Fuzzy β-Compactness and Fuzzy β-Closed Spaces

I. M. Hanafy

Abstract

The concepts of β-compactness and β-closed spaces in the fuzzy setting are defined and investigated. Fuzzy filterbases are used to characterize these concepts. A comparison between these types and some different forms of compactness in fuzzy topology is established.

Key Words: Fuzzy topological spaces, fuzzy β-compactness, fuzzy β-closed spaces, fuzzy filterbases.

1. Introduction

Compactness occupies a very important place in fuzzy topology and so do some of its forms. In [1], Abd El-Monsef et al introduced the concepts of β-open sets and β-continuous functions in general topology and Fath Alla in [8] introduced these concepts in fuzzy setting. In [5], some interesting properties of fuzzy β-compactness are investigated. The purpose of this paper is devoted to introduce and study the concepts of β-compactness and β-closed spaces in fuzzy setting. These notions generalize basic classical results (see [1], [2], [3], [4], [7] and [11]). Using fuzzy filterbases, we characterize fuzzy β-compactness and fuzzy β-closed spaces. We also explore some expected basic properties of these concepts.

AMS Subject Classification Code: 54A40, 54D30 and 54A20
2. Preliminaries

Throughout this paper, X and Y mean fuzzy topological spaces (fts, for short). A fuzzy point x_t in X is a fuzzy set having support $x \in X$ and value $t \in (0, 1]$ [13]. The complement and the support of a fuzzy set u denoted by \bar{u} and $S(u)$, respectively. For two fuzzy sets u and v, we shall write $u \lor v$ ($u \land v$) to mean that u is quasi coincident (not quasi coincident) with v, i.e., there exists $x \in X$ such that $u(x) + v(x) > 1$ ($u(x) + v(x) \leq 1$) [13].

Definition 2.1 A fuzzy set u in a fts X is said to be:
(a) semiopen fuzzy set if $u \subseteq \text{cl} \text{nt} u$ [4];
(b) preopen fuzzy set if $u \subseteq \text{int} \text{cl} u$ [15];
(c) β-open fuzzy set if $u \subseteq \text{cl} \text{nt} \text{nt} u$ [8], equivalently, if there exists a preopen fuzzy set A such that $A \subseteq u \subseteq \overline{A}$.

It is obvious that each semiopen and preopen fuzzy set implies β-open.

Definition 2.2 [4, 10]. Let u be a fuzzy set in a fts X, the fuzzy pre-closure (resp. semi-closure, pre-interior and semi-interior) of u denoted by $\text{pcl} u$ (resp. $\text{scl} u$, $\text{pint} u$ and $\text{sin} t u$) are defined as follows:
$\text{pcl} u (\text{scl} u) = \{A : u \subseteq A, A \text{ is preclosed (semiclosed)}\}$;
$\text{pint} u (\text{sin} t u) = \{A : u \subseteq A, A \text{ is preopen (semiopen)}\}$.

Definition 2.3 Let u be a fuzzy set in a fts X. The fuzzy β-closure (βcl) and β-interior (βint) of u are defined as follows:
$\beta\text{cl} u = \{A : u \subseteq A, A \text{ is } \beta\text{-closed}\}$;
$\beta\text{int} u = \{A : u \supseteq A, A \text{ is } \beta\text{-open}\}$.

It is obvious that $\beta\text{cl} \bar{u} = (\beta\text{int} u)'$ and $\beta\text{int} \bar{u} = (\beta\text{cl} u)'$.

Definition 2.4 A function $f : X \rightarrow Y$ is said to be fuzzy β-continuous [8] (resp. $M\beta$-continuous) if the inverse image of every open (resp. β-open) fuzzy set in Y is β-open (resp. β-open) fuzzy set in X.

