On Linear the Homeomorphism Between Function Spaces $C_p(X)$ and $C_{p,A}(X) \times C_p(A)$

Sabri Birlik

Abstract

In this paper, we investigate a linear homeomorphism between function spaces $C_p(X)$ and $C_{p,A}(X) \times C_p(A)$, where X is a normal space and A is a neighborhood retraction of X.

Key Words: Function Spaces; linear homeomorphism, pointwise topology.

1. Introduction

In [2] Jan Baars and J. D. Groot derived an isomorphical classification of the spaces $C_p(X)$, where X denotes any compact zero-dimensional space. In [6] J. Van Mill derived a isomorphical classification of the spaces $C_p(X)$, where X denotes any metrizable space. It has been proved in [6] that for metrizable spaces, there always exist an extender which is both linear and continuous.

First we fix some notation and give some definitions.

For a space X, we define $C(X)$ to be the set real-valued continuous functions on X, and $C(X)$ is vector space with the natural addition and scalar multiplication. For a covering \mathcal{K} of X, we define a topology on $C(X)$ by taking the family of all sets

$$\langle f, K, \delta \rangle = \{g \in C(X) : |f(x) - g(x)| < \delta, \text{ for every } x \in K\},$$

where $f \in C(X)$, $K \in \mathcal{K}$ and $\delta > 0$, as a subbase.

If \mathcal{K} consists of all finite subsets of X, we denote $C(X)$ endowed with this topology
by \(C_p(X) \). The topology on \(C_p(X) \) is called the pointwise convergence topology. It is well known or easy to prove that \(C_p(X) \) is a topological vector space.

Let \(X \) be a space and \(A \subset X \) closed. By \(C_{p,A}(X) \), we denote the subspace of \(C_p(X) \) of all functions vanishing on \(A \). That is,

\[
C_{p,A}(X) = \{ f \in C_p(X) : f(A) = 0 \} .
\]

If \(A \) is singleton, say \(\{a\} \), then we denote \(C_{p,A}(X) \) simply by \(C_{p,a}(X) \). Let \(X/A \) be the quotient space obtained from \(X \) by identifying \(A \) to a single point, say \(\infty \). \(C_{p,\infty}(X/A) \) is the space of \(C_p(X/A) \) of all function vanishing at \(\infty \). That is,

\[
C_{p,\infty}(X/A) = \{ f \in C_p(X/A) : f(\infty) = 0 \}
\]

Let the constant function with value 0 be denoted by 0.

Definition 1 Let \(X \) be a space with subspace \(A \). We say that \(A \) is a retract of \(X \) provided that there is a continuous function \(r : X \to A \) such that \(r \) restricted to \(A \) is the identity on \(A \). Such a function \(r \) is called a retraction.

Lemma 1 [6] Let \(X \) be a Hausdorff space with subspace \(A \). If \(A \) is a retract of \(X \) then \(A \) is a closed subset of \(X \).

Proof. Let \((X, \tau) \) be a Hausdorff space and \(r : X \to A \) be a retraction. We want to show that \(A \) is closed in \(X \). Take any point \(x_0 \) in \(X \setminus A \). Then \(r(x_0) = a \in A \). Since \(r \) is a retraction it comes to be \(x_0 \neq a \) and since \(X \) is a Hausdorff space, there are two open subsets \(U \in \tau \) \((x_0 \in U) \) and \(V \in \tau \) \((a \in V) \) such that \(U \cap V = \emptyset \). That \(A \) is a subspace of \(X \) makes \(A \cap V \) open in \((A, \tau_A) \), and so long as \(r \) is a continuous function, \(r^{-1}(A \cap V) \) is open in \((X, \tau) \) and \(x_0 \in r^{-1}(A \cap V) \). Let \(W = U \cap r^{-1}(A \cap V) \). The set \(W \) is open in \((X, \tau) \), \(x_0 \in W \) and \(W \cap V = \emptyset \). Since \(r \) is a retraction, \(r(W) \subset V \). So for every \(x \in W \), we get \(r(x) \neq x \) and thus we have \(W \subset X \setminus A \). Thus \(X \setminus A \) is open in \((X, \tau) \) and \(A \) is closed in \(X \). \(\square \)

