Radical Submodules and Uniform Dimension of Modules

P. F. Smith

Abstract

We investigate the relations between a radical submodule \(N \) of a module \(M \) being a finite intersection of prime submodules of \(M \) and the factor module \(M/N \) having finite uniform dimension. It is proved that if \(N \) is a radical submodule of a module \(M \) over a ring \(R \) such that \(M/N \) has finite uniform dimension, then \(N \) is a finite intersection of prime submodules. The converse is false in general but is true if the ring \(R \) is fully left bounded left Goldie and the module \(M \) is finitely generated. It is further proved that, in general, if a submodule \(N \) of a module \(M \) is a finite intersection of prime submodules, then the module \(M/N \) can have an infinite number of minimal prime submodules.

1. Introduction

Throughout this note all rings are associative with identity and all modules are unital left modules. Let \(R \) be a ring and let \(M \) be an \(R \)-module. A submodule \(K \) of \(M \) is called \textit{prime} if \(K \neq M \) and whenever \(r \in R \) and \(L \) is a submodule of \(M \) such that \(rL \subseteq K \) then \(rM \subseteq K \) or \(L \subseteq K \). In this case, the ideal \(P = \{ r \in R : rM \subseteq K \} \) is a prime ideal of \(R \) and we call \(K \) a \textit{P-prime} submodule of \(M \). For more information about prime submodules of \(M \) see, for example, [3]–[8] and [10]. A submodule \(N \) of a module \(M \) is called a \textit{radical} submodule if \(N \) is an intersection of prime submodules of \(M \). Note that radical submodules are proper submodules of \(M \).

Given a submodule \(N \) of a module \(M \), a decomposition \(N = K_1 \cap \cdots \cap K_n \) in terms of submodules \(K_i (1 \leq i \leq n) \) of \(M \), where \(n \) is a positive integer, is called \textit{irredundant}
if \(N \neq K_1 \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_n \) for all \(1 \leq i \leq n \). In [11], a submodule \(N \) of a module \(M \) is said to have a prime decomposition if \(N \) is the intersection of a finite collection of prime submodules of \(M \). Let \(N \) be a submodule of an \(R \)-module \(M \) such that \(N \) has a prime decomposition. Then \(N \) will be said to have a normal prime decomposition if there exists a positive integer \(n \), distinct prime ideals \(P_i(1 \leq i \leq n) \) of \(R \) and \(P_i \)-prime submodules \(K_i \) \((1 \leq i \leq n)\) of \(M \) such that \(N = K_1 \cap \cdots \cap K_n \) is an irredundant decomposition.

Lemma 1.1 (See [11, Corollary 2, Theorem 3 and Lemma 14].) Let \(R \) be any ring and let \(N \) be a submodule of an \(R \)-module \(M \) such that \(N \) has a prime decomposition. Then \(N \) has a normal prime decomposition. Moreover, if \(N = K_1 \cap \cdots \cap K_n \) and \(N = L_1 \cap \cdots \cap L_k \) are normal prime decompositions of \(N \) where \(K_i \) is \(P_i \)-prime for some prime ideal \(P_i(1 \leq i \leq n) \) and \(L_j \) is \(Q_j \)-prime for some prime ideal \(Q_j(1 \leq j \leq k) \), then \(n = k \) and \(\{ P_i : 1 \leq i \leq n \} = \{ Q_j : 1 \leq j \leq k \} \).

In Lemma 1.1, the prime ideals \(P_i \) \((1 \leq i \leq n)\) are called the associated prime ideals of \(N \). Given submodules \(G, H \) of an \(R \)-module \(M \) we set (\(G : H \)) = \(\{ r \in R : rH \subseteq G \} \). Note that (\(G : H \)) is an ideal of \(R \). Moreover, (\(G : H \)) = \(R \) if and only if \(H \subseteq G \).

Lemma 1.2 (See [11, Theorem 6].) Let \(R \) be any ring and let \(N \) be a submodule of an \(R \)-module \(M \) such that \(N \) has a prime decomposition. Then a prime ideal \(P \) of \(R \) is an associated prime ideal of \(N \) if and only if \(P = (N : L) \) for some submodule \(L \) of \(M \).

A module \(M \) has finite uniform dimension if \(M \) does not contain a direct sum of an infinite number of non-zero submodules. Also, a non-zero module \(M \) is uniform if \(X \cap Y \neq 0 \) for all non-zero submodules \(X \) and \(Y \) of \(M \).

Lemma 1.3 (See [9, 2.2.7, 2.2.8, 2.2.9].) A non-zero \(R \)-module \(M \) has finite uniform dimension if and only if there exist a positive integer \(n \) and independent uniform submodules \(U_i \) \((1 \leq i \leq n)\) of \(M \) such that \(U_1 \oplus \cdots \oplus U_n \) is an essential submodule of \(M \). Moreover, if \(V_i(1 \leq i \leq k) \) are independent uniform submodules of \(M \) such that \(V_1 \oplus \cdots \oplus V_k \) is essential in \(M \) then \(n = k \).