Lemma 2.5 Let $f : X \rightarrow Y$ be a function, then the following are equivalent:
(a) f is fuzzy $M\beta$-continuous.
(b) $f(\beta\text{cl} u) \leq \beta\text{cl} f(u)$, for every fuzzy set u in X.
Proof. (a)⇒(b): Let u be a fuzzy set of X, then $\beta\text{c}l\ f(u)$ is β-closed. By (a) $f^{-1}(\beta\text{c}l\ f(u))$ is β-closed and so $f^{-1}(\beta\text{c}l\ f(u)) = \beta\text{c}l\ f^{-1}(\beta\text{c}l\ f(u))$. Since $u \leq f^{-1}(f(u))$, we have $\beta\text{c}l\ u \leq \beta\text{c}l\ f^{-1}(f(u)) \leq \beta\text{c}l\ f^{-1}(\beta\text{c}l\ f(u)) = f^{-1}(\beta\text{c}l\ f(u))$. Hence $f(\beta\text{c}l\ u) \leq \beta\text{c}l\ f(u)$.

(b)⇒(a): Let v be a β-closed fuzzy set in Y. By (b) if $u = f^{-1}(v)$, then $\beta\text{c}l\ f^{-1}(v) \leq f^{-1}(\beta\text{c}l\ f(f^{-1}(v))) \leq f^{-1}(\beta\text{c}l\ v) = f^{-1}(v)$. Since $f^{-1}(v) \leq \beta\text{c}l\ f^{-1}(v)$, then $f^{-1}(v) = \beta\text{c}l\ f^{-1}(v)$. Hence $f^{-1}(v)$ is β-closed fuzzy set in X. Hence f is fuzzy M_β-continuous.

Lemma 2.6 Let $f : X \to Y$ be a function, then the following are equivalent:

(a) f is fuzzy β-continuous.

(b) $f(\beta\text{c}l\ u) \leq \text{c}l\ f(u)$, for every fuzzy set u in X.

Proof. Obvious

Theorem 2.7 [16]. If $f : X \to Y$ is fuzzy open function, then $f^{-1}(\text{c}l\ (u)) \leq \text{c}l\ (f^{-1}(u))$, for every fuzzy set u in Y.

Definition 2.8 [9]. A collection of fuzzy subsets ξ of a fts X is said to form a fuzzy filterbases iff for every finite collection $\{A_j : j = 1, ..., n\}$, $\cap_{j=1}^{n} A_j \neq 0_X$.

Definition 2.9 [9]. A collection μ of fuzzy sets in a fts X is said to be cover of a fuzzy set u of X iff $\forall A \in \mu (A(x) = 1_X$, for every $x \in S(u)$. A fuzzy cover μ of a fuzzy set u in a fts X is said to have a finite subcover iff there exists a finite subcollection $\eta = \{A_1, ..., A_n\}$ of μ such that $\forall (A_j) (x) \geq u(x)$, for every $x \in S(u)$.

Definition 2.10 A fts X is said to be strongly compact [14] (resp. semicompact [12]) iff every preopen (resp. semiopen) cover of X has a finite subcover.

Definition 2.11 A fts X is said to be almost compact [7] (resp. S-closed [6], s-closed [11], P-closed [17]) iff every open (resp. semiopen, semiopen, preopen) cover of X has a finite subcollection whose closures (resp. closures, semi-closures, pre-closures) cover X.

283
3. Fuzzy \(\beta \)-Compact Space

Definition 3.1 [5]. A fts \(X \) is said to be fuzzy \(\beta \)-compact iff for every family \(\mu \) of \(\beta \)-open fuzzy sets such that \(\forall A \in \mu \) there is a finite subfamily \(\eta \subseteq \mu \) such that \(\forall A \in \eta \) \(A = 1_X \).

Definition 3.2 A fuzzy set \(u \) in a fts \(X \) is said to be fuzzy \(\beta \)-compact relative to \(X \) iff for every family \(\mu \) of \(\beta \)-open fuzzy sets such that \(\forall A \in \mu \) \(A \geq u(x) \) there is a finite subfamily \(\eta \subseteq \mu \) such that \(\forall A \in \eta \) \(A \geq u(x) \) for every \(x \in S(u) \).

Remark 3.3 Since each of semiopen and preopen fuzzy set implies \(\beta \)-open, it is clear that every fuzzy \(\beta \)-compact space implies each of fuzzy strongly compact space and fuzzy semicompact space. But the converse need not be true.

Theorem 3.4 A fts \(X \) is \(\beta \)-compact iff for every collection \(\{ A_j : j \in J \} \) of \(\beta \)-closed fuzzy sets of \(X \) having the finite intersection property, \(\bigwedge_{j \in J} A_j \neq 0_X \).

