Inequality for Ricci Curvature of Slant Submanifolds in Cosymplectic Space Forms

Dae Won Yoon

Abstract

In this article, we establish inequalities between the Ricci curvature and the squared mean curvature, and also between the k-Ricci curvature and the scalar curvature for a slant, semi-slant and bi-slant submanifold in a cosymplectic space form of constant φ-sectional curvature with arbitrary codimension.

Key Words: Mean curvature, sectional curvature, k-Ricci curvature, slant submanifold, semi-slant submanifold, bi-slant submanifold, cosymplectic space form.

1. Introduction

Let \tilde{M} be a $(2m + 1)$-dimensional almost contact manifold endowed with an almost contact structure (φ, ξ, η), that is, φ is a $(1,1)$ tensor field, ξ is a vector field and η is a 1-form such that

$$\varphi^2 = -I + \eta \otimes \xi \quad \text{and} \quad \eta(\xi) = 1.$$

Then, $\varphi(\xi) = 0$ and $\eta \circ \varphi = 0$. Let g be a compatible Riemannian metric with (φ, ξ, η), that is, $g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$ or equivalent, $g(X, \varphi Y) = -g(\varphi X, Y)$ and $g(X, \xi) = \eta(X)$ for all $X, Y \in \tilde{M}$. Then, \tilde{M} becomes an almost contact metric manifold equipped with an almost contact metric structure (φ, ξ, η, g). An almost contact metric manifold is cosymplectic ([1]) if $\nabla_X \varphi = 0$, where ∇ is the Levi-Civita connection of the Riemannian metric g. From the formula $\nabla_X \varphi = 0$ it follows that $\nabla_X \xi = 0$.

A plane section π in $T_p \tilde{M}$ of an almost contact metric manifold \tilde{M} is called a φ-section if $\pi \perp \xi$ and $\varphi(\pi) = \pi$. \tilde{M} is of constant φ-sectional curvature if sectional curvature $\tilde{K}(\pi)$ does not depend on the choice of the φ-section π of $T_p \tilde{M}$ and the choice of a point $p \in \tilde{M}$. A cosymplectic manifold \tilde{M} is said to be a cosymplectic space form if the φ-sectional curvature is constant c along \tilde{M}. A cosymplectic space form will be denoted by $\tilde{M}(c)$. Then the Riemannian curvature tensor \tilde{R} on $\tilde{M}(c)$ is given by (1.1)

\[4\tilde{R}(X, Y, Z, W) = c\{g(X, W)g(Y, Z) - g(X, Z)g(Y, W) + g(X, \varphi W)g(Y, \varphi Z) \]

\[- g(X, \varphi Z)g(Y, \varphi W) - 2g(X, \varphi Y)g(Z, \varphi W) - g(X, W)\eta(Y)\eta(Z) \]

\[+ g(X, Z)\eta(Y)\eta(W) - g(Y, Z)\eta(X)\eta(W) + g(Y, W)\eta(X)\eta(Z) \}. \]

Let M be an n-dimensional submanifold of a cosymplectic space form $\tilde{M}(c)$ equipped with a Riemannian metric g. The Gauss and Wiengarten formulas are given respectively by

\[\nabla_X Y = \nabla_X Y + h(X, Y) \quad \text{and} \quad \nabla_X N = -A_N X + \nabla^\perp_X N \]

for all $X, Y \in TM$ and $N \in T^\perp M$, where ∇, ∇^\perp and ∇^\perp are the Riemannian, induced Riemannian and induced normal connections in $\tilde{M}(c)$, M and the normal bundle $T^\perp M$ of M respectively, and h is the second fundamental form related to the shape operator A by $g(h(X, Y), N) = g(A_N X, Y)$. Then the equation of Gauss is given by

\[\tilde{R}(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)), \quad (1.2) \]

for any vectors X, Y, Z, W tangent to M.

