 10 + 17\lambda \\ 9(2 + 3\lambda) & 8 + 11\lambda \end{pmatrix} \in H_0^5(3).\]
For the matrix B, $a = 25 + 40\lambda$. Then it is easily seen that $a^2 - 1 \not\equiv 0 \pmod{3}$. It follows that $a - d \not\equiv 0 \pmod{3}$.

Example 9. Let $I = (2 + \lambda)$. From (1.1),

$$C = TU^2TU^3TU^2TU^2T = \begin{pmatrix}
12 + 25\lambda & 5 + 6\lambda \\
-(2 + \lambda)^2(4 + 5\lambda) & -4(3 + 5\lambda)
\end{pmatrix} \in H_0^5(2 + \lambda).$$

For the matrix C, $a = 12 + 25\lambda$ and $a^2 - 1 = (11 + 25\lambda)(13 + 25\lambda)$. From (a), we have Nor$(a^2 - 1) = 131.229$ and Nor$(2 + \lambda) = 5$. In this case, since Nor$(a^2 - 1) \equiv 4 \pmod{5}$, we obtain $a^2 - 1 \not\equiv 0 \pmod{(2 + \lambda)}$. This implies that $a - d \not\equiv 0 \pmod{(2 + \lambda)}$.

Example 10. Let $I = (4 - \lambda)$. From (1.1),

$$D = TU^7TU^{-5}T = \begin{pmatrix}
5\lambda \\
-(4 - \lambda)^3(2 + 3\lambda) & 1
\end{pmatrix} \in H_0^5(4 - \lambda).$$

For the matrix D, $a = 5\lambda$. Using a similar argument as in Example (9), we have $a^2 - 1 \not\equiv 0 \pmod{(4 - \lambda)}$. This implies that $a - d \not\equiv 0 \pmod{(4 - \lambda)}$.

Corollary 11. $H_0^5(2) = H_1^5(2)$.

Lemma 12. Let $I = (\tau)$ be a prime ideal of $\mathbb{Z}[\lambda]$. Let p be the positive rational prime which lies below τ. Then

(i) $(p) = (\tau)$ if and only if $H_0^5(p) = H_0^5(\tau)$.

(ii) $(p) \neq (\tau)$ if and only if $H_0^5(p) \not\subseteq H_0^5(\tau)$.

Proof. (i) If $(p) = (\tau)$, then it is easily seen that $H_0^5(p) = H_0^5(\tau)$. Suppose that $H_0^5(p) = H_0^5(\tau)$. Let $x = \frac{1}{\tau} \in \mathbb{Q}(\lambda)$. By Leutbecher’s Theorem ([14], [15]), x is a cusp of H^5. By (b), the reduced form for x is of the form $\frac{c}{d}$, where c is a unit in $\mathbb{Z}[\lambda]$. Thus, by (d), $H_0^5(\tau)$ contains an element of the form

$$A_c = \begin{pmatrix}
c & b \\
c & d
\end{pmatrix}.$$ \hspace{1cm} (2.5)

In this case, since $H_0^5(p) = H_0^5(\tau)$, it follows that $\tau = c^{-1}pu$, where $u \in \mathbb{Z}[\lambda]$. Thus we have $(p) = (\tau)$.

213
(ii) Let \((p) \neq (\tau)\). Since \((p) \subset (\tau)\), it is clear that \(H_0^5(p) < H_0^5(\tau)\). By (2.5), \(A_c \not\in H_0^5(p)\). This implies that \(H_0^5(p) \not\subset H_0^5(\tau)\).

Conversely, from (2.5), we have \((p) \neq (\tau)\).

3. Upper bound for \(N(H_0^5(2^\alpha \tau))\)

Let \(I'\) be an ideal of \(\mathbb{Z}[\lambda]\). Since \(\mathbb{Z}[\lambda]\) is a principal ideal domain, \(I' = (\tau)\) for some \(\tau\). Note that we may assume that \(\tau\) is positive.