Proof. Let \(\{ A_j : j \in J \} \) be a collection of \(\beta \)-closed fuzzy sets with the finite intersection property. Suppose that \(\bigwedge_{j \in J} A_j = 0_X \). Then \(\bigvee_{j \in J} A_j = 1_X \). Since \(\{ A_j : j \in J \} \) is a collection of \(\beta \)-open fuzzy sets cover of \(X \), then from the \(\beta \)-compactness of \(X \) it follows that there exists a finite subset \(F \subseteq J \) such that \(\bigvee_{j \in F} A_j = 1_X \). Then \(\bigwedge_{j \in F} A_j = 0_X \) which gives a contradiction and therefore \(\bigwedge_{j \in J} A_j \neq 0_X \).

Conversely, let \(\{ A_j : j \in J \} \) be a collection of \(\beta \)-open fuzzy sets cover of \(X \). Suppose that for every finite subset \(F \subseteq J \), we have \(\bigvee_{j \in F} A_j \neq 1_X \). Then \(\bigwedge_{j \in F} A_j \neq 0_X \). Hence \(\{ A_j : j \in J \} \) satisfies the finite intersection property. Then from the hypothesis we have \(\bigwedge_{j \in J} A_j \neq 0_X \) which implies \(\bigwedge_{j \in F} A_j \neq 1_X \) and this contradicting that \(\{ A_j : j \in J \} \) is a \(\beta \)-open cover of \(X \). Thus \(X \) is fuzzy \(\beta \)-compact.

Now, we give some results of fuzzy \(\beta \)-compactness in terms of fuzzy filterbases.

Theorem 3.5 A fts \(X \) is fuzzy \(\beta \)-compact iff every filterbases \(\xi \) in \(X \), \(\bigwedge_{G \in \xi} \beta cl G \neq 0_X \).
HANAFY

Theorem 3.6 A fuzzy set u in a fts X is fuzzy β–compact relative to X iff for every filterbases ξ such that every finite of members of ξ is quasi coincident with u, $(\bigwedge_{G \in \xi} \beta cl G) \cap u \neq 0_X$.

Proof. Let u not be fuzzy β-compact relative to X, then there exists a β-open fuzzy set μ cover of u such that μ has no finite subcover. Then for every finite subcollection $\{A_1, \ldots, A_n\}$ of μ, there exists $x \in X$ such that $A_j(x) < 1$ for every $j = 1, \ldots, n$. Then $\hat{A}_j(x) > 0$, so that $\bigwedge_{j=1}^n \hat{A}_j(x) \neq 0_X$. Thus $\{\hat{A}_j : A_j \in \mu\}$ forms a filterbases in X. Since μ is β-open fuzzy set cover of X, then $(\bigvee_{A_j \in \mu} A_j)(x) = 1_X$ for every $x \in X$ and hence $\bigwedge_{A_j \in \mu} \beta cl \hat{A}_j(x) = \bigwedge_{A_j \in \mu} \hat{A}_j(x) = 0_X$, which is a contradiction. Then every β-open fuzzy set cover of X has a finite subcover and hence X is fuzzy β-compact.

Conversely, suppose there exists a filterbases ξ such that $\bigwedge_{G \in \xi} \beta cl G = 0_X$, so that $(\bigvee_{G \in \xi} (\beta cl G))(x) = 1_X$ for every $x \in X$ and hence $\mu = \{(\beta cl G) : G \in \xi\}$ is a β-open fuzzy set cover of X. Since X is fuzzy β-compact, then μ has a finite subcover. Then $(\bigvee_{j=1}^n (\beta cl g_j))(x) = 1_X$ and hence $(\bigvee_{j=1}^n g_j')(x) = 1_X$, so that $\bigwedge_{j=1}^n g_j = 0_X$ which is a contradiction, since the g_j are members of filterbases ξ. Therefore $\bigwedge_{G \in \xi} \beta cl G \neq 0_X$ for every filterbases ξ.

Theorem 3.6 A fuzzy set u in a fts X is fuzzy β–compact relative to X iff for every filterbases ξ such that every finite of members of ξ is quasi coincident with u, $(\bigwedge_{G \in \xi} \beta cl G) \cap u \neq 0_X$.