In Lemma 1.3, the positive integer \(n \) is called the uniform (or Goldie) dimension of \(M \) and is denoted by \(u(M) \). Let \(N \) be a submodule of a module \(M \). By Zorn’s Lemma the collection of submodules \(L \) of \(M \) such that \(L \cap N = 0 \) has a maximal member and any
such is called a complement of \(N \) (in \(M \)). A submodule \(K \) of \(M \) is called a complement (in \(M \)) if there exists a submodule \(N \) of \(M \) such that \(K \) is a complement of \(N \).

Lemma 1.4 (See [2, 1.10 and 5.10].) Let \(L, N \) be submodules of a module \(M \) with \(L \cap N = 0 \). Then there exists a complement \(K \) of \(N \) such that \(L \subseteq K \). Moreover, if \(M \) has finite uniform dimension then \(u(M) = u(N) + u(K) = u(M/K) + u(K) \).

We shall require the following result later. Its proof is included for completeness.

Lemma 1.5 Given a positive integer \(n \), a module \(M \) has uniform dimension \(n \) if and only if there exist submodules \(L_i \) (\(1 \leq i \leq n \)) such that

(a) \(M/L_i \) is a uniform module for all \(1 \leq i \leq n \),

(b) \(0 = L_1 \cap \cdots \cap L_n \), and

(c) \(0 \neq L_1 \cap \cdots \cap L_{i-1} \cap L_{i+1} \cap \cdots \cap L_n \) for all \(1 \leq i \leq n \).

Note that in Lemma 1.5, (b) and (c) can be restated thus: \(0 = L_1 \cap \cdots \cap L_n \) is an irredundant decomposition.

Proof. Suppose first that \(M \) has uniform dimension \(n \). By Lemma 1.3, there exist independent uniform submodules \(U_i \) (\(1 \leq i \leq n \)) of \(M \) such that \(U_1 \oplus \cdots \oplus U_n \) is an essential submodule of \(M \). For each \(1 \leq i \leq n \), let \(K_i \) be a complement of \(U_i \) in \(M \) such that \(U_1 \oplus \cdots \oplus U_{i-1} \oplus U_{i+1} \oplus \cdots \oplus U_n \subseteq K_i \) (Lemma 1.4). By Lemma 1.4, \(M/K_i \) is a uniform module for each \(1 \leq i \leq n \). Suppose that \(K_1 \cap \cdots \cap K_n \neq 0 \). Then \((K_1 \cap \cdots \cap K_n) \cap (U_1 \oplus \cdots \oplus U_n) \neq 0 \). Let \(0 \neq x = U_1 + \cdots + U_n \) where \(x \in K_1 \cap \cdots \cap K_n \) and \(u_i \in U_i \) (\(1 \leq i \leq n \)). Then \(u_1 = x - u_2 - \cdots - u_n \in K_1 \cap U_1 = 0 \), so that \(u_1 = 0 \). Similarly, \(u_i = 0 \) (\(2 \leq i \leq n \)), and hence \(x = 0 \), a contradiction. Therefore \(0 = K_1 \cap \cdots \cap K_n \). Moreover, for each \(1 \leq i \leq n \), \(0 \neq U_i \subseteq K_1 \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_n \).

Conversely, suppose that \(M \) contains submodules \(L_i \) (\(1 \leq i \leq n \)) satisfying (a), (b) and (c). Define a mapping \(\phi : M \rightarrow (M/L_1) \oplus \cdots \oplus (M/L_n) \) by \(\phi(m) = (m+L_1, \ldots, m+L_n) \) for all \(m \in M \). By (b), \(\phi \) is a monomorphism. Let \(1 \leq i \leq n \). By (c) there exists \(0 \neq m_i \in L_1 \cap \cdots \cap L_{i-1} \cap L_{i+1} \cap \cdots \cap L_n \) and hence \(m_i \not\in L_i \) by (b). It follows that \(0 \neq (0, \ldots, 0, m_i + L_i, 0, \ldots, 0) = \phi(m_i) \in \phi(M) \). Hence \(\phi(M) \cap (0 \oplus \cdots \oplus 0 \oplus (M/L_i) \oplus 0 \oplus \cdots \oplus 0) \neq 0 \) for all \(1 \leq i \leq n \). Hence \(\phi(M) \) is an essential submodule of
Before proceeding we make two comments about Lemma 1.5. Firstly, note that a non-zero module M has finite uniform dimension if and only if the zero submodule is the intersection of a finite collection of irreducible submodules. Recall that a submodule N of M is called irreducible if the factor module M/N is uniform. The second comment is that condition (a) in Lemma 1.5 is crucial because if K and L are non-zero submodules of a module M such that $K \cap L = 0$ and M/K and M/L both have finite uniform dimension then $u(M) \leq u(M/K) + u(M/L)$ but it is not necessarily the case that $u(M) = u(M/K) + u(M/L)$. A simple example can be given to illustrate this fact. Let \mathbb{Z} denote the ring of rational integers and \mathbb{Q} the field of rational numbers. Let M denote the \mathbb{Z}-module \mathbb{Q} so that $u(M) = 2$. Let $K = \{(q,q) : q \in \mathbb{Q}\}$. Then $M = K \oplus (\mathbb{Q} \oplus 0)$ so that $u(M/K) = 1$. Let n be any positive integer and let π be any collection of n distinct primes in \mathbb{Z}. Let X denote the submodule $\sum_{p \in \pi} \sum_{k=1}^{\infty} \mathbb{Z}(1/p^k)$ of \mathbb{Q}. Note that X consists of all s/t in \mathbb{Q} such that $s, t \in \mathbb{Z}, t \neq 0$ and t is not divisible by any prime p in π. Note that $\mathbb{Q}/X \cong (\mathbb{Q}/\mathbb{Z})/(X/\mathbb{Z})$ so that $u(\mathbb{Q}/X) = n$. Let L denote the submodule $0 \oplus X$ of M. Then K and L, are non-zero submodules of M such that $K \cap L = 0$, $u(M/K) = 1$, $u(M/L) = n + 1$ and $u(M) = 2$, so that $u(M) \neq u(M/K) + u(M/L)$.