For any vector X tangent to M we put $\varphi X = PX + FX$, where PX and FX are the tangential and the normal components of φX, respectively. Given an orthonormal basis \{ e_1, \ldots, e_n \} of M, we define the squared norm of P by

\[||P||^2 = \sum_{i,j=1}^{n} g^2(\varphi e_i, e_j) \]

and the mean curvature vector $H(p)$ at $p \in M$ is given by

\[H = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i). \]

We put

\[h^r_{ij} = g(h(e_i, e_j), e_r) \quad \text{and} \quad ||h||^2 = \sum_{i,j=1}^{n} g(h(e_i, e_j), h(e_i, e_j)), \]
where \(\{e_{n+1}, \ldots, e_{2m+1}\} \) is an orthonormal basis of \(T^\perp_p M \) and \(\tau = n + 1, \ldots, 2m + 1 \). A submanifold \(M \) in \(\tilde{M}(c) \) is called \textit{totally geodesic} if the second fundamental form vanishes identically and \textit{totally umbilical} if there is a real number \(\lambda \) such that \(h(X, Y) = \lambda g(X, Y)H \) for any tangent vectors \(X, Y \) on \(M \).

For an \(n \)-dimensional Riemannian manifold \(M \), we denote by \(K(\pi) \) the sectional curvature of \(M \) associated with a plane section \(\pi \subset T_p M, p \in M \). For an orthonormal basis \(\{e_1, \ldots, e_n\} \) of the tangent space \(T_p M \), the scalar curvature \(\tau \) is defined by

\[
\tau = \sum_{i<j} K_{ij},
\]

(1.3)

where \(K_{ij} \) denotes the sectional curvature of the 2-plane section spanned by \(e_i \) and \(e_j \).

Suppose \(L \) is a \(k \)-plane section of \(T_p M \) and \(X \) a unit vector in \(L \). We choose an orthonormal basis \(\{e_1, \ldots, e_k\} \) of \(L \) such that \(e_1 = X \). Define the Ricci curvature \(\text{Ric}_L \) of \(L \) at \(X \) by

\[
\text{Ric}_L(X) = K_{12} + \cdots + K_{kk}.
\]

(1.4)

We simply call such a curvature a \(k \)-\textit{Ricci curvature}. The scalar curvature \(\tau \) of the \(k \)-plane section \(L \) is given by

\[
\tau(L) = \sum_{1 \leq i < j \leq k} K_{ij}.
\]

(1.5)

For each integer \(k, 2 \leq k \leq n \), the Riemannian invariant \(\Theta_k \) on an \(n \)-dimensional Riemannian manifold \(M \) is defined by

\[
\Theta_k(p) = \frac{1}{k-1} \inf_{L,X} \text{Ric}_L(X), \quad p \in M,
\]

(1.6)

where \(L \) runs over all \(k \)-plane sections in \(T_p M \) and \(X \) runs over all unit vectors in \(L \).

Recall that for a submanifold \(M \) in a Riemannian manifold, the relative null space of \(M \) at a point \(p \in M \) is defined by

\[
N_p = \{X \in T_p M | h(X, Y) = 0 \quad \text{for all} \quad Y \in T_p M\}.
\]

In [8], A. Lotta has introduced the following notion of slant submanifolds into almost contact metric manifolds. A submanifold \(M \) tangent to \(\xi \) is said to be \textit{slant} if for any
Let $p \in M$ and any $X \in T_pM$, linearly independent of ξ, the angle between φX and T_pM is a constant $\theta \in [0, \pi/2]$, called the slant angle of M in $\tilde{M}(\xi)$. Invariant and anti-invariant submanifolds of $\tilde{M}(\xi)$ are slant submanifolds with slant angle $\theta = 0$ and $\theta = \pi/2$, respectively.

We say that a submanifold M tangent to ξ is a bi-slant submanifold in $\tilde{M}(\xi)$ if there exist two orthogonal distributions D_1 and D_2 on M such that

1. TM admits the orthogonal direct decomposition $TM = D_1 \oplus D_2 \oplus \{\xi\}$
2. For any $i = 1, 2$, D_i is slant distribution with slant angle θ_i.

On the other hand, CR-submanifolds of $\tilde{M}(\xi)$ are bi-slant submanifolds with $\theta_1 = 0$, $\theta_2 = \pi/2$.

Let $2d_1 = \dim D_1$ and $2d_2 = \dim D_2$.

Remark. If either d_1 or d_2 vanishes, the bi-slant submanifold is a slant submanifold. Thus, slant submanifolds are particular cases of bi-slant submanifolds.