Proof. Let u not be fuzzy β-compact relative to X, then there exists a β-open fuzzy set μ cover of u such that μ has no finite subcover. Then $(\bigvee_{A_j \in \eta} A_j)(x) < u(x)$ for some $x \in S(u)$, so that $(\bigwedge_{A_j \in \eta} \hat{A}_j)(x) > \hat{u}(x) \geq 0$ and hence $\xi = \{\hat{A}_j : A_j \in \mu\}$ forms a filterbases and $\bigwedge_{A_j \in \eta} \hat{A}_j = u$. By hypothesis $(\bigwedge_{A_j \in \eta} \beta cl \hat{A}_j) \cap u \neq 0_X$ and hence $(\bigwedge_{A_j \in \eta} \hat{A}_j) \cap u \neq 0_X$.

Then for some $x \in S(u)$, $(\bigwedge_{A_j \in \mu} \hat{A}_j)(x) > 0_X$, that is $(\bigvee_{A_j \in \mu} \hat{A}_j)(x) < 1_X$, which is a contradiction. Hence u is fuzzy β-compact relative to X.

Conversely, suppose that there exists a filterbases ξ such that every finite of members of ξ is quasi coincident with u and $(\bigwedge_{G \in \xi} \beta cl G) \cap u \neq 0_X$. Then for every $x \in S(u)$, $(\bigwedge_{G \in \xi} \beta cl G)(x) = 0_X$ and hence $(\bigvee_{G \in \xi} (\beta cl G))(x) = 1_X$ for every $x \in S(u)$. Thus $\mu = \{(\beta cl G) : G \in \xi\}$ is β-open fuzzy set cover of u. Since u is fuzzy β-compact
relative to X, then there exists a finite subcover, say $\{ (\beta cl G_1)’, \ldots, (\beta cl G_n)’ \}$, such that $(\bigwedge_{j=1}^{n} (\beta cl G_j)) (x) \geq u(x)$ for every $x \in S(u)$. Hence $(\bigwedge_{j=1}^{n} (\beta cl G_j)) (x) \leq \tilde{u}(x)$ for every $x \in S(u)$, so that $\bigwedge_{j=1}^{n} (\beta cl G_j) \not\subset u$, which is a contradiction. Therefore for every filterbases ξ such that every finite of members of ξ is quasi coincident with u, $(\bigwedge_{G \in \xi} \beta cl G) \not\subset u \neq 0_X$.

Theorem 3.7 Every β-closed fuzzy subset of a fuzzy β-compact space is fuzzy β-compact relative to X.

Proof. Let ξ be a fuzzy filterbases in X such that $u \not\subset \liminf \{ G : G \in \lambda \}$ holds for every finite subcollection λ of ξ and a β-closed fuzzy set u. Consider $\xi = \{ u \} \cup \xi$. For any finite subcollection λ^* of ξ^*, if $u \not\subset \lambda^*$, then $\bigwedge_{G \in \xi} \beta cl G \neq 0_X$. If $u \subset \lambda^*$ and since $u \not\subset \{ G : G \in \lambda^* - u \}$, then $\bigwedge_{G \in \xi} \beta cl G \neq 0_X$. Hence λ^* is a fuzzy filterbases in X. Since X is fuzzy β-compact, then $\bigwedge_{G \in \xi} \beta cl G \neq 0_X$, so that $(\bigwedge_{G \in \xi} \beta cl G) \not\subset u = (\bigwedge_{G \in \xi} \beta cl G) \not\subset u \neq 0_X$. Hence by Theorem 3.6, we have u is fuzzy β-compact relative to X.

Theorem 3.8 If a function $f : X \rightarrow Y$ is fuzzy $M\beta$-continuous and u is fuzzy β-compact relative to X, then so is $f(u)$.

Proof. Let $\{ A_j : j \in J \}$ be a β-open fuzzy set cover of $S(f(u))$. For $x \in S(u)$, $f(x) \in f(S(u)) = S(f(u))$. Since f is fuzzy $M\beta$-continuous, then $\{ f^{-1}(A_j) : j \in J \}$ is β-open fuzzy set cover of $S(u)$. Since u is fuzzy β-compact relative to X, there is a finite subfamily $\{ f^{-1}(A_j) : j = 1, \ldots, n \}$ such that $S(u) \subseteq \bigvee_{j=1}^{n} f^{-1}(A_j)$ which implies $S(u) \subseteq f^{-1}(\bigvee_{j=1}^{n} A_j)$ and then $S(f(u)) = f(S(u)) \subseteq ff^{-1}(\bigvee_{j=1}^{n} A_j) \subseteq \bigvee_{j=1}^{n} A_j$. Therefore $f(u)$ is fuzzy β-compact relative to Y.