We complete this section with two results about prime submodules.

Lemma 1.6 (See [8, Proposition 1.4(ii)].) Let N be a P-prime submodule of an R-module M, for some prime ideal P of R, and let K be a proper submodule of M containing N such that K/N is a complement in M/N. Then K is a P-prime submodule of M.

In what follows we shall be particularly interested in irreducible prime submodules of a module M, i.e. prime submodules K of M such that M/K is a uniform module. For example, in the \mathbb{Z}-module \mathbb{Q}, the zero submodule of \mathbb{Q} is an irreducible prime submodule. Lemma 1.6 has the following consequence.

Corollary 1.7 Let N be a P-prime submodule of an R-module M, for some prime ideal P of R, and let L be a non-zero submodule of M such that $N \cap L = 0$. Let K be a complement of L in M such that $N \subseteq K$. Then K is a P-prime submodule of M. Moreover, if L is a uniform module then K is an irreducible P-prime submodule of M.

258
Proof. Note that $K \cap L = 0$ and $L \neq 0$ together imply $K \neq M$. It is easy to check that K/N is a complement of $(L + N)/N$ in M/N. By Lemma 1.6, K is a P-prime submodule of M. Now suppose that L is uniform. By Lemma 1.4, $u(M/K) = u(L) = 1$, i.e. K is an irreducible prime submodule of M. □

2. Modules with finite uniform dimension

In this section we shall prove that any radical submodule N of a module M such that the factor module M/N has finite uniform dimension has a prime decomposition and we shall investigate the associated prime ideals of N.

Let U be a uniform R-module. Let $P = \{ r \in R : rV = 0 \text{ for some non-zero submodule } V \text{ of } U \}$. Then P is an ideal of R. Following [1] we shall call P the assassinator of U. It can easily be checked that if $PW = 0$ for some non-zero submodule W of U then P is a prime ideal of R.

Lemma 2.1 Let U be a uniform submodule of an R-module M and let P be the assassinator of U. Suppose that $PM \cap U = 0$. Then there exists an irreducible P-prime submodule K of M such that $K \cap U = 0$.

Proof. Note that $PU = 0$ so that P is a prime ideal of R. Let K be a complement of U in M such that $PM \subseteq K$ (Lemma 1.4). Let $r \in R$ and let L be a submodule of M containing K such that $rL \subseteq K$. Then $r(L \cap U) \subseteq K \cap U = 0$. Either $L \cap U = 0$ in which case $L = K$ or $L \cap U \neq 0$ in which case $r \in P$ because P is the assassinator of U. It follows that K is a P-prime submodule of M. By Lemma 1.4, M/K is a uniform module and hence K is an irreducible P-prime submodule of M. □

Lemma 2.2 Let M be an R-module such that the zero submodule of M is a radical submodule. Let U be a uniform submodule of M with assassinator P. Then $PM \cap U = 0$.

Proof. Let A be a finitely generated left ideal of R such that $A \subseteq P$. There exists a non-zero submodule V of U such that $AV = 0$. There exist prime submodules K_λ ($\lambda \in \Lambda$) of M such that $0 = \cap_{\lambda \in \Lambda} K_\lambda$. Let $\lambda \in \Lambda$. If $V \nsubseteq K_\lambda$ then $AV = 0 \subseteq K_\lambda$ gives $AM \subseteq K_\lambda$. Hence $AM \cap V \subseteq K_\lambda$. Thus $AM \cap V \subseteq \cap_{\lambda \in \Lambda} K_\lambda = 0$. Next $(AM \cap U) \cap V = AM \cap V = 0$,
so that $AM \cap U = 0$ because U is uniform. Clearly it follows that $PM \cap U = 0$.

