Decompositions of Continuity

Talal Al-Hawary, Ahmad Al-Omari

Abstract

In 2004, Al-Hawary and Al-Omari introduced and explored the class of ω^o—open sets which is strictly stronger than the class of ω—open sets and weaker than that of open sets. In this paper, we introduce what we call ω^o—continuity and ω^o_X—continuity and we give several characterizations and two decompositions of ω^o—continuity. Finally, new decompositions of continuity are provided.

Key Words: ω^o—open, ω^o—continuity, Continuity.

1. Introduction

Let (X, \mathcal{T}) be a topological space (or simply, a space). If $A \subseteq X$, then the closure of A and the interior of A will be denoted by $Cl_\mathcal{T}(A)$ and $Int_\mathcal{T}(A)$, respectively. If no ambiguity appears, we use \overline{A} and A^o instead. By X, Y and Z we mean topological spaces with no separation axioms assumed. $\mathcal{T}_{standard}, \mathcal{T}_{indiscrete}, \mathcal{T}_{leftray}$ and $\mathcal{T}_{counatble}$ stand for the standard, indiscrete, left ray and the cocountable topologies, respectively. A space (X, \mathcal{T}) is anti locally countable if all non-empty open subsets are uncountable.

In [3], the concept of ω-closed subsets was explored where a subset A of a space (X, \mathcal{T}) is ω-closed if it contains all of its condensation points. In [4], several characterizations of ω-continuity were provided where a map $f : X \rightarrow Y$ is ω-continuous at $x \in X$ if for every open subset V in Y containing $f(x)$, there exists an ω-open subset U in X containing x such that $f(U) \subseteq V$. f is ω-continuous if it is ω-continuous at every $x \in X$. Several properties of ω-continuous mappings were also explored. Analogous to [4, 5, 8, 9], in

2004 AMS Mathematics Subject Classification: 54C08, 54C05, 54C10.
Section 2 we introduce the relatively new notion of \(\omega^o \)-continuity, which is closely related to continuity and \(\omega \)-continuity. In fact, properly placed between them. Moreover, we show that \(\omega^o \)-continuity preserves Lindelof property and a space \((X, \mathcal{T}) \) is Lindelof if and only if \((X, \mathcal{T}_{\omega^o}) \) is Lindelof, where \(\mathcal{T}_{\omega^o} \) is the collection of all \(\omega^o \)-open subsets of \(X \). Sections 3 is devoted for studying four weaker notions of \(\omega^o \)-continuity by which we provide two decompositions of \(\omega^o \)-continuity. Finally, in Section 4 we give several decompositions of continuity which seem to be new.

Next, we recall several necessary definitions and results from [1].

Definition 1 A subset \(A \) of a space \((X, \mathcal{T}) \) is called \(\omega^o \)-open if for every \(x \in A \), there exists an open subset \(U_x \subseteq X \) containing \(x \) such that \(U_x \setminus A \) is countable. The complement of an \(\omega^o \)-open subset is called \(\omega^o \)-closed.

Clearly every open set is \(\omega^o \)-open and every \(\omega^o \)-open is \(\omega \)-open.

Theorem 1 If \((X, \mathcal{T}) \) is a space, then \((X, \mathcal{T}_{\omega^o}) \) is a space such that \(\mathcal{T} \subseteq \mathcal{T}_{\omega^o} \subseteq \mathcal{T}_{\omega} \), where \(\mathcal{T}_{\omega} \) is the collection of all \(\omega \)-open subsets of \(X \).

Corollary 1 If \((X, \mathcal{T}) \) is anti locally countable and \(A \) is \(\omega^o \)-closed, then \(\text{Int}_{\mathcal{T}}(A) = \text{Int}_{\mathcal{T}_{\omega^o}}(A) \).

2. \(\omega^o \)-Continuous Mappings

We begin this section by introducing the notion of \(\omega^o \)-continuous mappings. Several characterizations of this class of mappings are also provided.