Lemma 3.9 If $f : X \rightarrow Y$ is fuzzy open and fuzzy continuous function, then f is fuzzy $M\beta$-continuous.
Let \(v \) be an \(\beta \)-open fuzzy set in \(Y \); then \(v \subseteq cl int cl v \). So \(f^{-1}(v) \subseteq f^{-1}(cl int cl v) \subseteq cl (f^{-1}(int cl v)) \). Since \(f \) is fuzzy continuous, then \(f^{-1}(int cl v) = int (f^{-1}(cl v)) \). Also by Theorem 2.7, \(f^{-1}(int cl v) = int (f^{-1}(cl v)) \subseteq int (f^{-1}(cl v)) \). Thus \(f^{-1}(v) \subseteq cl (f^{-1}(int cl v)) \subseteq cl int cl (f^{-1}(cl v)) \). Hence the result.

Corollary 3.10 Let \(f : X \rightarrow Y \) be fuzzy open and fuzzy continuous function and \(X \) is fuzzy \(\beta \)-compact, then \(f(X) \) is fuzzy \(\beta \)-compact.

Proof. It follows directly from Lemma 3.9 and Theorem 3.8.

Definition 3.11 A function \(f : X \rightarrow Y \) is said to be fuzzy \(M \beta \)-open iff the image of every \(\beta \)-open fuzzy set in \(X \) is \(\beta \)-open in \(Y \).

Theorem 3.12 Let \(f : X \rightarrow Y \) be a fuzzy \(M \beta \)-open bijective function and \(Y \) is fuzzy \(\beta \)-compact, then \(X \) is fuzzy \(\beta \)-compact.

Proof. Let \(\{A_j : j \in J\} \) be a collection of \(\beta \)-open fuzzy set cover of \(X \), then \(\{f(A_j) : j \in J\} \) is \(\beta \)-open fuzzy set covering of \(Y \). Since \(Y \) is fuzzy \(\beta \)-compact, there is a finite subset \(F \subseteq J \) such that \(\{f(A_j) : j \in F\} \) is an cover of \(Y \). But \(1_X = f^{-1}(1_Y) = f^{-1} f(\bigvee_{j \in F} A_j) = \bigvee_{j \in F} A_j \) and therefore \(X \) is fuzzy \(\beta \)-compact.

4. **Fuzzy \(\beta \)-Closed Spaces**

Definition 4.1 A fuzzy set \(u \) in a fts \(X \) is said to be a \(\beta q \)-nbd of a fuzzy point \(x_t \) in \(X \) if there exists a \(\beta \)-open fuzzy set \(A \leq u \) such that \(x_t \in \beta cl u \).

Theorem 4.2 Let \(x_t \) be a fuzzy point in a fts \(X \) and \(u \) be any fuzzy set of \(X \), then \(x_t \in \beta cl u \) iff for every \(\beta q \)-nbd \(H \) of \(x_t \), \(H \sim u \).

Proof. Let \(x_t \in \beta cl u \) and there exists a \(\beta q \)-nbd \(H \) of \(x_t \), \(H \sim u \). Then there exists a \(\beta \)-open fuzzy set \(A \leq H \) in \(X \) such that \(x_t \in \beta cl A \), which implies \(A \sim u \) and hence \(u \leq A \). Since \(A \) is \(\beta \)-closed fuzzy set, then \(\beta cl u \leq A \). Since \(x_t \notin A \), then \(x_t \in \beta cl u \), which is a contradiction.
Conversely, let $x_t \notin \beta \text{cl } u = \bigwedge \{ A : A \text{ is } \beta\text{-closed in } X, A \supseteq u \}$. Then there exists a \(\beta\text{-closed fuzzy set } A \supseteq u \) such that $x_t \notin A$. Hence $x_t q q \hat{A} = H$, where H is a β-open fuzzy set in X and $H \sim q u$. Then there exists a $\beta q - nbd H$ of x_t with $H \sim q u$. Hence the result. □

Definition 4.3 A fits X is said to be β-closed iff for every family μ of β-open fuzzy set such that $\bigvee A = 1_X$ there is a finite subfamily $\eta \subseteq \mu$ such that $(\bigvee_{A \in \eta} A)(x) = 1_X$, for every $x \in X$.