Theorem 2.3 Let R be any ring and let M be a non-zero R-module such that the zero submodule of M is a radical submodule. Then the following statements are equivalent.

(i) The zero submodule of M is a finite intersection of irreducible prime submodules of M.

(ii) M has finite uniform dimension.

Moreover, in this case if $0 = K_1 \cap \cdots \cap K_n$ is any irredundant decomposition, where K_i is an irreducible prime submodule of M for each $1 \leq i \leq n$, then $n = u(M)$.

Proof. (ii) \Rightarrow (i) Suppose that M has finite uniform dimension. Let U_1 be any uniform submodule of M and let P_1 be the assassinator of U_1. By Lemma 2.2, $P_1 M \cap U_1 = 0$ and by Lemma 2.1 there exists an irreducible P_1-prime submodule K_1 of M such that $K_1 \cap U_1 = 0$. If $u(M) = 1$ then $K_1 = 0$ and the result is proved.

Suppose that $u(M) \geq 2$. Let U_2 be any uniform submodule of M such that $U_1 \cap U_2 = 0$. If $K_1 \cap (U_1 \oplus U_2) = 0$ then set $K_2 = M$. Suppose that $K_1 \cap (U_1 \oplus U_2) \neq 0$. Note that $K_1 \cap (U_1 \oplus U_2)$ embeds in U_2 (because $K_1 \cap U_1 = 0$) and hence $K_1 \cap (U_1 \oplus U_2)$ is a uniform submodule of M. Let P_2 be the assassinator of $K_1 \cap (U_1 \oplus U_2)$. As above, by Lemmas 2.2 and 2.1 there exists an irreducible P_2-prime submodule K_2 of M such that $K_2 \cap \{K_1 \cap (U_1 \oplus U_2)\} = 0$ and hence $(K_1 \cap K_2) \cap (U_1 \oplus U_2) = 0$. If $u(M) = 2$ then $U_1 \oplus U_2$ is essential in M and hence $K_1 \cap K_2 = 0$ so that again the result is true because $K_2 \cap K_2 = 0$ is an irreducible prime submodule.

Suppose that $u(M) \geq 3$. Let U_3 be any uniform submodule of M such that $(U_1 \oplus U_2) \cap U_3 = 0$. By the above argument there exists a submodule K_3 of M such that $(K_1 \cap K_2 \cap K_3) \cap (U_1 \oplus U_2 \oplus U_3) = 0$ and either $K_3 = M$ or K_3 is an irreducible prime submodule of M. Repeat this process to obtain a sequence $U_i (i \geq 1)$ of independent uniform submodules and a sequence $K_i (i \geq 1)$ of submodules such that K_1 is an irreducible prime submodule and for each $i \geq 2$ the submodule $K_i = M$ or K_i is irreducible prime satisfying

$$(K_1 \cap \cdots \cap K_s) \cap (U_1 \oplus \cdots \oplus U_s) = 0$$

for each positive integer s. Let $n = u(M) \geq 1$. Then $U_1 \oplus \cdots \oplus U_n$ is an essential submodule of M and hence $K_1 \cap \cdots \cap K_n = 0$.

\square
Corollary 2.4 Let N be a radical submodule of an R-module M. Then N is a finite intersection of irreducible prime submodules of M if and only if M/N has finite uniform dimension. In this case, N has a prime decomposition.

Proof. By Theorem 2.3. \qed

In certain circumstances, every radical submodule of a module M is an intersection of irreducible prime submodules. In order to prove this we begin with the following lemma.

Lemma 2.5 Let P be a prime ideal of a ring R and let M be an R-module such that 0 is a P-prime submodule of M and every non-zero submodule contains a uniform submodule of M. Then the zero submodule is an intersection of irreducible P-prime submodules of M.

Proof. By Zorn’s Lemma M contains a maximal independent collection of uniform submodules $U_\lambda (\lambda \in \Lambda)$ and by hypothesis $\oplus_{\lambda \in \Lambda} U_\lambda$ is an essential submodule of M. Let $\mu \in \Lambda$ and let $L_\mu = \oplus_{\lambda \neq \mu} U_\lambda$. Note that L_μ is a submodule of M such that $L_\mu \cap U_\mu = 0$. By Lemma 1.4 there exists a complement K_μ of U_μ in M such that $L_\mu \subseteq K_\mu$. Now Lemma 1.6 gives that K_μ is P-prime. It is easy to check that $(\cap_{\lambda \in \Lambda} K_\lambda) \cap (\oplus_{\lambda \in \Lambda} U_\lambda) = 0$ and hence $\cap_{\lambda \in \Lambda} K_\lambda = 0$ where K_λ is a P-prime submodule of M for each $\lambda \in \Lambda$. \qed

We shall say that a (non-zero) R-module M has many uniforms if for every prime submodule K of M and for each element $m \in M \setminus K$, the submodule $(Rm+K)/K$ contains a uniform submodule.