A submanifold M tangent to ξ is called a semi-slant submanifold in $\tilde{M}(\xi)$ if there exist two orthogonal distributions D_1 and D_2 on M such that

1. TM admits the orthogonal direct decomposition $TM = D_1 \oplus D_2 \oplus \{\xi\}$.
2. The distribution D_1 is an invariant distribution, i.e., $\varphi(D_1) = D_1$.
3. The distribution D_2 is slant with angle $\theta \neq 0$.

Remark. The invariant distribution of a semi-slant submanifold is a slant distribution with zero angle. Thus, it is obvious that in fact, semi-slant submanifolds are particular cases of bi-slant submanifolds.

1. If $d_2 = 0$, then M is an invariant submanifold.
2. If $d_1 = 0$ and $\theta = \pi/2$, then M is an anti-invariant submanifold.

For the other properties and examples of slant, bi-slant and semi-slant submanifolds in almost contact metric manifold, we refer to the reader [2], [3].

2. **Ricci Curvature and Squared Mean Curvature**

B.Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for submanifolds in real space forms (see [6]). We prove similar inequalities for slant, bi-slant and semi-slant submanifolds in a cosymplectic space form.
\(\tilde{M}(c) \). We consider submanifolds \(M \) tangent to the vector field \(\xi \).

Theorem 2.1 Let \(M \) be an \(n \)-dimensional \(\theta \)-slant submanifold tangent to \(\xi \) into a \((2m + 1)\)-dimensional cosymplectic space form \(\tilde{M}(c) \). Then, we have

1. For each unit vector \(X \in T_pM \) orthogonal to \(\xi \)
 \[
 \text{Ric}(X) \leq \frac{1}{4} \left((n - 1)c + \frac{1}{2}(3\cos^2 \theta - 2)c + n^2\|H\|^2 \right). \tag{2.1}
 \]

2. If \(H(p) = 0 \), then a unit tangent vector \(X \) orthogonal to \(\xi \) at \(p \) satisfies the equality case of \((2.1) \) if and only if \(X \in N_p \).

3. The equality case of \((2.1) \) holds identically for all unit tangent vectors orthogonal to \(\xi \) at \(p \) if and only if \(p \) is a totally geodesic point.

Proof. Let \(X \in T_pM \) be a unit tangent vector at \(p \) orthogonal to \(\xi \). We choose an orthonormal basis \(e_1, \ldots, e_n = \xi, e_{n+1}, \ldots, e_{2m+1} \) such that \(e_1, \ldots, e_n \) are tangent to \(M \) at \(p \) with \(e_1 = X \). Then, from the equation of Gauss, we have

\[
 n^2\|H\|^2 = 2\tau + \|h\|^2 - \{n(n - 1) + 3(n - 1)\cos^2 \theta - 2n + 2\} \frac{c}{4}. \tag{2.2}
\]

From (2.2) we get

\[
 n^2\|H\|^2 = 2\tau + \sum_{r=n+1}^{2m+1} [(h_{11}^r)^2 + (h_{22}^r + \cdots + h_{nn}^r)^2 + 2 \sum_{1 \leq i < j \leq n} (h_{ij}^r)^2]
\]

\[
 - 2 \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} h_{ii}^r h_{jj}^r - \frac{c}{4}[n(n - 1) + 3(n - 1)\cos^2 \theta - 2n + 2]
\]

\[
 n^2\|H\|^2 = 2\tau + \frac{1}{2} \sum_{r=n+1}^{2m+1} [(h_{11}^r + h_{22}^r + \cdots + h_{nn}^r)^2 + (h_{11}^r - h_{22}^r - \cdots - h_{nn}^r)^2]
\]

\[
 + 2 \sum_{r=n+1}^{2m+1} \sum_{1 \leq i < j \leq n} (h_{ij}^r)^2 - 2 \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} h_{ii}^r h_{jj}^r
\]

\[
 - \frac{c}{4}[n(n - 1) + 3(n - 1)\cos^2 \theta - 2n + 2].
\]
By using the equation of Gauss, we have
\[\sum_{2 \leq i < j \leq n} K_{ij} = \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} [h_{ij}^r h_{ij}^r - (h_{ij}^r)^2] + (n-1)(n-2) \frac{c}{8} \]
[2.4]
\[+ [3(n-2) \cos^2 \theta - 2n + 4] \frac{c}{8}. \]

Substituting (2.4) in (2.3), we get
\[\frac{1}{2} n^2 ||H||^2 \geq 2 \text{Ric}(X) - 2(n - 1) \frac{c}{4} - (3 \cos^2 \theta - 2) \frac{c}{4}, \]
which is equivalent to (2.1).