From now on, we take the ideal
\[
I = (2)^\alpha I' = (2)^\alpha \cap I' = (2^\alpha \tau),
\]
(3.6)
where \((2, I') = 1\) and \(I' = (\tau)\) is a prime ideal. Denote by \(N(H_0^5(2^\alpha \tau))\) the normalizer of \(H_0^5(2^\alpha \tau)\) in \(PSL(2, \mathbb{Z}[\lambda])\). Let \(X = \begin{pmatrix} x & z \\ y & t \end{pmatrix} \in N(H_0^5(2^\alpha \tau))\), and \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H_0^5(2^\alpha \tau)\). Then, we have that
\[
XAX^{-1} = \begin{pmatrix} atx - bxy - dyz + ctz & -(a - d)xz + bx^2 - cz^2 \\ (a - d)ty - by^2 + ct^2 & -ayz + byx + dxt - ctz \end{pmatrix} \in H_0^5(2^\alpha \tau)
\]
(3.7)
\[
X^{-1}AX = \begin{pmatrix} * & * \\ -(a - d)xz - by^2 + cx^2 & * \end{pmatrix} \in H_0^5(2^\alpha \tau).
\]
(3.8)

If we take \(A = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}\), then,
\[
XAX^{-1} = \begin{pmatrix} 1 - xy\lambda & x^2\lambda \\ -y^2\lambda & 1 + xy\lambda \end{pmatrix} \in H_0^5(2^\alpha \tau)
\]
(3.9)
\[
X^{-1}AX = \begin{pmatrix} 1 + ty\lambda & t^2\lambda \\ -y^2\lambda & 1 - ty\lambda \end{pmatrix} \in H_0^5(2^\alpha \tau).
\]
(3.10)

Lemma 13. Let \(X = \begin{pmatrix} x & z \\ y & t \end{pmatrix} \in N(H_0^5(2^\alpha \tau))\). Then
\[y \equiv 0 (mod \ (2^\alpha \tau)),\]
where \(\alpha' = \alpha - \min \{2, \left\lfloor \frac{\alpha}{2} \right\rfloor \} \).

Proof. Since \(\lambda \) is a unit in \(\mathbb{Z}[\lambda] \), by (3.9) and (3.10), then
\[
y^2 \equiv 0 \pmod{(2^\alpha \tau)}. \tag{3.11}
\]
Since \(ad - bc = 1 \) and \(xt - yz = 1 \), from (3.8), we have
\[
(a^2 - 1)y \equiv 0 \pmod{(2^\alpha \tau)}. \tag{3.12}
\]
Here, since \(I' = (\tau) \) and \((2) \) are prime ideals, by (3.6), (3.11) and (3.12), we obtain
\[
y \equiv 0 \pmod{(2)} \tag{3.13}
\]
\[
(a^2 - 1)y \equiv 0 \pmod{(2)}. \tag{3.14}
\]
and
\[
y \equiv 0 \pmod{(\tau)} \tag{3.15}
\]
\[
(a^2 - 1)y \equiv 0 \pmod{(\tau)}. \tag{3.16}
\]
By (3.13), there exists \(\alpha' \in \mathbb{Z}_+ \) such that
\[
y \equiv 0 \pmod{(2^{\alpha'})} \text{ and } y \not\equiv 0 \pmod{(2^{\alpha' + 1})}. \tag{3.17}
\]
This implies that
\[
y^2 \equiv 0 \pmod{(2^{2\alpha'})} \tag{3.18}
\]
For \(\alpha \) and \(\alpha' \), there are two cases:

Case 1. Let \(\alpha < \alpha' \). Then (3.11) and (3.12) are always true.

Case 2. Let \(\alpha \geq \alpha' \). From (3.11) and (3.18), we obtain
\[
\alpha \leq 2\alpha' \Rightarrow \frac{\alpha}{2} \leq \alpha' \leq \alpha. \tag{3.19}
\]
From (3) and (3.17), we get
\[
(a^2 - 1)y \equiv 0 \pmod{(2^{\alpha' + 2})}. \tag{3.20}
\]
By using (3.12) and (3.20), we have that
\[\alpha \leq \alpha' + 2 \Rightarrow 0 \leq \alpha - \alpha' \leq 2. \] (3.21)

Thus, the smallest element \(\alpha' \in \mathbb{Z}_+ \) which satisfies (3.19) and (3.21) must be found.

