A Note on Kaehlerian Manifolds

N. Cengiz, Ö. Tarakci, A. A. Salimov

Abstract

The main purpose of the present paper is to study nearly Kaehlerian manifolds. We give the condition for an almost Hermitian manifold to be nearly Kaehlerian.

Key Words: Hybrid tensor, Hermitian manifold, Kaehlerian manifold, Tachibana operator.

1. Introduction

Let M be an almost Hermitian manifold with almost complex structure φ and hybrid Riemannian metric tensor field g. Then

$$\varphi^2 = -I, \quad g(\varphi X, \varphi Y) = g(X, Y) \quad (1)$$

for any vector field X and Y on M. We denote by ∇ the operator of covariant differentiation with respect to g in M. If the almost complex structure φ of M satisfies

$$(\nabla_X \varphi)Y + (\nabla_Y \varphi)X = 0$$

for any vector field X and Y on M, then the manifold M is called a nearly Kaehlerian manifold (Tachibana spaces). The condition above reduces to

$$(\nabla_X \varphi)X = 0.$$
Let N be the Nijenhuis tensor field of φ defined by

$$N(X, Y) = [\varphi X, \varphi Y] - \varphi[X, \varphi Y] - \varphi[\varphi X, Y] - [X, Y]$$

any vector field X and Y on M. By a simple computation we have

$$N(X, Y) = -4\varphi(\nabla_X \varphi)Y.$$

Proposition: *If the Nijenhuis torsion N of a nearly Kaehlerian manifold vanishes, then M is a Kaehlerian manifold.*

We define a Tachibana operator [3] (see also [2, 4]) $\Phi_\varphi \xi$ associated with an almost complex structure φ and an arbitrary $X \in \mathfrak{X}(M)$ and applied to a tensor $\xi \in \mathfrak{T}^0_2(M)$ as

$$\Phi_\varphi \xi(X, Z_1, Z_2) = (L_\varphi X \xi)(Z_1, Z_2) - L_X(\xi \circ \varphi)(Z_1, Z_2)$$

$$+ \xi(Z_1, \varphi(L_X Z_2)) - \xi(\varphi Z_1, L_X Z_2),$$

where L_X denotes the operator of Lie derivation with respect to X and $(\xi \circ \varphi)(Z_1, Z_2) = \xi(\varphi Z_1, Z_2)$. Expression (2) defines a tensor field $\Phi_\varphi \xi \in \mathfrak{T}^0_2(M)$ if and only if ξ as a pure tensor [4]. When

$$\Phi_\varphi \xi(X, Z_1, Z_2) = (L_\varphi X \xi)(Z_1, Z_2) - L_X(\xi \circ \varphi)(Z_1, Z_2) = 0$$

for a pure tensor ξ and for any $X, Z_1, Z_2 \in \mathfrak{X}(M)$, M being a manifold with almost complex structure φ, ξ is said to be almost analytic [3].

2. **Operator Φ Applied to a Hybrid Tensor**

Let g be a hybrid Riemannian metric tensor. The following formulas are known (see [1]):

$$(L_X g)(Y_1, Y_2) = X(g(Y_1, Y_2)) - g([X, Y_1], Y_2) - g(Y_1, [X, Y_2]).$$
\[L_X Y = [X, Y] = \nabla_X Y - \nabla_Y X - T(X, Y) = \nabla_X Y - \nabla_Y X, \]
(5)

\[(\nabla K)(X_1, X_2, \ldots, X_s, X) = (\nabla_X K)(X_1, X_2, \ldots, X_s) = \nabla_X (K(X_1, X_2, \ldots, X_s)) \]
(6)

\[- \sum_{i=1}^{s} K(X, \ldots, \nabla_X X_i, \ldots, X_s), \quad K \in \mathfrak{X}_1(M), \]

where \(\nabla \) denotes the operator of the Riemannian covariant derivation. By virtue of (1), (4) and (5), from (2) we get

\[(\Phi_\varphi g)(X, Z_1, Z_2) = \varphi(X)(g(Z_1, Z_2)) - g(\nabla_\varphi X Z_1 - \nabla Z_1 \varphi(X), Z_2) \]
(7)

\[-g(\nabla_\varphi Z_1, Z_2) - g(\varphi Z_1 - \nabla_\varphi X Z_2, \varphi(X), Z_2) \]
(8)

and making use of (6), we have

\[g(\nabla Z_1 \varphi(X), Z_2) - g(\varphi(\nabla Z_1 X), Z_2) + g(Z_1, \nabla Z_2 \varphi(X)) - g(Z_1, \varphi(\nabla Z_2 X)) \]
(8)

Substitution (8) into (7) may be written as
(Φφg)(X, Z_1, Z_2) = ϕ(X)(g(Z_1, Z_2)) − X(g(ϕZ_1, Z_2)) + g((∇ϕ)(X, Z_1), Z_2) + g(Z_1, (ϕX)(X, Z_2))
− g(Z_1, (∇ϕX)(X, Z_2)) = 0 \tag{9}

On the other hand, with respect to the Riemannian connection, we have

ϕ(X)(g(Z_1, Z_2)) − g(ϕXZ_1, Z_2) = (ϕXg)(Z_1, Z_2) = 0 \tag{10}

and

X(g(ϕZ_1, Z_2)) − g(ϕZ_1, XZ_2) = (ϕXg)(ϕZ_1, Z_2) = 0 \tag{11}

⇒ −X(g(ϕZ_1, Z_2)) + g(ϕZ_1, XZ_2) = −g(ϕXϕ(Z_1), Z_2).