Remark 1. The statement of Lemma 1 is not necessarily true if \(X \) is not Hausdorff. For instance, the subset \(Z_e \) of all even integers of the cofinite topology defined on \(Z \) is an example of a non-closed retract under the continuous function \(f : Z \to Z_e \) where \(f(2k - 1) = 2k = f(2k) \) for each \(k \in Z \). Notice that \(f^{-1}(F) \) is finite whenever \(F \subset Z_e \).
is finite and thus f is continuous and furthermore cofinite topology determines a T_1 topological space on Z which is not T_2 (Hausdorff).

We say that A is a neighborhood retract of X provided that there exists a neighborhood U of A in X such that A is a retract of U.

Now we prove theorem 1 which will be used in the proof of the theorem 2.

Theorem 1 Let X be a normal space and A be a neighborhood retract of X. Then there is a continuous linear and one to one function $\Phi : C_p(A) \to C_p(X)$ such that for each $f \in C(A)$, $\Phi(f)|_A = f$.

Proof. Let U, including A, be an open subset of X and $r : U \to A$ be a retraction. Since X is a normal space, for an open subset W of X,

$$A \subseteq W \subseteq clW \subseteq U$$

A is closed in U because A is a retract of U. Then A is a closed subset of clW and also a closed subset of X. Hence A and $X\setminus W$ are two disjoint closed subset of X. Then for a continuous function

$$f_0 : X \to [0, 1]$$

we get $f_0(A) = \{1\}$ and $f_0(X\setminus W) = \{0\}$. Define

$$\Phi(f)(x) = \begin{cases} 0 & \text{if } x \in X\setminus W \\ f_0(x) f(r(x)) & \text{if } x \in W \end{cases}$$

for $f \in C_p(A)$. We want to show that $\Phi(f) \in C_p(X)$. In other words,

$$\Phi(f) : X \to \mathbb{R}$$

is continuous. If $x = a \in A$ then

$$\Phi(f)(a) = f_0(a) f(r(a)) = 1 f(a) = f(a).$$

From this, we get $\Phi(f)|_A = f$. $\Phi(f)$ is continuous on W as $\Phi(f)(x) = f_0(x) f(r(x))$ and W is open. Now take $x \in X\setminus W$. We claim that $\Phi(f)$ is continuous at $X\setminus W$. \square
We prove this latter claim via the following two cases.

Case 1. Let \(x \in clW \setminus W \) and let \(\{x_\mu\}_{\mu \in \Gamma} \), which converges to element, \(x \) be a net. We want to show that
\[
(\Phi (f) (x_\mu))_{\mu \in \Gamma} \to \Phi (f) (x),
\]
since \(x \) is an element of \(U \) and \(U \) is open; a tail of this net will be in \(U \). For this reason, without lose of generality, we can assume that all the elements of this net are in \(U \). As \(x_\mu \to x \) and \(r : U \to A \) are continuous,
\[
(r (x_\mu))_{\mu \in \Gamma} \to r (x)
\]
in \(A \). Furthermore,
\[
(f (r (x_\mu)))_{\mu \in \Gamma} \to f (r (x))
\]
due to the continuity of \(f : A \to R \). Since \(x \in X\setminus W \), \(\Phi (f) (x) = 0 \) and \(f_0 (x) = 0 \). Then we get
\[
(f_0 (x_\mu))_{\mu \in \Gamma} \to 0.
\]
On the other hand,
\[
\Phi (f) (x_\mu) = \begin{cases}
0 & \text{if } x_\mu \in U \setminus W \\
f_0 (x_\mu) f (r (x_\mu)) & \text{if } x_\mu \in W
\end{cases}
\]
In every case, \(\Phi (f) (x_\mu) = f_0 (x_\mu) f (r (x_\mu)) \). Then it is seen that
\[
(\Phi (f) (x_\mu))_{\mu \in \Gamma} \to \Phi (f) (x) = 0.
\]

