A Connected Sum of Knots and Fintushel-Stern Knot Surgery on 4-manifolds

Manabu Akaho

Abstract

We give some new examples of smooth 4-manifolds which are diffeomorphic although they are obtained by Fintushel-Stern knot surgeries on a smooth 4-manifold with different knots; the first such examples are given by Akbulut [1]. In the proof we essentially use the monodromy of a cusp.

1. Introduction

Let X be a smooth 4-manifold. In [4] a cusp in X is a PL embedded 2-sphere of self-intersection 0 with a single nonlocally flat point whose neighborhood is the cone on the right-hand trefoil knot. The regular neighborhood of a cusp is called a cusp neighborhood. It is fibered by smooth tori with one singular fiber, the cusp, and the monodromy is

$$
\begin{pmatrix}
1 & 1 \\
-1 & 0
\end{pmatrix}.
$$

If T is a smoothly embedded torus representing a nontrivial homology class $[T]$, we say that T is c-embedded if T is a smooth fiber in a cusp neighborhood.

Consider an oriented knot K in S^3, and let m denote an oriented meridional circle to K; see Figure 1. Let M_K be the 3-manifold obtained by performing 0-framed surgery on K. Then m can also be viewed as a circle in M_K. In $M_K \times S^1$ we have a smooth torus

1991 Mathematics Subject Classification: Primary 57R55. Secondary 57M25
Supported by JSPS Grant-in-Aid for Scientific Research (Wakate (B))
$T_m = m \times S^1$ of self-intersection 0. Since a tubular neighborhood of m has a canonical framing in M_K, a tubular neighborhood of the torus T_m in $M_K \times S^1$ has a canonical identification with $T_m \times D^2$. Let $X_{(K,\phi)}$ denote the fiber sum

$$X_{(K,\phi)} := [X \setminus (T \times D^2)] \cup_{\phi} [(M_K \times S^1) \setminus (T_m \times D^2)],$$

where $T \times D^2$ is a tubular neighborhood of the torus T in the manifold X and $\phi : \partial(T \times D^2) \to \partial(T_m \times D^2)$ is a homeomorphism. In general, the diffeomorphism type of $X_{(K,\phi)}$ depends on ϕ. If we fix an identification of T with $S^1 \times S^1$ and a homeomorphism $\phi : \partial(T \times D^2) \to \partial(T_m \times D^2)$ such that

$$\phi(S^1 \times * \times *) = m \times * \times *,$$
$$\phi(* \times S^1 \times *) = * \times S^1 \times *,$$
$$\phi(* \times * \times \partial D^2) = * \times * \times \partial D^2,$$

where *'s are points, then we shall simply denote $X_{(K,\phi)}$ by X_K. We call this operation Fintushel-Stern knot surgery on a 4-manifold X with K.

In case $H_1(X,\mathbb{Z})$ has no 2-torsion there is a natural identification of the spinc structures of X with the characteristic elements of $H^2(X,\mathbb{Z})$. Recall that the Seiberg-Witten invariant SW_X is a function

$$SW_X : \{k \in H^2(X,\mathbb{Z})|k \equiv w_2(TX) \mod 2\} \to \mathbb{Z}.$$

The function SW_X has a compact support $B = \{\pm \beta_1, \ldots, \pm \beta_n\}$ which is called the set of basic classes. By setting $t_\beta := \exp \beta$ for each $\beta \in H^2(X,\mathbb{Z})$, the function SW_X is usually written as a Laurent polynomial

$$SW_X = \sum_{\beta \in B} SW_X(\beta)t_\beta.$$
Then Fintushel and Stern [4] theorem says:

Theorem 1.1 Let X be a simply connected smooth 4-manifold with $b^+ > 1$. Suppose that X contains a smoothly c-embedded torus T such that $\pi_1(X \setminus T) = 1$. Then

$$SW_X = SW_X \cdot \Delta_K(t),$$

where $t = \exp 2[T]$ and $\Delta_K(t)$ is the Alexander polynomial of K.

To make sense of the statement of the theorem, we need to replace $[T]$ by its Poincaré dual.

Since the Seiberg-Witten invariant is a diffeomorphism invariant, if SW_X and $\Delta_K(t)$ are nontrivial, then X and X_K are not diffeomorphic. Fintushel and Stern conjectured that if X is the Kummer surface $K3$, then the association $K \mapsto X_K$ gives an injective map from the set of isotopy classes of knots in S^3 to the set of diffeomorphism classes of smooth structures on X. In [1] Akbulut gave first counterexamples to this conjecture:

Theorem 1.2 Let X be a smooth 4-manifold. Suppose that X contains a smoothly c-embedded torus T. Fix an identification of T with $S^1 \times S^1$. We denote the mirror reflection of an oriented knot K by K^*, see Figure 2. Then

$$X_K = X_{K^*},$$

and this diffeomorphism leaves the core torus invariant.