Remark 4.4 From the above definition and other types of fuzzy compactness, one can draw the following diagram:

\[
\begin{array}{ccc}
F\text{-semicompact} & \rightarrow & Fs\text{-closed} \\
\uparrow & & \uparrow \\
F\beta\text{-compact} & \rightarrow & F\beta\text{-closed} \\
\downarrow & & \downarrow \\
F\text{-strongly compact} & \rightarrow & FP\text{-closed}
\end{array}
\]

where $F =$fuzzy.

Example 4.5 Let $X \neq 0_X$ be a set and $u_n(x) = 1 - \frac{1}{n}$ for every $x \in X$ and $n \in N^+$. The collection $\{ u_n : n \in N^+ \}$ is a base for a fuzzy topology on X. The collection $\{ u_n : n \in N^+ \}$ is obviously a β–open fuzzy set cover of X. On the other hand we have $\beta \text{cl } u = 1_X$ for every $n \geq 3$. Hence X is β-closed but not fuzzy β-compact, (see [6]).

Remark 4.6 Example 4.5 also shows that:

(i) Each of the concepts Fs–closed, FS–closed and FP–closed spaces does not imply $F\beta$-compact.

(ii) Since the collection $\{ u_n : n \in N^+ \}$ is also semiopen (resp. preopen) fuzzy sets cover of X, then X is $F\beta$-closed space but not F–semicompact space (resp. F–strongly compact space).

Example 4.7 Let $X = I = [0, 1]$ and consider the following fuzzy sets

\[
U_1(x) = \frac{1}{\sqrt{5}} , \quad U_2(x) = \frac{1}{\sqrt{3}} , \quad U_3(x) = \frac{1}{\sqrt{2}} , \quad \ldots \ldots \ldots , \forall x \in I.
\]
Let $\sigma = \{u_j : j \in N^+\} \cup \{0_X, 1_X\}$. It is clear that σ is a fuzzy topology on X. Now, the collection $\{u_j : j \in N^+\}$ is a semiopen (resp. preopen) fuzzy set cover of X but not has a finite subcover. So X is not $F-$semicompact space (resp. $F-$strongly compact space). Since the semi-closure (resp. pre-closure) of every semiopen (resp. preopen) fuzzy set of X is 1_X, then X is F_s-closed (resp. FP_s-closed).

Remark 4.8 Example 4.7 is also shows that each of the concepts $FS-$closed and $FP-$closed spaces does not imply each of $F-$semicompact and $F-$strongly compact spaces.

Remark 4.9 From Remark 3.3, Example 4.5, Remark 4.6, Example 4.7 and Remark 4.8, it is clear that:

(i) $FS-$closed and $FP-$closed spaces are independent notions.
(ii) $FS-$closed and $F-$strongly compact spaces are independent notions.
(iii) $FP-$closed and $F-$semicompact spaces are independent notions.
(iv) $F\beta-$compact, $F-$semicompact and $F-$strongly compact spaces are independent notions.

Theorem 4.10 A fits X is $\beta-$closed iff for every fuzzy $\beta-$open filterbases ξ in X, $\bigwedge_{G \in \xi} \beta cl G \neq 0_X$.

Proof. Let μ be a $\beta-$open fuzzy set cover of X and let for every finite subfamily η of μ, $(\bigvee_{A \in \eta} \beta cl A)(x) < 1_X$ for some $x \in X$. Then $(\bigwedge_{A \in \mu} A)(x) > 0_X$ for some $x \in X$. Thus $\{(\beta cl A) : A \in \mu\} = \xi$ forms a fuzzy $\beta-$open filterbases in X. Since μ is a $\beta-$open fuzzy set cover of X, then $\bigwedge_{A \in \mu} A = 0_X$ which implies $\bigwedge_{A \in \mu} (\beta cl A) = 0_X$, which is a contradiction. Then every $\beta-$open fuzzy set μ cover of X has a finite subfamily η such that $(\bigvee_{A \in \mu} A)(x) = 1_X$ for every $x \in X$. Hence X is $\beta-$closed.