Theorem 2.6 Let M be an R-module with many uniforms. Then, for any prime ideal P of R, every P-prime submodule of M is an intersection of irreducible P-prime submodules of M. Moreover, every radical submodule of M is an intersection of irreducible prime submodules of M.

Proof. Let P be a prime ideal of R and let K be a P-prime submodule of M. Applying Lemma 2.5 to the module M/K we see that $0 = \cap_{\lambda \in \Lambda} K_\lambda/K$ where K_λ is a submodule containing K such that K_λ/K is an irreducible P-prime submodule of M/K for each $\lambda \in \Lambda$. Clearly $K = \cap_{\lambda \in \Lambda} K_\lambda$ where K_λ is an irreducible P-prime submodule of M for
each \(\lambda \in \Lambda \). The last part is clear. \(\square \)

Note that if \(R \) is a left Noetherian ring then every non-zero left \(R \)-module has many uniforms. More generally, if a ring \(R \) has left Krull dimension then every non-zero left \(R \)-module has many uniforms by [9, 6.2.4 and 6.2.6]. A ring \(R \) is called \textit{left semi-artinian} if every non-zero cyclic left \(R \)-module contains a simple submodule. For example, right perfect rings are left semi-artinian. Clearly if \(R \) is a left semi-artinian ring then every non-zero left \(R \)-module has many uniforms. (For more information on left semi-artinian rings see [2, pp26-28].) In the next section we shall show that if \(R \) is any commutative ring, or more generally any ring satisfying a polynomial identity, then every non-zero \(R \)-module has many uniforms.

Next we give a characterization of the associated prime ideals of a radical submodule \(N \) in case \(M/N \) has finite uniform dimension (compare Lemma 1.2).

\textbf{Theorem 2.7} Let \(N \) be a radical submodule of an \(R \)-module \(M \) such that \(M/N \) has finite uniform dimension. Then \(P \) is an associated prime ideal of \(N \) if and only if \(P \) is the assassinator of a uniform submodule of the module \(M/N \).

\textbf{Proof.} Suppose first that \(L \) is a submodule of \(M \) containing \(N \) such that \(L/N \) is a uniform module. Let \(P \) be the assassinator of \(L/N \). By Lemma 2.2, \(P = (N:L) \) and by Lemma 1.2, \(P \) is an associated prime ideal of \(N \).

Conversely, suppose that \(P \) is an associated prime ideal of \(N \). Let \(N = K_1 \cap \cdots \cap K_n \) be a normal prime decomposition of \(N \) where \(K_i \) is a \(P_i \)-prime submodule of \(M \) for some prime ideal \(P_i \) for each \(1 \leq i \leq n \) and \(n \) is a positive integer. Without loss of generality, we can suppose that \(P = P_1 \) (Lemma 1.1). If \(n = 1 \) then \(N = K_1 \) and so \(N \) is a \(P \)-prime submodule of \(M \). Let \(H \) be a submodule of \(M \) properly containing \(N \) such that \(H/N \) is a uniform module. Clearly \(P \) is the assassinator of \(H/N \).

Now suppose that \(n \geq 2 \). Since \(K_2 \cap \cdots \cap K_n \neq N \) it follows that there exists a submodule \(G \) of \(K_2 \cap \cdots \cap K_n \) properly containing \(N \) such that \(G/N \) is a uniform module. Note that \(PG \subseteq K_1 \cap \cdots \cap K_n = N \). On the other hand, let \(r \in R \) and let \(J \) be a submodule of \(G \) such that \(rJ \subseteq N \). Then \(rJ \subseteq K_1 \). Either \(J \subseteq K_1 \) in which case \(J \subseteq K_1 \cap \cdots \cap K_n = N \) or \(r \in P \). It follows that \(P \) is the assassinator of the uniform submodule \(G/N \) of \(M/N \). \(\square \)
Corollary 2.8 Let N be a radical submodule of an R-module M such that M/N has finite uniform dimension. Then a prime ideal P of R is the assassinator of a uniform submodule of the module M/N if and only if $P = (N : L)$ for some submodule L of M.

Proof. By Lemma 1.2 and Theorem 2.5. \hfill \Box

3. Modules over fully bounded rings

We now consider when it is the case that every submodule N of a module M with N having a prime decomposition has the property that the factor module M/N has finite uniform dimension. Note that if F is a field and V an infinite dimensional vector space over F then the zero subspace of V is a prime submodule, but the F-module V does not have finite uniform dimension. Because of this example we shall consider finitely generated modules. But even for finitely generated modules there are problems. In [1, Example 1.22] an example is given of a right Noetherian domain such that the left R-module R does not have finite uniform dimension. Thus we shall also restrict the choice of the ring R.

A prime ring R is left bounded if every essential left ideal contains a non-zero two-sided ideal. A general ring R is a fully left bounded left Goldie ring (left FBG-ring for short) if, for each prime ideal P of R, the prime ring R/P is a left bounded left Goldie ring. Clearly commutative rings are (left) FBG-rings, as are rings with polynomial identity by [9, 13.6.6].