(i) For \(\alpha = 1, 2 \) and 3, by (3.19) and (3.21), we have that \(\alpha' = 1, 1 \) and 2, respectively.

(ii) For \(\alpha \geq 4 \), there exists an element \(\beta \in \mathbb{N} \) such that \(\alpha = \beta + 4 \). In this case, by (3.19) and (3.21),
\[2 \leq \alpha' \text{ and } \beta + 2 \leq \alpha'. \]

Since \(\alpha' \) is smallest, it follows that \(\alpha' = \beta + 2 \). Thus, for every \(\alpha \in \mathbb{Z}_+ \) such that \(\alpha \geq 4 \), we obtain \(\alpha' = \alpha - 2 \). Consequently, from (i) and (ii), we have \(y \equiv 0 \pmod{(2^\alpha') \tau} \), where \(\alpha' = \alpha - \min \left(2, \left\lfloor \frac{\alpha}{2} \right\rfloor \right) \).

This completes the proof of the lemma. \(\square \)

Lemma 14. (Lemma 1 of [12]) If \(I \) is a prime ideal of \(\mathbb{Z}[\lambda] \), then
\[N(H_0^5(I)) = H_0^5(I). \]

Remark 15. If \(I \) is not a prime ideal of \(\mathbb{Z}[\lambda] \), then Lemma 14 is not necessarily true as in the following theorem.

Theorem 16. Let the ideal \(I = (2^\alpha \tau) \) as in (6). Then
\[N(H_0^5(2^\alpha \tau)) = H_0^5(2^\alpha \tau) \]
where \(\alpha' = \alpha - \min \left(2, \left\lfloor \frac{\alpha}{2} \right\rfloor \right) \).

Proof. By Corollary 2 (i) and (ii), it is clear that
\[H_0^5(2^\alpha \tau) \leq N(H_0^5(2^\alpha \tau)) \] (3.22)
where \(\alpha' = \alpha - \min \left(2, \left\lfloor \frac{\alpha}{2} \right\rfloor \right) \). Now we prove the converse inclusion, that is,
\[H_0^5(2^\alpha \tau) \geq N(H_0^5(2^\alpha \tau)) \]
where \(\alpha' = \alpha - \min(2, \left\lfloor \frac{\alpha}{2} \right\rfloor) \). Let \(X = \begin{pmatrix} x & z \\ y & t \end{pmatrix} \in N(H_0^5(2^\alpha \tau)) \). Then, by Lemma 13 and (3.10), it is clear that

\[
y \equiv 0 \pmod{2^\alpha' \tau}.
\]

This implies that \(y = c2^\alpha' \tau \) for some \(c \in \mathbb{Z}[\lambda] \). Suppose \(c \neq 0 \). Recall that \(a = \frac{x}{c^2} \in \mathbb{Q}(\lambda) \) is a cusp of \(H^5 \) as in (b). Let \(a = \frac{x'}{y'} \) be the reduced form for \(a \). Then \(H^5 \) contains an element of the form

\[
Y = \begin{pmatrix} x' & z' \\ y' & t' \end{pmatrix}.
\]

Since \((x, c2^\alpha' \tau) = 1 \), \(y' = \mu c2^\alpha' \tau \) where \(\mu \) is a unit of \(\mathbb{Z}[\lambda] \). Hence \(y' \) is a multiple of \(2^\alpha' \tau \). This implies that \(Y \in H_0^5(2^\alpha' \tau) \leq N(H_0^5(2^\alpha \tau)) \). Since \(X \infty = Y \infty \), it follows that

\[
Y^{-1}X = \begin{pmatrix} u & v \\ 0 & u^{-1} \end{pmatrix} \in N(H_0^5(2^\alpha \tau)),
\]

where \(u, v \in \mathbb{Z}[\lambda] \). Applying (9) and (10) to \(Y^{-1}X \), we have that

\[
\begin{pmatrix} 1 & u^2 \lambda \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & u^{-2} \lambda \\ 0 & 1 \end{pmatrix}
\]

are elements of \(H_0^5(2^\alpha \tau) \). By (c), \(u = \pm 1 \). Multiplying \(Y^{-1}X \) by \(-I\) if necessary, we may assume that \(u = 1 \) and

\[
Y^{-1}X = \begin{pmatrix} 1 & x + y \lambda \\ 0 & 1 \end{pmatrix},
\]

where \(x, y \in \mathbb{Z} \). Note that

\[
\begin{pmatrix} 1 & y \lambda \\ 0 & 1 \end{pmatrix} \in N(H_0^5(2^\alpha \tau)).
\]