Definition 2 A map \(f : X \to Y \) is \(\omega^o \)-continuous at \(x \in X \) if for every open subset \(V \) in \(Y \) containing \(f(x) \), there exists an \(\omega^o \)-open subset \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq V \). \(f \) is \(\omega^o \)-continuous if it is \(\omega^o \)-continuous at every \(x \in X \).

As every open set is \(\omega^o \)-open and every \(\omega^o \)-open set is \(\omega \)-open, every continuous map is \(\omega^o \)-continuous and every \(\omega^o \)-continuous map is \(\omega \)-continuous. The converses need not be true.

Example 1 Let \(X = \{a, b\} \), \(\mathcal{T}_1 = \{\emptyset, X, \{a\}\} \) and \(\mathcal{T}_2 = \{\emptyset, X, \{b\}\} \). Then the identity map \(\text{id} : (X, \mathcal{T}_1) \to (X, \mathcal{T}_2) \) is \(\omega^o \)-continuous but not continuous.
Example 2 Let $Y = \{0, 1\}$ and $\mathfrak{T} = \{\emptyset, Y, \{0\}\}$. Then the map $f : (\mathbb{R}, \mathfrak{T}_{\text{standard}}) \to (Y, \mathfrak{T})$ defined by $f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R}\setminus\mathbb{Q} \end{cases}$ is ω-continuous but not ω^o-continuous.

The proofs of the following three results are similar to those for ω-continuous maps given in [4] and are thus omitted.

Lemma 1 Let X, Y and Z be spaces. Then

(1) If $f : X \to Y$ is ω^o-continuous surjection and $g : Y \to Z$ is continuous surjection, then $g \circ f$ is ω^o-continuous.

(2) If $f : X \to Y$ is ω^o-continuous surjection and $A \subseteq X$, then $f|_A$ is ω^o-continuous.

(3) If $f : X \to Y$ is a map such that $X = X_1 \cup X_2$ where X_1 and X_2 are closed and both $f|_{X_1}$ and $f|_{X_2}$ are ω^o-continuous, then f is ω^o-continuous.

(4) If $f_1 : X \to X_1$ and $f_2 : X \to X_2$ are maps and $g : X \to X_1 \times X_2$ is the map defined by $g(x) = (f_1(x), f_2(x))$ for all $x \in X$, then g is ω^o-continuous if and only if f_1 and f_2 are ω^o-continuous.

Lemma 2 For a map $f : X \to Y$, the following are equivalent:

(1) f is ω^o-continuous.

(2) The inverse image of every open subset of Y is ω^o-open in X.

(3) The inverse image of every closed subset of Y is ω^o-closed in X.

(4) The inverse image of every basic open subset of Y is ω^o-open in X.

(5) The inverse image of every subbasic open subset of Y is ω^o-open in X.

Lemma 3 A space (X, \mathfrak{T}_X) is Lindelof if and only if $(X, \mathfrak{T}_{\omega^o})$ is Lindelof.

Next we show that being Lindelof is preserved under ω^o-continuity.

Theorem 2 If $f : (X, \mathfrak{T}_X) \to (Y, \mathfrak{T}_Y)$ is ω^o-continuous and X is Lindelof, then Y is Lindelof.

Proof. Let $\mathfrak{B} = \{V_\alpha : \alpha \in \nabla\}$ be an open cover of Y. Since f is ω^o-continuous, $\mathfrak{A} = \{f^{-1}(V_\alpha) : \alpha \in \nabla\}$ is a cover of X by ω^o-open subsets and as X is Lindelof, by Lemma 3, \mathfrak{A} has a countable subcover $\{f^{-1}(V_{\alpha_n}) : n \in \mathbb{N}\}$. Now $Y = f(X) = f(\bigcup\{f^{-1}(V_{\alpha_n}) : n \in \mathbb{N}\}) \subseteq \bigcup\{V_{\alpha_n} : n \in \mathbb{N}\}$. Therefore Y is Lindelof. \square
If X is a countable space, then every subset of X is ω^o-open and hence every map $f : X \to Y$ is ω^o-continuous. Next, we show that if X is uncountable such that every ω^o-continuous map $f : X \to Y$ is a constant map, then X has to be connected.