(2) Assume \(H(P) = 0 \). Equality holds in (2.1) if and only if
\[
\begin{aligned}
& h_{ij}^r = 0, \quad i \neq j, \\
& h_{ij}^r = h_{ij}^r + \cdots + h_{ij}^r, \quad r \in \{n + 1, \cdots, 2m + 1\}.
\end{aligned}
\]

Then \(h_{ij}^r = 0 \) for all \(j \in \{1, \cdots, n\}, r \in \{n + 1, \cdots, 2m + 1\} \), that is, \(X \in N_p \).

(3) Then equality case of (2.1) holds for all unit tangent vectors orthogonal to \(\xi \) at \(p \) if and only if
\[
\begin{aligned}
& h_{ij}^r = 0, \quad i \neq j, \quad r \in \{n + 1, \cdots, 2m + 1\}, \\
& h_{ij}^r + \cdots + h_{ij}^r - 2h_{ij}^r = 0, \quad r \in \{n + 1, \cdots, 2m + 1\},
\end{aligned}
\]

In this case, it follows that \(p \) is a totally geodesic point. The converse is trivial.

Theorem 2.2 Let \(M \) be an \(n \)-dimensional bi-slant submanifold satisfying \(g(X, \varphi Y) = 0 \), for any \(X \in D_1 \) and any \(Y \in D_2 \), tangent to \(\xi \) in a \((2m + 1)\)-dimensional cosymplectic space form \(\bar{M}(c) \). Then,

(1) For each unit vector \(X \in T_p M \) orthogonal to \(\xi \) and if
(i) \(X \) is tangent to \(D_1 \), we have
\[\text{Ric}(X) \leq \frac{1}{4} \left\{ (n-1)c + \frac{1}{2}(3 \cos^2 \theta - 2)c + n^2 ||H||^2 \right\}; \]
(2.5)

and if
(ii) X is tangent to D_2, we have

$$\text{Ric}(X) \leq \frac{1}{4} \left\{ (n-1)c + \frac{1}{2} (3\cos^2 \theta_2 - 2)c + n^2 ||H||^2 \right\}.$$ \hspace{1cm} (2.6)

(2) If $H(p) = 0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.5) and (2.6) if and only if $X \in N_p$.

(3) The equality case of (2.5) and (2.6) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Proof. Let $X \in T_p M$ be a unit tangent vector at p orthogonal to ξ. We choose an orthonormal basis $e_1, \cdots, e_n = \xi, e_{n+1}, \cdots, e_{2m+1}$ such that e_1, \cdots, e_n are tangent to M at p with $e_1 = X$. Then, from the equation of Gauss, we have

$$n^2 ||H||^2 = 2\tau + ||h||^2 - \{n(n-1) + 6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n + 2\} \frac{c}{4},$$ \hspace{1cm} (2.7)

where $2d_1 = \dim D_1$ and $2d_2 = \dim D_2$.

From (2.7) we get

$$n^2 ||H||^2 = 2\tau + \sum_{r=n+1}^{2m+1} [(h_{11}^r)^2 + (h_{22}^r + \cdots + h_{nn}^r)^2 + 2 \sum_{1 \leq i < j \leq n} (h_{ij}^r)^2]$$

$$- 2 \sum_{r=n+1}^{2m+1} \sum_{1 \leq i < j \leq n} h_{ij}^r h_{jj}^r - \frac{c}{4} [n(n-1) + 6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n + 2]$$

$$= 2\tau + \frac{1}{2} \sum_{r=n+1}^{2m+1} [(h_{11}^r + h_{22}^r + \cdots + h_{nn}^r)^2 + (h_{11}^r - h_{22}^r - \cdots - h_{nn}^r)^2]$$

$$+ 2 \sum_{r=n+1}^{2m+1} \sum_{1 \leq i < j \leq n} (h_{ij}^r)^2 - 2 \sum_{r=n+1}^{2m+1} \sum_{1 \leq i < j \leq n} h_{ij}^r h_{jj}^r$$

$$- \frac{c}{4} [n(n-1) + 6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n + 2].$$ \hspace{1cm} (2.8)