Conversely, suppose there exists a fuzzy $\beta-$open filterbases ξ in X such that $\bigwedge_{G \in \xi} \beta cl G = 0_X$, so that $(\bigvee_{G \in \xi} (\beta cl G))(x) = 1_X$ for every $x \in X$ and hence $\mu = \{(\beta cl G) : G \in \xi\}$ is a $\beta-$open fuzzy set cover of X. Since X is $\beta-$closed, then μ has a finite subfamily η such that $(\bigvee_{G \in \eta} (\beta cl G))(x) = 1_X$ for every $x \in X$, and hence $\bigwedge_{G \in \eta} (\beta cl (\beta cl G))(x) = 0_X$. Thus $\bigwedge_{G \in \eta} G = 0_X$ which is a contradiction, since all the G are members of filterbases. \qed
Definition 4.11 A fuzzy set u in a fts X is said to be β-closed relative to X iff for every family μ of β-open fuzzy sets such that $\bigvee_{A \in \mu} A = u$, there is a finite subfamily $\eta \subseteq \mu$ such that $(\bigvee_{A \in \eta} \beta \text{cl} A)(x) \geq u(x)$ for every $x \in S(u)$.

Theorem 4.12 A fuzzy subset u in a fts X is β-closed relative to X iff every fuzzy β-open filterbases ξ in X, $(\bigwedge_{G \in \xi} \beta \text{cl} G) \wedge u = 0_X$, there exists a finite subfamily λ of ξ such that $(\bigwedge_{G \in \lambda} G) \wedge u = 0_X$.

Proof. Let u be a β-closed relative to X, suppose ξ is a fuzzy β-open filterbases in X such that for every finite subfamily λ of ξ, $(\bigwedge_{G \in \lambda} G) \wedge u = 0_X$. Then for every $x \in S(u)$, $(\bigwedge_{G \in \xi} \beta \text{cl} G)(x) = 0_X$ and hence $(\bigvee_{G \in \xi} \beta \text{cl} G')'(x) = 1_X$ for every $x \in S(u)$. Then $\mu = \{(\beta \text{cl} G)^{'} : G \in \xi\}$ is a β-open fuzzy set cover of u and hence there exists a finite subfamily $\lambda \subseteq \xi$ such that $(\bigvee_{G \in \lambda} \beta \text{cl} (\beta \text{cl} G)^{'}) \geq u$, so that $(\bigwedge_{G \in \lambda} \beta \text{cl} (\beta \text{cl} G)^{'}) = \bigwedge_{G \in \lambda} \beta \text{int}(\beta \text{cl} G) \leq \hat{u}$ and hence $\bigwedge_{G \in \lambda} G \leq \hat{u}$. Then $\bigwedge_{G \in \lambda} G \wedge u$ which is a contradiction.

Conversely, let u not be a β-closed fuzzy set relative to X, then there exists a β-open fuzzy set μ cover of u such that every finite subfamily $\eta \subseteq \mu$, $(\bigvee_{A \in \eta} \beta \text{cl} A)(x) \leq u(x)$ for some $x \in S(u)$ and hence $(\bigwedge_{A \in \eta} (\beta \text{cl} A)^{'})'(x) > \hat{u}(x) \geq 0$ for some $x \in S(u)$. Thus $\xi = \{(\beta \text{cl} A)^{'}, A \in \mu\}$ forms a fuzzy β-open filterbases in X. Let there exists a finite subfamily $\{(\beta \text{cl} A)^{'}, A \in \eta\}$ such that $(\bigwedge_{A \in \eta} (\beta \text{cl} A)^{'}) \wedge u = 0_X$. Then $u \leq (\bigvee_{A \in \eta} \beta \text{cl} A)$. So there exists a finite subfamily $\eta \subseteq \mu$ such that $(\bigvee_{A \in \eta} \beta \text{cl} A) \geq u$ which is a contradiction. Then for each finite subfamily $\lambda = \{(\beta \text{cl} A)^{'}, A \in \eta\}$ of ξ, we have $(\bigwedge_{A \in \eta} (\beta \text{cl} A)^{'})qu$. Hence by the given condition $(\bigwedge_{A \in \mu} (\beta \text{cl} (\beta \text{cl} A)^{'}) \wedge u \neq 0_X$, so there exists $x \in S(u)$ such that $(\bigwedge_{A \in \mu} (\beta \text{cl} (\beta \text{cl} A)^{'})'(x) > 0_X$. Then $(\bigvee_{A \in \mu} (\beta \text{cl} (\beta \text{cl} A)^{'})'(x) = (\bigvee_{A \in \mu} \beta \text{int}(\beta \text{cl} A))(x) < 1_X$, and hence $(\bigvee_{A \in \mu} A)(x) < 1_X$ which contradicts the fact that μ is a β-open fuzzy set cover of u. Therefore u is fuzzy β-closed relative to X. \hfill \Box