Theorem 3 If X is uncountable space such that every ω^o-continuous map $f : X \to Y$ is a constant map, then X is connected.

Proof. If X is disconnected, then there exists a non-empty proper subset A of X which is both open and closed. Let $Y = \{a, b\}$ and $\mathcal{T}_Y = \{\emptyset, Y, \{b\}\}$ and $f : X \to Y$ defined by $f(A) = \{a\}$ and $f(X \setminus A) = \{b\}$. Then f is a non-constant ω^o-continuous map. □

The converse of the preceding result need not be true even when X is uncountable.

Example 3 The identity map $id : (\mathbb{R}, \mathcal{T}_{leftray}) \to (\mathbb{R}, \mathcal{T}_{indiscrete})$ is a non-constant ω^o-continuous.

3. Decompositions of ω^o-Continuity

We begin by recalling the following well-known two definitions.

Definition 3 A map $f : X \to Y$ is weakly continuous at $x \in X$ if for every open subset V in Y containing $f(x)$, there exists an open subset U in X containing x such that $f(U) \subseteq \overline{V}$. f is weakly continuous if it is weakly continuous at every $x \in X$.

Definition 4 A map $f : X \to Y$ is W^*-continuous if for every open subset V in Y, $f^{-1}(\text{Fr}(V))$ is closed in X, where $\text{Fr}(V) = \overline{V} \setminus \text{int}(V)$.

Weakly continuity and W^*-continuity are independent notions that are weaker than continuity and the two together characterize continuity (see for example [7]). Next we give two relatively new such definitions.

Definition 5 A map $f : X \to Y$ is weakly ω^o-continuous at $x \in X$ if for every open subset V in Y containing $f(x)$, there exists an ω^o-open subset U in X containing x such that $f(U) \subseteq \overline{V}$. f is weakly ω^o-continuous if it is weakly ω^o-continuous at every $x \in X$.

Clearly, every ω^o-continuous and every weakly continuous map is weakly ω^o-continuous. Non of the converses need be true as shown next.
Example 4 Let \(Y = \{a, b, c\} \) and \(\mathcal{T} = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\} \). Then the map \(f : (\mathbb{R}, \mathcal{T}_{\text{co-countable}}) \to (Y, \mathcal{T}) \) defined by \(f(x) = a \) for all \(x \in \mathbb{R} \). Then \(f \) is weakly \(\omega^o \)-continuous but not \(\omega^o \)-continuous.

Example 5 Let \(Y = \{a, b, c\} \) and \(\mathcal{T} = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\} \). Then the map \(f : (\mathbb{R}, \mathcal{T}_{\text{co-countable}}) \to (Y, \mathcal{T}) \) defined by \(f(x) = \begin{cases} a & x \in \mathbb{Q} \\ b & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \) for all \(x \in \mathbb{R} \). Then \(f \) is weakly continuous and hence weakly \(\omega^o \)-continuous but not \(\omega^o \)-continuous.

Definition 6 A map \(f : X \to Y \) is coweakly \(\omega^o \)-continuous if for every open subset \(V \) in \(Y \), \(f^{-1}(\text{Fr}(V)) \) is \(\omega^o \)-closed in \(X \), where \(\text{Fr}(V) = \overline{V} \setminus \overline{V} \).

Clearly, every \(\omega^o \)-continuous is coweakly \(\omega^o \)-continuous. The converse need not be true.

Example 6 Let \(X = Y = \{a, b\} \), \(\mathcal{T}_X = \{\emptyset, X\} \) and \(\mathcal{T}_Y = \{\emptyset, Y, \{a\}, \{b\}\} \). Then the identity map \(\text{id} : X \to Y \) is coweakly \(\omega^o \)-continuous but not \(\omega^o \)-continuous.

Our first characterization of \(\omega^o \)-continuity in terms of the preceding two notions of continuity is given next.