We distinguish two cases:
(i) if X is tangent to D_1, then we have
\[
\sum_{2 \leq i < j \leq n} K_{ij} = \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} [h_{ii} h_{jj}^r - (h_{ij}^r)^2] + (n-1)(n-2)\frac{c}{8}
\]
\[
+ [6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 3 \cos^2 \theta_1 - 2n + 4] \frac{c}{8}.
\]
(2.9)

Substituting (2.9) in (2.8), one gets
\[
\frac{1}{2} n^2 \|H\|^2 \geq 2\text{Ric}(X) - 2(n-1)\frac{c}{4} - (3 \cos^2 \theta_1 - 2)\frac{c}{4},
\]
which is equivalent to (2.5).

(ii) if X is tangent to D_2, then we have
\[
\sum_{2 \leq i < j \leq n} K_{ij} = \sum_{r=n+1}^{2m+1} \sum_{2 \leq i < j \leq n} [h_{ii} h_{jj}^r - (h_{ij}^r)^2] + (n-1)(n-2)\frac{c}{8}
\]
\[
+ [6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 3 \cos^2 \theta_2 - 2n + 4] \frac{c}{8}.
\]
(2.10)

Substituting (2.10) in (2.8), one gets
\[
\frac{1}{2} n^2 \|H\|^2 \geq 2\text{Ric}(X) - 2(n-1)\frac{c}{4} - (3 \cos^2 \theta_2 - 2)\frac{c}{4},
\]
which is equivalent to (2.6).

(2) Assume $H(p) = 0$. Equality holds in (2.5) and (2.6) if and only if
\[
\begin{aligned}
&h_{i2} = \cdots = h_{in} = 0, \\
h_{i1} = h_{i2} + \cdots + h_{in}, & \quad r \in \{n+1, \cdots, 2m+1\}.
\end{aligned}
\]
Then $h_{ij}^r = 0$ for all $j \in \{1, \cdots, n\}, r \in \{n+1, \cdots, 2m+1\}$, that is, $X \in N_p$.

(3) Then equality case of (2.5) and (2.6) holds for all unit tangent vectors orthogonal to ξ at p if and only if
\[
\begin{aligned}
h_{ij}^r = 0, & \quad i \neq j, & r \in \{n+1, \ldots, 2m+1\}; \\
h_{i1}^r + \cdots + h_{nn}^r - 2h_{ii}^r = 0, & \quad i \in \{1, \cdots, n\}, & r \in \{n+1, \cdots, 2m+1\}.
\end{aligned}
\]
Corollary 2.3 Let M be an n-dimensional semi-slant submanifold in a $(2m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then,

(1) For each unit vector $X \in T_pM$ orthogonal to ξ and if
 (i) X is tangent to D_1 we have
 \[
 \text{Ric}(X) \leq \frac{1}{4} \left\{ (n-2)c + n^2\|H\|^2 \right\}.
 \]
 and if
 (ii) X is tangent to D_2 we have
 \[
 \text{Ric}(X) \leq \frac{1}{4} \left\{ (n-1)c + \frac{1}{2}(3\cos^2 \theta - 2)c + n^2\|H\|^2 \right\}. \tag{2.12}
 \]

(2) If $H(p) = 0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.11) and (2.12) if and only if $X \in N_p$.

(3) The equality case of (2.11) and (2.12) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Corollary 2.4 Let M be an n-dimensional invariant submanifold in a $(2m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then,

(1) For each unit vector $X \in T_pM$ orthogonal to ξ
 \[
 \text{Ric}(X) \leq \frac{1}{4} \left\{ (n-1)c + n^2\|H\|^2 \right\}. \tag{2.13}
 \]

(2) If $H(p) = 0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.13) if and only if $X \in N_p$.

(3) The equality case of (2.13) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Corollary 2.5 Let M be an n-dimensional anti-invariant submanifold in a $(2m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then,

(1) For each unit vector $X \in T_pM$ orthogonal to ξ
 \[
 \text{Ric}(X) \leq \frac{1}{4} \left\{ (n-2)c + n^2\|H\|^2 \right\}. \tag{2.14}
 \]
(2) If $H(p) = 0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.14) if and only if $X \in N_p$.