Case 2. Let \(x \in X \setminus clW \). Since \(X \setminus clW \) is open, \(\Phi (f) = 0 \) is continuous on \(X \setminus clW \). We show that \(\Phi \) is a linear. Let \(f, g \in C_p (A) \), \(\alpha, \beta \in R \)
\[
\Phi (\alpha f + \beta g) (x) = \begin{cases}
\alpha 0 + \beta 0 = 0 & \text{if } x \in X \setminus W \\
f_0 (x) (\alpha f + \beta g) (r (x)) & \text{if } x \in W
\end{cases}
\]
\[
= \begin{cases}
\alpha 0 & \text{if } x \in X \setminus W \\
f_0 (x) (\alpha f) (r (x)) & \text{if } x \in W
\end{cases} + \begin{cases}
\beta 0 & \text{if } x \in X \setminus W \\
f_0 (x) (\beta g) (r (x)) & \text{if } x \in W
\end{cases}
\]
\[
= \alpha \Phi (f) (x) + \beta \Phi (g) (x)
\]
Thus Φ is linear. Now let us show that $\Phi : C_p (A) \to C_p (X)$ is continuous. Since Φ is linear, $C_p (A)$ and $C_p (X)$ are topological vector spaces, it is sufficient to prove that Φ is continuous at 0.

\[
\langle 0, \{x_0, x_1, \ldots, x_n \} \rangle = \bigcap_{i=0}^{n} \langle 0, \{x_i \} \rangle.
\]

Let us choose $x_0 \in X$ and consider the open set

\[
\langle 0, \{x_0 \} \rangle = \{ f \in C_p (X) : |f(x_0)| < \varepsilon \} = T
\]

We want to show that

\[
\Phi (\langle 0, \{a \}, \delta \rangle) = \Phi (\{ g \in C_p (A) : |g(a)| < \delta \}) \subseteq T
\]

for $a \in A$ and $\delta > 0$. Let us assume that $a \in A$ and $g \in \langle 0, \{a \}, \delta \rangle$. Then

\[
\Phi (g) (x_0) = \begin{cases}
0 & \text{if } x_0 \in X \setminus W \\
 f_0 (x_0) g (r(x_0)) & \text{if } x_0 \in W
\end{cases}
\]

If $x_0 \in W$, then take $a = r(x_0)$ and $0 < \delta = \varepsilon / (f_0 (x_0) + 1)$. Then we have a and $\delta > 0$. Because,

\[
|\Phi (g) (x_0)| = |f_0 (x_0)||g(a)| < f_0 (x_0) / (f_0 (x_0) + 1) < 1.
\]

Hence, $\Phi (g) \in T$. If $x_0 \in X \setminus W$ then $|\Phi (g) (x_0)| = 0 < 1$ for any a which is chosen from A. This implies $\Phi (g) \in T$. Therefore since $\Phi (g) \in T$ for $g \in \langle 0, \{a \}, \delta \rangle$, Φ is continuous on each two cases. Φ is one to one, it is seen by definition of Φ easily.

We now come to the following important theorem.