Definition 4.13 A fuzzy set u of X is said to be fuzzy β-regular if it is both β-open
Proposition 4.14 If \(u \) is \(\beta \)-open fuzzy set in \(X \), then \(\beta \text{cl} \ u \) is \(\beta \)-regular.

Proof. Since \(\beta \text{cl} \ u \) is \(\beta \)-closed, we must show that \(\beta \text{cl} \ u \) is \(\beta \)-open. Since \(u \) is \(\beta \)-open in \(X \), \(v \leq u \leq \text{cl} \ v \) holds for some preopen fuzzy set \(v \) in \(X \). Therefore, we have \(v \leq \beta \text{cl} \ v \leq \beta \text{cl} \ u \leq \text{cl} \ v \), and hence \(\beta \text{cl} \ u \) is \(\beta \)-open.

Theorem 4.15 For a fts \(X \), the following are equivalent:

(a) \(X \) is \(\beta \)-closed space.

(b) Every cover of \(X \) by fuzzy \(\beta \)-regular sets has a finite subcover.

(c) For every collection \(\{ A_j : j \in J \} \) of fuzzy \(\beta \)-regular sets such that \(\bigwedge_{j \in J} A_j = 0_X \), there exists a finite subset \(F \subseteq J \) such that \(\bigwedge_{j \in F} A_j = 0_X \).

Proof. It is obvious from Proposition 4.14 and from the facts that, for every collection \(\{ A_j : j \in J \} \), \(\bigvee_{j \in J} A_j = \bigwedge_{j \in J} A_j \), \(\bigwedge_{j \in F} A_j = \bigvee_{j \in F} A_j \) and

\[A \text{ is } \beta \text{-open fuzzy set iff } \tilde{A} \text{ is } \beta \text{-closed fuzzy set}. \]

Theorem 4.16 Let \(f : X \rightarrow Y \) be a fuzzy \(\beta \)-continuous surjection function. If \(X \) is \(\beta \)-closed space, then \(Y \) is almost compact.

Proof. Let \(\{ A_j : j \in J \} \) be an open fuzzy set cover of \(Y \). Then \(\{ f^{-1}(A_j) : j \in J \} \) is a \(\beta \)-open fuzzy set cover of \(X \). By hypothesis, there exists a finite subset \(F \subseteq J \) such that \(\bigvee_{j \in F} \beta \text{cl} f^{-1}(A_j) = 1_X \). From the surjectivity of \(f \) and by Lemma 2.6, \(1_Y = f(1_X) = f(\bigvee_{j \in F} \beta \text{cl} f^{-1}(A_j)) \leq \bigvee_{j \in F} \text{cl}(f^{-1}(A_j)) = \bigvee_{j \in F} A_j \). Hence \(Y \) is almost compact.

Using Lemma 2.5, we have also the following theorem which can proved similarly to Theorem 4.16.

Theorem 4.17 If \(f : X \rightarrow Y \) is fuzzy \(M \beta \)-continuous surjection function and \(X \) is fuzzy \(\beta \)-closed space, then \(Y \) is so.
HANAFY

Acknowledgement

It is a pleasure to thank the referees for their comments which resulted in an improved presentation of the paper.

References

I. M. HANAFY
Department of Mathematics,
Faculty of Education,
Suez Canal University,
El-Arish-EGYPT
e-mail: ihanafy@hotmail.com

Received 14.04.2003