(3) The equality case of (2.14) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

3. k-Ricci Curvature and Squared Mean Curvature

In this section, we prove the relationship between the k-Ricci curvature and the squared mean curvature for slant, bi-slant and semi-slant submanifolds in a cosymplectic space form $\tilde{M}(c)$. We state an inequality between the scalar curvature and the squared mean curvature for submanifolds M tangent to the vector field ξ.

Theorem 3.1 Let M be an n-dimensional θ-slant submanifold tangent to ξ into a $(2m + 1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then we have

$$||H||^2 \geq \frac{2\tau}{n(n-1)} - \frac{[n(n-1) + 3(n-1)\cos^2 \theta - 2n + 2]c}{4n(n-1)},$$

equality holding at a point $p \in M$ if and only if p is a totally umbilical point.

Proof. Let p be a point of M. We choose an orthonormal basis $\{e_1, e_2, \cdots, e_n = \xi\}$ for the tangent space T_pM and $\{e_{n+1}, \cdots, e_{2m+1}\}$ for the normal space $T_p^\bot M$ at p such that the normal vector e_{n+1} is in the direction of the mean curvature vector and e_1, e_2, \cdots, e_n diagonalize the shape operator A_{n+1}. Then we have

$$A_{n+1} = \begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & a_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{pmatrix},$$

$$A_r = (h_{ij}^r), \quad \sum_{i=1}^{n} h_{ij}^r = 0, \quad n + 2 \leq r \leq 2m + 1.$$
From the equation of Gauss

\[n^2||H||^2 = 2\tau + \sum_{i=1}^{n} a_i^2 + \sum_{r=n+2}^{2m+1} \sum_{i,j=1}^{n} (h_{ij}^r)^2 - [n(n-1) + 3(n-1) \cos^2 \theta - 2n + 2]c^2, \tag{3.3} \]

On the other hand,

\[\sum_{i<j} (a_i - a_j)^2 = (n-1) \sum_{i=1}^{n} a_i^2 - 2 \sum_{i<j} a_i a_j. \tag{3.4} \]

Therefore, from the above equation we have

\[n^2||H||^2 = (\sum_{i=1}^{n} a_i)^2 = \sum_{i=1}^{n} a_i^2 + 2 \sum_{i<j} a_i a_j \leq n \sum_{i=1}^{n} a_i^2. \tag{3.5} \]

Combining (3.3) and (3.5), we get

\[n(n-1)||H||^2 \geq 2\tau + \sum_{r=n+2}^{2m+1} \sum_{i,j=1}^{n} (h_{ij}^r)^2 - [n(n-1) + 3(n-1) \cos^2 \theta - 2n + 2]c^2, \tag{3.6} \]

which implies inequality (3.1). If the equality sign of (3.1) holds at a point \(p \in M \) then from (3.4) and (3.6), we get \(A_r = 0 \) for \(r = n + 2, \ldots, 2m + 1 \) and \(a_1 = \cdots = a_n \). Consequently, \(p \) is a totally umbilical point. The converse is trivial. \(\Box \)

Theorem 3.2 Let \(M \) be an \(n \)-dimensional bi-slant submanifold satisfying \(g(X, \varphi Y) = 0 \), for any \(X \in D_1 \) and any \(Y \in D_2 \), tangent to \(\xi \) into a \((2m + 1)\)-dimensional cosymplectic space form \(\hat{M}(c) \). Then we have

\[||H||^2 \geq \frac{2\tau}{n(n-1)} - \frac{[n(n-1) + 6(d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2) - 2n + 2]c}{4n(n-1)}, \]

where \(2d_1 = \dim D_1 \) and \(2d_2 = \dim D_2 \).

Theorem 3.3 Let \(M \) be an \(n \)-dimensional semi-slant submanifold tangent to \(\xi \) into a \((2m + 1)\)-dimensional cosymplectic space form \(\hat{M}(c) \). Then we have

\[||H||^2 \geq \frac{2\tau}{n(n-1)} - \frac{[n(n-1) + 6(d_1 + d_2 \cos^2 \theta) - 2n + 2]c}{4n(n-1)}. \]
where \(2d_1 = \dim D_1\) and \(2d_2 = \dim D_2\).