Theorem 2 Let X be a normal space and let A be a neighborhood retract of X. Then

\[
C_p (X) \cong C_{p,A} (X) \times C_p (A).
\]

Proof. Define $G : C_p (X) \to C_p (A)$ by $G (f) = f|_A$. Notice that G is a continuous linear function. For $f \in C_p (X)$, $f \in C_{p,A} (X)$, if and only if $G (f) = 0$. By theorem 1, there is a continuous linear function $\Phi : C_p (A) \to C_p (X)$ such that for each $f \in C_p (A)$,

\[
\Phi (f)|_A = f. \text{ Notice that } G \circ \Phi = id_{C_p (A)}.
\]

Now define $\theta : C_p (X) \to C_{p,A} (X) \times C_p (A)$ by

\[
\theta (f) = (f - (\Phi \circ G) (f), G (f)).
\]

295
We have to prove that \(\theta \) is well-defined. Take an arbitrary \(f \in C_p(X) \). It is obvious that \(G(f) \in C_p(A) \) and that \(f - (\Phi \circ G)(f) \in C_p(X) \). Furthermore,

\[
G(f - (\Phi \circ G)(f)) = G(f) - (G \circ \Phi \circ G)(f) = G(f) - G(f) = 0
\]

so \(f - (\Phi \circ G)(f) \in C_{p,A}(X) \). That \(\theta \) is continuous and linear is a triviality. We show that \(\theta \) is a linear homeomorphism. For that, define

\[
\Gamma : C_{p,A}(X) \times C_p(A) \to C_p(X)
\]

By \(\Gamma(f, h) = f + \Phi(h) \) it is trivial that \(\Gamma \) is well defined, continuous and linear. Furthermore, as is easily seen, \(\Gamma \circ \theta = id_{C_p(X)} \) and we show that \(\theta \circ \Gamma = id_{C_{p,A}(X) \times C_p(A)} \).

Take \(f \in C_{p,A}(X) \) and \(h \in C_p(A) \). Notice that \(G(f) = 0 \) hence by linearity of \(\Phi \),

\[
(\Phi \circ G)(f) = \Phi(0) = 0,
\]

so

\[
(\theta \circ \Gamma)(f, h) = \theta(f + \Phi(h)) = (f + \Phi(h) - (\Phi \circ G)(f + \Phi(h)))G(f + \Phi(h))
\]

\[
= (f + \Phi(h) - 0 - \Phi(h))G(f + \Phi(h))
\]

\[
= (f, h).
\]

Hence \(\theta \circ \Gamma = id_{C_{p,A}(X) \times C_p(A)} \), i.e., \(\theta \) is a linear homeomorphism.

\[
\Box
\]

Lemma 2 Let \(X \) be a normal space and \(A \) be a neighborhood retract of \(X \). Then

\[
C_{p,A}(X) \approx C_{p,\infty}(X/A).
\]

Proof. Let \(p : X \to X/A \) be the quotient map between \(X \) and \(X/A \). For every function \(f \in C_{p,A}(X) \) there is a unique function \(g \in C_{p,\infty}(X/A) \) such that \(g \circ p = f \). If we now define \(\theta : C_{p,A}(X) \to C_{p,\infty}(X/A) \) by \(\theta(f) = g \), then \(\theta \) is a well-defined linear bijection.

Since for \(f \in C_{p,A}(X), y_1, ..., y_n \in X/A, \delta > 0 \) and \(x_i \in p^{-1}(y_i), (i \leq n) \) it is easily seen that

\[
\theta((f, \{x_1, ..., x_n\}, \delta)) = (\theta(f), \{y_1, ..., y_n\}, \delta),
\]

and it follows that \(\theta \) is linear homeomorphism.

\[
\Box
\]

From the last lemma and theorem 2, we have the useful following corollary.
Corollary 1 Let X be a normal space and let A be a neighborhood retract of X. Then

$$C_p(X) \cong C_{p,\infty}(X/A) \times C_{p,A}(X).$$

Proof. By lemma 2 and theorem 2

$$C_p(X) \cong C_{p,\infty}(X/A) \times C_{p,A}(X).$$

References

Received 08.04.2004

Sabri BİRLİK

Department of Mathematics,
Faculty of Arts and Sciences,
Gaziantep University,
27310, Gaziantep-TURKEY

e-mail: birlik@gantep.edu.tr