Theorem 4 The following are equivalent for a map \(f : (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y) \):

1. \(f \) is \(\omega^o \)-continuous.
2. \(f : (X, \mathcal{T}_{\omega^o}) \to (Y, \mathcal{T}_Y) \) is continuous.
3. \(f : (X, \mathcal{T}_{\omega^o}) \to (Y, \mathcal{T}_Y) \) is weakly continuous and W*-continuous.

Proof. (1) \(\Rightarrow \) (2): Obvious.

(2) \(\Rightarrow \) (3): Follows from Theorem 1.

(3) \(\Rightarrow \) (1): Since \(f : (X, \mathcal{T}_{\omega^o}) \to (Y, \mathcal{T}_Y) \) is W*-continuous, it is coweakly \(\omega^o \)-continuous and as it is weakly-continuous, it is weakly \(\omega^o \)-continuous. Thus by Theorem 1, \(f : (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y) \) is \(\omega^o \)-continuous.

We show that weakly \(\omega^o \)-continuity and coweakly \(\omega^o \)-continuity are independent notions, but together they characterize \(\omega^o \)-continuity. This will be our first decomposition of \(\omega^o \)-continuity which is analogous to the result that can be found in [2] for \(\omega \)-continuity.
Example 7 The map id in Example 6 is coweakly ω^o-continuous but not weakly ω^o-continuous.

Example 8 Let $Y = \{a, b\}$ and $\mathfrak{T} = \{\emptyset, Y, \{a\}\}$. Then the map $f : (\mathbb{R}, \mathfrak{T}_{\text{co-countable}}) \to (Y, \mathfrak{T})$ defined by $f(x) = \begin{cases} a & x \in \mathbb{Q} \\ b & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ for all $x \in \mathbb{R}$. Then f is weakly ω^o-continuous but not coweakly ω^o-continuous.

Theorem 5 A map $f : X \to Y$ is ω^o-continuous if and only if f is both weakly and coweakly ω^o-continuous.

Proof. ω^o-continuity implies weakly and coweakly ω^o-continuity is obvious. Conversely, suppose $f : X \to Y$ is both weakly and coweakly ω^o-continuous and let $x \in X$ and V be an open subset of Y such that $f(x) \in V$. Then as f is weakly ω^o-continuous, there exists a ω^o-open subset U of X containing x such that $f(U) \subseteq V$. Now $Fr(V) = V \setminus V$ and hence $f(x) \notin Fr(V)$. So $x \in U \setminus f^{-1}(Fr(V))$ which is ω^o-open in X since f is coweakly ω^o-continuous. For every $y \in f(U \setminus f^{-1}(Fr(V)))$, $y = f(a)$ for some $a \in U \setminus f^{-1}(Fr(V))$ and hence $f(a) = y \in f(U) \subseteq V$ and $y \notin Fr(V)$. Thus $f(a) = y \notin Fr(V)$ and thus $f(a) \in V$. Therefore, $f(U \setminus f^{-1}(Fr(V))) \subseteq V$ and hence f is ω^o-continuous. \qed

Next, we define a new class of open sets that is independent of ω-open class, but together they characterize ω^o-open.

Definition 7 For a space (X, \mathfrak{T}), let $\omega^o_\omega : = \{A \subseteq X : \text{Int}_{\mathfrak{T}_{\omega}}(A) = \text{Int}_{\mathfrak{T}}(A)\}$. A is ω^o_ω-set if $A \in \omega^o_\omega$.

Clearly every ω^o-open set is ω^o_ω-set, but the converse need not be true.

Example 9 Consider \mathbb{R} with the standard topology $\mathfrak{T}_{\text{standard}}$. Then \mathbb{Q} is an ω^o_ω-set which is neither ω^o-open nor ω-open.

Even an ω-open subset need not be an ω^o_ω-set.

Example 10 Consider \mathbb{R} with the standard topology $\mathfrak{T}_{\text{standard}}$. Then $\mathbb{R} \setminus \mathbb{Q}$ is an ω-open which is not an ω^o_ω-set.