We denote an oriented meridional circle to K^* by m'. In the Alexander polynomials K is equal to K^*, i.e., $\Delta_K(t) = \Delta_{K^*}(t)$. In Section 2 we give a simple proof of Theorem 1.2.

Next we give a relation between a connected sum of knots and Fintushel-Stern knot surgery; this observation is given by S. Finashin, see Lemma 3.1 in [3]. Let T_1 and T_2 be regular fibers in a cusp neighborhood in X. We fix common identifications of T_1 and T_2 with $S^1 \times S^1$ by holonomy. Let K_1 and K_2 be oriented knots in S^3. We construct X_{K_1} by using T_1 and K_1. Since X_{K_1} also has a cusp neighborhood which has T_2 as a smooth fiber, we can construct $(X_{K_1})_{K_2}$ by using T_2 and K_2.

Theorem 1.3

$$(X_{K_1})_{K_2} = X_{K_1 \sharp K_2},$$

where $K_1 \sharp K_2$ is the connected sum of K_1 and K_2.

89
Figure 2

Note that \(\Delta_{K_1}(t) \cdot \Delta_{K_2}(t) = \Delta_{K_1 \# K_2}(t) \). Because the core torus is invariant with respect to the diffeomorphism \(X_{K_1} = X_{K_1^*} \), we obtain the following corollary:

Corollary 1.4

\[
(X_{K_1})_{K_2} = X_{(K_1 \# K_2)}.
\]

Finally these claims give us new counterexamples to the conjecture:

Corollary 1.5

\[
X_{K_1 \# K_2} = X_{(K_1^* \# K_2)}.
\]

In section 3 we prove Theorem 1.3.

2. A simple proof of Theorem 1.2

In this section we give a simple proof of Theorem 1.2.

We denote the oppositely oriented circle to an oriented \(S^1 \) by \(\overline{S^1} \). Let \(Y \) denote the fiber sum

\[
Y := [X \setminus (T \times D^2)] \cup \psi [(M_{K^*} \times S^1) \setminus (T_{m^*} \times D^2)],
\]
where \(\psi : \partial (T \times D^2) \to \partial (T_m \times D^2) \) is a homeomorphism such that
\[
\begin{align*}
\psi(\overline{S^1} \times \ast \times \ast) &= m' \times \ast \times \ast, \\
\psi(\ast \times \overline{S^1} \times \ast) &= \ast \times S^1 \times \ast, \\
\psi(\ast \times \ast \times \partial D^2) &= \ast \times \ast \times \partial D^2.
\end{align*}
\]

Since the third power of the monodromy of the cusp is \(-1\) on a smooth fiber \(T\), \(Y\) is diffeomorphic to \(X_K\). Let \(f : M_K \to M_K\) be an orientation reversing diffeomorphism which maps the points to their mirror reflection points and \(f \times (-\text{id}_{S^1}) : M_K \times S^1 \to M_K \times S^1\) an orientation preserving diffeomorphism, where \(-\text{id}_{S^1}\) is the orientation reversing diffeomorphism of \(S^1\). Then we can construct a diffeomorphism \(F : X_K \to Y\) by
\[
F(x) := \begin{cases}
(f \times (-\text{id}_{S^1}))(x), & \text{for } x \in (M_K \times S^1) \setminus (T_m \times D^2) \\
x, & \text{for } x \in X \setminus (T \times D^2),
\end{cases}
\]
and \(F\) maps the core torus to itself. Hence \(X_K = Y = X_K\) and we finish proving the theorem. \(\square\)

3. Proof of Theorem 1.3

We define an oriented link as in Figure 3; let \(N\) be the 3-manifold obtained by performing 0-framed surgery on each component of the link. Let \(W\) denote the fiber

![Figure 3](image-url)
sum

\[W := [X \setminus (T \times D^2)] \cup_0 [(N \times S^1) \setminus (T_m \times D^2)], \]

where \(m_1\) is an oriented meridional circle to \(K_1\). Because \(T_2\) is ambient isotopic to \(m_1 \times S^1\), we can easily see that \(W\) is diffeomorphic to \((X_{K_1})_{K_2}\). Now we shall play Kirby calculus on the 3-manifold \(N\) as in Figure 4. The last step of vanishing components can be found in example 5.2 of [6]. Hence \(N \setminus (m_1 \times D^2)\) is diffeomorphic to \(M_{K_1K_2} \setminus (m_1 \times D^2)\), and \(W\) is diffeomorphic to \(X_{K_1K_2}\). We finish proving Theorem 1.3.

Acknowledgment

The author would like to thank K. Fukaya who suggested publishing this manuscript and M. Tange who met him in argument.
References