Let R be a prime left Goldie ring. An element c of R is regular if $cr \neq 0$ and $rc \neq 0$ for every non-zero element r of R. An R-module M is called torsion-free if $cm \neq 0$ for every regular element c of R and non-zero element m of M. On the other hand, M is a torsion module if for each $m \in M$ there exists a regular element c of R such that $cm = 0$.

Lemma 3.1 (See [8, Lemma 2.6].) Let P be a prime ideal of a ring R such that R/P is a left bounded left Goldie ring and let K be a submodule of an R-module M. Then K is a P-prime submodule of M if and only if $P = (K : M)$ and the (R/P)-module M/K is torsion-free.

Let P be a prime ideal of a ring R. By a maximal P-prime submodule of an R-module M we mean a P-prime submodule K of M such that K is not properly contained
in any P-prime submodule of M. By a *maximal prime* submodule of M we shall mean a submodule which is a maximal Q-prime submodule of M for some prime ideal Q of R. In [7], given a prime ideal P of R, a submodule L of a module M is called P-maximal if L is maximal in the collection of submodules H of M such that $P = (H : M)$.

Lemma 3.2 Let P be a prime ideal of a ring R. Consider the following statements about a submodule K of an R-module M.

(i) K is P-maximal;

(ii) K is maximal P-prime;

(iii) K is irreducible P-prime.

Then (i) \Rightarrow (ii) \Rightarrow (iii). Moreover, if R/P is a left bounded left Goldie ring then (iii) \Rightarrow (ii). If in addition M is finitely generated, then (ii) \Rightarrow (i).

Proof. (i) \Rightarrow (ii) Let K be a P-maximal submodule of M. Note that $P = (K : M)$. Let $r \in R$ such that $rL \subseteq K$ for some submodule L of M properly containing K. Let $A = (L : M)$. Then $P \subseteq A$ because K is P-maximal. Now $rAM \subseteq rL \subseteq K$, so that $rA \subseteq P$ and hence $r \in P$. It follows that K is P-prime. Clearly K is a maximal P-prime submodule of M.

(ii) \Rightarrow (iii) Let K be a maximal P-prime submodule of M. Let L be any submodule of M properly containing K. Let H be a submodule of M containing K such that H/K is a complement of L/K in M/K. Since $L/K \neq 0$ it follows that $H/K \neq M/K$. By Lemma 1.6, H is a P-prime submodule of M. Then $H = K$. It follows that L/K is an essential submodule of M/K. Therefore M/K is a uniform module and K is an irreducible P-prime submodule of M.

Now suppose that R/P is a left bounded left Goldie ring. Let K be an irreducible P-prime submodule of M. Let G be any submodule of M properly containing K. Let $m \in M$. Since G/K is an essential submodule of the (R/P)-module M/K it follows that $E(m + G) = 0$ for some essential left ideal E of the ring R/P. By [9, 2.3.5.] there exists a regular element σ of R/P such that $\sigma(m + G) = 0$. It follows that M/G is a torsion (R/P)-module for every submodule G properly containing K. By Lemma 3.1, N is a maximal P-prime submodule of M.

264
Finally, suppose that M is a finitely generated module (and R/P is left bounded left Goldie). Let K be an irreducible P-prime submodule of M and let G be any submodule of M properly containing N. As before, M/G is a torsion (R/P)-module. By hypothesis, there exists an ideal A of R properly containing P such that $AM \subseteq G$. Thus $P \subseteq (G : M)$. It follows that K is P-maximal.

Let M be a finitely generated R-module. Then $g(M)$ will denote the least number of elements in a smallest generating set of M.

Lemma 3.3 Let R be a prime left Goldie ring and let M be a finitely generated torsion-free R-module. Then M has finite uniform dimension and $u(M) \leq g(M)u(R)$.

Proof. Suppose that $M \neq 0$ and $g(M) = k$, for some positive integer k. There exists an epimorphism $\phi : R^k \to M$. Let $K = \ker \phi$. Then R^k/K is torsion-free so that K is a complement submodule of R^k by [2, 1.10]. By Lemma 1.4,

$$ku(R) = u(R^k) = u(K) + u((R^k)/K) \geq u(R^k/K) = u(M).$$

Corollary 3.4 Let P be a prime ideal of a ring R such that the ring R/P is left bounded left Goldie and let K be a P-prime submodule of a finitely generated R-module M. Then the R-module M/K has finite uniform dimension and $u(M/K) \leq g(M/K)u(R/P)$.

Proof. By Lemmas 3.1 and 3.3

Theorem 3.5 Let R be a left FBG-ring. Then the following statements are equivalent for a submodule N of a finitely generated R-module M.

(i) N is a radical submodule of M and M/N has finite uniform dimension.

(ii) N is a finite intersection of maximal prime submodules of M.