Theorem 6 A subset A of a space X is ω^o-open if and only if A is ω-open and an ω^o_ω-set.
Proof. Trivially every ω^o-open is ω-open and an ω^o-set. Conversely, let A be an ω-open set that is ω^o-set. Then $A = \text{Int}_{\omega}(A) = \text{Int}_{\omega^o}(A)$ and therefore A is ω^o-open.

Definition 8 A map $f : X \to Y$ is ω^o-continuous if the inverse image of every open subset of Y is an ω^o-set.

Clearly every ω^o-continuous map is ω^o-continuous, but the converse need not be true as not every ω^o-set is ω^o-open. An immediate consequence of Theorem 6 is the following decomposition of ω^o-continuity.

Theorem 7 A map $f : X \to Y$ is ω^o-continuous if and only if f is ω-continuous and ω^o-continuous.

4. Decompositions of Continuity

We begin this section by introducing the notion of an ω^o_X-set. We then introduce the notion of ω^o_X-continuity which gives an immediate decomposition of continuity.

Definition 9 For a space (X, \mathcal{T}), let $\omega^o_X = \{ A \subseteq X : \text{Int}_{\omega}(A) = \text{Int}(A) \}$. A is an ω^o_X-set if $A \in \omega^o_X$.

The proof of the following result follows immediately from Corollary 1.

Corollary 2 If (X, \mathcal{T}) is anti locally countable, then ω^o_X contains all ω^o-closed subsets of X.

We remark that, in general, an ω^o-closed set need not be an ω^o_X-set as shown in the next example.

Example 11 Let $X = \{a, b\}$ and $\mathcal{T} = \{\emptyset, X, \{a\}\}$. Set $A = \{b\}$. Then A is ω^o-closed but not an ω^o_X-set.

As every open set is ω^o-open, every open set is an ω^o_X-set but the converse need not be true.

Example 12 Consider \mathbb{R} with the standard topology $\mathcal{T}_{\text{standard}}$. Then \mathbb{Q} is an ω^o_X-set which is not open.
Next, we show that the notions of ω_X-set and ω^α-open are independent, but together they characterize open sets.

Example 13 In Example 11, A is ω^α-open but not an ω_X-set.

Example 14 In Example 12, Q is an ω_X-set which is not ω^α-open.

Theorem 8 A subset A of a space X is open if and only if A is ω^α-open and an ω_X-set.

Proof. Trivially every open set is ω^α-open and an ω_X-set. Conversely, let A be an ω^α-open set that is ω_X-set. Then $A = \text{Int}_{\omega^\alpha}(A) = \text{Int}_T(A)$ and therefore A is open. \(\Box\)

In a similar manner, for a space (X, \mathcal{T}) let $\omega_X = \{A \subseteq X : \text{Int}_{\omega^\alpha}(A) = \text{Int}_T(A)\}$ and call a subset A is ω_X-set if $A \in \omega_X$. Then we have the following result.

Theorem 9 A subset A of a space X is open if and only if A is ω-open and an ω_X-set.

Definition 10 A map $f : X \to Y$ is ω_X-continuous (respectively, ω_X-continuous) if the inverse image of every open subset of Y is an ω_X-set (respectively, ω_X-set).

Clearly every continuous map is ω_X-continuous, but the converse need not be true as not every ω_X-set is open. An immediate consequence of Theorems 5, 7, 8 and 9 are the following decompositions of continuity, which seem to be new.

Theorem 10 For a map $f : X \to Y$, the following are equivalent:

1. f is continuous.
2. f is ω^α-continuous and ω_X-continuous.
3. f is ω-continuous and ω_X-continuous.
4. f is both weakly ω^α-continuous, coweakly ω^α-continuous and ω_X-continuous.
5. f is ω-continuous, ω^α-continuous and ω_X-continuous.

References

194

Talal AL-HAWARY, Ahmad AL-OMARI
Department of Mathematics & Statistics
Mu’tah University
P. O. Box 6, Karak-JORDAN
e-mail: drtalal@yahoo.com

Received 04.10.2004