By virtue of (6), (9), (10) and (11) reduces to

(Φφg)(X, Z_1, Z_2) = −g(ϕXϕ(Z_1), Z_2) + g(ϕ(XZ_1), Z_2) + g((∇ϕXϕ)(X), Z_2) + g(Z_1, (ϕXg)(X, Z_2))
− g(Z_1, (∇ϕXg)(X, Z_2)) = 0 \tag{12}

The analogue to (12) is

(Φφg)(Z_2, Z_1, X) = −g(∇ϕZ_2ϕ(Z_1), X) + g((∇ϕZ_1ϕ)(Z_2), X) + g(Z_1, (∇ϕXg)(Z_2)) + g(Z_1, ϕ(∇ϕXg)(Z_2)) + g(Z_1, ϕ(∇ϕXg)(Z_2)). \tag{13}
Lemma: If a Riemannian metric tensor g is hybrid, then we have

$$g((\nabla_Y \varphi)(Z), X) = -g(Z, (\nabla_Y \varphi)(X)),$$

(14)

where ∇ denotes the operator of the Riemannian covariant derivative with respect to g.

Proof. By virtue of (1) and

$$Xg(Y, Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z),$$

we have

$$Yg(\varphi Z, X) = -Yg(Z, \varphi X),$$

$$g(\nabla_Y \varphi(Z), X) + g(\varphi Z, \nabla_Y X) = -g(\nabla_Y Z, \varphi X) - g(Z, \nabla_Y \varphi(X))$$

or

$$-g(\nabla_Y Z, \varphi X) - g(\nabla_Y \varphi(Z), X) = g(\varphi Z, \nabla_Y X) + g(Z, \nabla_Y \varphi(X))$$

$$g(\varphi(\nabla_Y Z) - \nabla_Y \varphi(Z), X) = -g(Z, \varphi(\nabla_Y X) + \nabla_Y \varphi(X))$$

and therefore, by (6), the proof is completed. \(\square\)

We have

$$(\Phi_\varphi g)(X, Z_1, Z_2) - (\Phi_\varphi g)(Z_2, Z_1, X) = g(Z_1, (\nabla_X \varphi)(Z_2)) - g(Z_1, (\nabla_X \varphi)(Z_2))$$

$$-g(Z_1, (\nabla_X \varphi)(Z_2)) - g(X, (\nabla_X \varphi)(Z_2))$$

$$+g(Z_1, (\nabla_X \varphi)(X)) - g(Z_1, (\nabla_X \varphi)(X))$$

$$+g(Z_1, \varphi(\nabla_X Z_2)) + g(Z_1, \varphi(\nabla_X Z_2))$$

$$-g(Z_1, \varphi(\nabla_X Z_2)) - g(Z_1, \varphi(\nabla_X Z_2)).$$
\[-2g(X, (\nabla Z_1, \varphi)(Z_2)) + 2g(Z_1, \varphi(\nabla_X Z_2))
\quad - 2g(Z_1, \varphi(\nabla_Z_2 X))
\quad = -2g(X, (\nabla Z_1, \varphi)(Z_2)) + 2g(Z_1, \varphi(L_X Z_2))\]

or

\[(\psi_{\varphi} g)(X, Z_1, Z_2) - (\psi_{\varphi} g)(Z_2, Z_1, X) = -2g(X, (\nabla Z_1, \varphi)(Z_2)) \quad (15)\]

where

\[(\psi_{\varphi} g)(X, Z_1, Z_2) = (\Phi_{\varphi} g)(X, Z_1, Z_2) - g(Z_1, \varphi(L_X Z_2))
\quad = (L_{\varphi X} g)(Z_1, Z_2) - (L_X (g \circ \varphi))(Z_1, Z_2) - g(\varphi Z_1, L_X Z_2),\]

\[(\psi_{\varphi} g)(Z_2, Z_1, X) = (\Phi_{\varphi} g)(Z_2, Z_1, X) - g(Z_1, \varphi(L_Z_2 X))
\quad = (L_{\varphi Z_2} g)(Z_1, X) - (L_Z_2 (g \circ \varphi))(Z_1, X) - g(\varphi Z_1, L_Z_2 X).\]

From (15) we have

\[(\psi_{\varphi} g)(X, Z_1, Z_2) - (\psi_{\varphi} g)(Z_2, Z_1, X) + (\psi_{\varphi} g)(X, Z_2, Z_1) - (\psi_{\varphi} g)(Z_1, Z_2, X)
\quad = -2g(X, (\nabla Z_1, \varphi)(Z_2)) + (\nabla_{Z_2} \varphi)(Z_1)).\]

Thus we have the following theorem.

Theorem A necessary and sufficient condition that an almost Hermitian manifold to be nearly Kahlerian is that

\[\text{Alt}_{X, Z_2} (\psi_{\varphi} g)(X, Z_1, Z_2) + \text{Alt}_{X, Z_1} (\psi_{\varphi} g)(X, Z_2, Z_1) = 0.\]
References

N. CENGİZ, Ö. TARAKCI, A. A. SALIMOV
Department of Mathematics,
Faculty of Sciences and Arts,
Atatürk University,
25240 Erzurum-TURKEY
e-mail: ncengiz@atauni.edu.tr

Received 03.05.2005