Theorem 3.4 Let \(M\) be an \(n\)-dimensional \(\theta\)-slant submanifold tangent to \(\xi\) into a \((2m+1)\)-dimensional cosymplectic space form \(\tilde{M}(c)\). Then, for any integer \(k\) \((2 \leq k \leq n)\) and any point \(p \in M\), we have

\[
||H||^2 \geq \Theta_k(p) = \frac{n(n-1) + 3(n-1)\cos^2 \theta - 2n + 2}{4n(n-1)} c.
\]

Proof. Let \(\{e_1, \cdots, e_n\}\) be an orthonormal basis of \(T_pM\). Denote by \(L_{i_1\cdots i_k}\) the \(k\)-plane section spanned by \(e_{i_1}, \cdots, e_{i_k}\). It follows from (1.4) and (1.5) that

\[
\tau(L_{i_1\cdots i_k}) = \frac{1}{2} \sum_{i \in \{i_1, \cdots, i_k\}} \text{Ric}_{L_{i_1\cdots i_k}}(e_i),
\]

\[
\tau(p) = \frac{1}{\binom{n-2}{k-2}} \sum_{1 \leq i_1 < \cdots < i_k \leq n} \tau(L_{i_1\cdots i_k}).
\]

Combining (1.6), (3.7) and (3.8), we obtain

\[
\tau(p) \geq \frac{n(n-1)}{2} \Theta_k(p).
\]

Therefore, by using (3.1) and (3.9) we can obtain the inequality in Theorem 3.4. \(\square\)

Theorem 3.5 Let \(M\) be an \(n\)-dimensional bi-slant submanifold tangent to \(\xi\) into a \((2m+1)\)-dimensional cosymplectic space form \(\tilde{M}(c)\). Then, for any integer \(k\) \((2 \leq k \leq n)\) and any point \(p \in M\), we have

\[
||H||^2 \geq \Theta_k(p) = \frac{n(n-1) + 6d_1 \cos^2 \theta_1 + d_2 \cos^2 \theta_2 - 2n + 2}{4n(n-1)} c,
\]

where \(2d_1 = \dim D_1\) and \(2d_2 = \dim D_2\).

Theorem 3.6 Let \(M\) be an \(n\)-dimensional semi-slant submanifold tangent to \(\xi\) into a \((2m+1)\)-dimensional cosymplectic space form \(\tilde{M}(c)\). Then, for any integer \(k\) \((2 \leq k \leq n)\) and any point \(p \in M\), we have

\[
||H||^2 \geq \Theta_k(p) = \frac{n(n-1) + 6(d_1 + d_2 \cos^2 \theta) - 2n + 2}{4n(n-1)} c,
\]
where $2d_1 = \dim D_1$ and $2d_2 = \dim D_2$.

Corollary 3.7 Let M be an n-dimensional invariant submanifold tangent to ξ into a $(2m+1)$-dimensional cosymplectic space form $\mathcal{M}(\mathfrak{c})$. Then, for any integer k $(2 \leq k \leq n)$ and any point $p \in M$, we have

$$\|H\|^2 \geq \Theta_k(p) - \frac{(n+1)\mathfrak{c}}{4n}.$$

Corollary 3.8 Let M be an n-dimensional anti-invariant submanifold tangent to ξ into a $(2m+1)$-dimensional cosymplectic space form $\mathcal{M}(\mathfrak{c})$. Then, for any integer k $(2 \leq k \leq n)$ and any point $p \in M$, we have

$$\|H\|^2 \geq \Theta_k(p) - \frac{(n-2)\mathfrak{c}}{4n}.$$

Corollary 3.9 Let M be an n-dimensional contact CR-submanifold tangent to ξ into a $(2m+1)$-dimensional cosymplectic space form $\mathcal{M}(\mathfrak{c})$. Then, for any integer k $(2 \leq k \leq n)$ and any point $p \in M$, we have

$$\|H\|^2 \geq \Theta_k(p) - \frac{n(n-1) + 6d_1 - 2n + 2n}{4n(n-1)} \mathfrak{c}.$$

References

Dae Won YOON
Department of Mathematics Education and RINS
Gyeongsang National University
Chinju 660-701, South-KOREA
e-mail : dwyoon@gsmu.ac.kr