(iii) N has a prime decomposition.
Proof. (i) \Rightarrow (ii) By Corollary 2.4 and Lemma 3.2.

(ii) \Rightarrow (iii) Clear.

(iii) \Rightarrow (i) Suppose that N has a prime decomposition. Then N is a radical submodule of M. Let $N = K_1 \cap \cdots \cap K_n$ be a prime decomposition where K_i is a P_i-prime submodule of M for some prime ideal P_i of R for each $1 \leq i \leq n$. For each $1 \leq i \leq n$, the prime ring R/P_i is left bounded left Goldie. By Corollary 3.4, the R-module M/K_i has finite uniform dimension. Since M/N embeds in $(M/K_1) \oplus \cdots \oplus (M/K_n)$ it follows that M/N has finite uniform dimension. \qed

Theorem 3.6 Let R be a left FBG-ring and let M be a non-zero R-module. Then, for any prime ideal P of R, every P-prime submodule of M is an intersection of maximal P-prime submodules of M. Moreover, every radical submodule of M is an intersection of maximal prime submodules of M.

Proof. We shall prove that M has many uniforms. Let Q be a prime ideal of R and let K be a Q-prime submodule of M. Let $m \in M \setminus K$. Note that the ring R/Q is a left bounded left Goldie ring and the (R/Q)-module M/K is torsion-free (see Lemma 3.1). Hence $(Rm + K)/K$ is a torsion-free cyclic (R/Q)-module. There exists a non-essential left ideal \mathcal{T} of $R = R/Q$ such that $(Rm + K)/K \cong \mathcal{R}/\mathcal{T}$. Next there exists a uniform left ideal \mathcal{U} of \mathcal{R} such that $\mathcal{L} \cap \mathcal{U} = 0$, and hence \mathcal{U} embeds in $(Rm + K)/K$. It follows that M has many uniforms. By Theorem 2.6 and Lemma 3.2, every P-prime submodule is an intersection of maximal P-prime submodules of M, for each prime ideal P of R. The last part is clear.

Next we shall examine the fully left bounded condition further. We begin with the following result. \qed

Lemma 3.7 Let R be a prime ring such that every ideal is finitely generated as a left ideal and let M be a finitely generated R-module such that the zero submodule $0 = K_1 \cap \cdots \cap K_n$ where n is a positive integer and K_i is a maximal 0-prime submodule of M for each $1 \leq i \leq n$. Let L be a submodule of M such that $L \cap K_1 \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_n \not\subseteq K_i$ for each $1 \leq i \leq n$. Then there exists a non-zero ideal A of R such that $AM \subseteq L$.

Proof. The result is proved by induction on n. Suppose that $n = 1$. Then 0 is a maximal 0-prime submodule of M and L is a non-zero submodule of M. Let
H = \{m \in M : Bm \subseteq L \text{ for some non-zero ideal } B \text{ of } R\}. It is easy to check that H is a submodule of M. Let x \in M such that Cx \subseteq H for some non-zero ideal C of R. There exist a positive integer k and elements c_i \in C(1 \leq i \leq k) such that C = Rc_1 + \cdots + Rc_k. For each 1 \leq i \leq k there exists a non-zero ideal D_i of R such that D_ix \subseteq L. Let D = D_1 \cdots D_kC. Then D is a non-zero ideal of R such that Dx = D_1 \cdots D_kCkx = \sum_{i=1}^{k} D_1 \cdots D_kc_ix \subseteq L, and hence x \in H. It follows that if H \neq M then H is a 0-prime submodule of M. Because 0 is a maximal 0-prime submodule of M, we deduce that H = M. Now M is finitely generated and it easily follows that AM \subseteq L for some non-zero ideal A of R.

Now suppose that n \geq 2. Let K = K_1 \cap \cdots \cap K_{n-1}. Note that \{[(L \cap K_n) + K]/K]\cap [(K_1/K) \cap \cdots \cap (K_{i-1}/K) \cap (K_{i+1}/K) \cap \cdots \cap (K_{n-1}/K)] \notin K_i/K for all 1 \leq i \leq n - 1. By induction on n there exists a non-zero ideal A_1 of R such that A_1(M/K) \subseteq [(L \cap K_n) + K]/K, i.e. A_1M \subseteq (L \cap K_n) + K. On the other hand, L \cap K \notin K_n so that, by the case n = 1, there exists a non-zero ideal A_2 of R such that A_2(M/K_n) \subseteq [(L \cap K) + K_n]/K_n, i.e. A_2M \subseteq (L \cap K) + K_n. Let A = A_1A_2. Then A is a non-zero ideal of R and

\[AM \subseteq [(L \cap K_n) + K] \cap [(L \cap K) + K_n] \subseteq (L \cap K) + (L \cap K_n) \subseteq L,\]

because K \cap K_n = 0.