As a consequence,

\[
\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in N(H_0^5(2^\alpha \tau)).
\]
Suppose that \(x \neq 0 \). Since \(\lambda \in \mathbb{R} \setminus \mathbb{Q} \), for any \(\epsilon > 0 \), there exist \(k \) and \(l \) such that

\[
\begin{pmatrix}
1 & x \\
0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & \lambda \\
0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & \delta \\
0 & 1 \\
\end{pmatrix} = \sigma \in N(H_0^5(2^\alpha \tau)),
\]

where \(0 < |\delta| < \epsilon \). As a consequence,

\[
\sigma
\begin{pmatrix}
1 & 0 \\
2^\alpha p \lambda & 1 \\
\end{pmatrix}
\sigma^{-1} = \begin{pmatrix}
1 + 2^\alpha \delta p & 2^\alpha \delta^2 p \\
0 & 1 - 2^\alpha \delta p \\
\end{pmatrix} \in H_0^5(2^\alpha \tau),
\]

where \(p \) is the positive rational prime which lies below \(\tau \). This implies that \(H_0^5(2^\alpha \tau) \) is not discrete, giving a contradiction. Hence \(x = 0 \) and \(Y^{-1}X \in H_0^5(2^{\alpha'} \tau) \). Since \(Y \in H_0^5(2^{\alpha'} \tau) \), then we obtain \(X \in H_0^5(2^{\alpha'} \tau) \).

Suppose \(y = 0 \). From the above argument, we have that \(X \in H_0^5(2^{\alpha'} \tau) \). Consequently,

\[
N(H_0^5(2^\alpha \tau)) \leq H_0^5(2^{\alpha'} \tau),
\]

where \(\alpha' = \alpha - \min(2, [\frac{\alpha}{2}]) \).

This completes the proof of the theorem. \(\square \)

Corollary 17. Let \(I = (2)^\alpha I' \) be an ideal of \(\mathbb{Z}[\lambda] \), where \(I' \) is a prime ideal of \(\mathbb{Z}[\lambda] \) and \((2, I') = 1 \). Then the normalizer of \(H_0^5(I) \) in \(H^5 \) is \(H_0^5((2)^{\alpha'} I') \), where \(\alpha' = \alpha - \min(2, [\frac{\alpha}{2}]) \).

Proof. From Theorem 16, it is clear that

\[
N(H_0^5(I)) \cap H^5 = H_0^5((2)^{\alpha'} I'),
\]

where \(\alpha' = \alpha - \min(2, [\frac{\alpha}{2}]) \). \(\square \)

Theorem 18. Let \(I = (2)^\alpha I' \) be an ideal of \(\mathbb{Z}[\lambda] \), and \((2, I') = 1 \). Then

\[
[H_0^5((2)^{\alpha'} I') : H_0^5((2)^\alpha I')] = \begin{cases}
1, & \alpha = 1 \\
4, & \alpha = 2, 3 \\
16, & \alpha \geq 4
\end{cases}
\]

where \(\alpha' = \alpha - \min(2, [\frac{\alpha}{2}]) \).
Proof. By using (f) and (g), we have that

\[
[H_0^5((2)^\alpha'I') : H_0^5((2)^\alpha'I')] = \left\{ \begin{array}{ll}
1, & \alpha = 1 \\
4, & \alpha = 2, 3 \\
16, & \alpha \geq 4
\end{array} \right.
\]

where \(\alpha' = \alpha - \min\left(2, \left\lceil \frac{\alpha}{2} \right\rceil \right) \).

\[\square\]

Acknowledgements

I would like to express my sincere gratitude to Professor Mehmet Akbaş for his immense help during the preparation of this paper.

References

Süleyman UZUN
Department of Mathematics, Faculty of Science and Arts, Karadeniz Technical University, 61080 Trabzon-TURKEY
e-mail: suzunktu@yahoo.com

Received 14.11.2005