Corollary 3.8 Let R be a prime ring such that every ideal is finitely generated as a left ideal and let M be a finitely generated left R-module such that the zero submodule is the intersection of a finite collection of maximal 0-prime submodules. Let L be an essential submodule of M. Then there exists a non-zero ideal A of R such that AM \subseteq L.

Proof. There exist a positive integer n and maximal 0-prime submodules K_i(1 \leq i \leq n) such that 0 = K_1 \cap \cdots \cap K_n and 0 \neq K_1 \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_n for all 1 \leq i \leq n. Clearly L \cap K_1 \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_n \notin K_i for all 1 \leq i \leq n. The result follows by Lemma 3.6.

Theorem 3.9 The following statements are equivalent for a left Noetherian ring R.
(i) R is fully left bounded.

(ii) Every radical submodule of every finitely generated R-module is a finite intersection of maximal prime submodules of M.

(iii) Every radical submodule of the R-module R is a finite intersection of maximal prime submodules of the R-module R.

(iv) Every prime ideal P of R is a finite intersection of maximal P-prime submodules of the R-module R.

Proof. (i) ⇒ (ii) By Theorem 3.5.

(ii) ⇒ (iii) Clear.

(iii) ⇒ (iv) Let P be any prime ideal of R. By (iii) there exist a positive integer n, prime ideals $P_i(1 \leq i \leq n)$ and maximal P_i-prime submodules $K_i(1 \leq i \leq n)$ of R such that $P = K_1 \cap \cdots \cap K_n$ and $P \neq K_1 \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_n$ for all $1 \leq i \leq n$. For each $1 \leq i \leq n$, $PR \subseteq K_i$ so that $P \subseteq (K_i : R) = P_i$. Suppose that $P \neq P_i$ for some $1 \leq i \leq n$. Then $P_i(K_1 \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_n) \subseteq P$, so that $K_1 \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_n = P$, a contradiction. Thus $P = P_i(1 \leq i \leq n)$. This proves (iv).

(iv) ⇒ (i) Let Q be any prime ideal of R. Let M denote the R-module R/Q. Then the (R/Q)-module M satisfies the hypotheses of Corollary 3.8. Let E be any left ideal of R containing Q such that E/Q is an essential left ideal of R/Q. By Corollary 3.8 there exists an ideal A of R properly containing Q such that $(A/Q)(R/Q) \subseteq E/Q$, i.e. $A \subseteq E$. Hence R/Q is left bounded.

Finally, note that if R is an arbitrary ring and N is a radical submodule of an R-module M such that the module M/N has only a finite number of minimal prime submodules then N has a prime decomposition (see [8, p.1059]). The converse is false. Consider the following result.

Theorem 3.10 Let P and Q be prime ideals of a ring R such that $P \nsubseteq Q$ and $Q \nsubseteq P$ and let N be the submodule $P \oplus Q$ of the R-module $R \oplus R$. Then $N = K \cap L$ where K is the P-prime submodule $P \oplus R$ and L is the Q-prime submodule $R \oplus Q$ of M. Moreover,
the minimal prime submodules of M/N are $K/N, L/N$ and BM/N where $P + Q \subseteq B$ and $B/(P + Q)$ is a minimal prime ideal of the ring $R/(P + Q)$.

Proof. The first part is clear. Let G be a submodule of M containing N such that G/N is a minimal prime submodule of M/N. Note that G is a prime submodule of M. Now $P(R \oplus 0) \subseteq G$ gives $R \oplus 0 \subseteq G$ or $PM \subseteq G$. If $R \oplus 0 \subseteq G$ then $R \oplus Q \subseteq G$ and $(R \oplus Q)/N$ is a prime submodule of M/N so that $G/N = (R \oplus Q)/N$. Suppose that $PM \subseteq G$. Next $Q(0 \oplus R) \subseteq G$ gives that $G/N = (P \oplus R)/N$ or $QM \subseteq G$. Suppose that $QM \subseteq G$. Then $(P + Q)M \subseteq G$. Because $P + Q$ is contained in the prime ideal $(G : M)$ there exists a prime ideal B of R such that $P + Q \subseteq B \subseteq (G : M)$ and $B/(P + Q)$ is a minimal prime ideal of the ring $R/(P + Q)$. Note that BM/N is a prime submodule of M/N such that $BM/N \subseteq G/N$. Then $G/N = BM/N$. \qed

Let S be a commutative domain such that there exists a proper ideal A of S such that the ring S/A has an infinite number of minimal prime ideals. Let R denote the polynomial ring $S[X]$ where X is the set of indeterminates $\{x_a : a \in A\}$. Let $P = \sum_{a \in A} Rx_a$ and let $Q = \sum_{a \in A} R(x_a - a)$. Then P and Q are prime ideals of R because $R/P \cong R/Q \cong S$. Moreover, $P + Q = P + A$ and $R/(P + Q) \cong S/A$, so that the ring $R/(P + Q)$ contains an infinite number of minimal prime ideals. If N is the submodule $P \oplus Q$ of the R-module $M = R \oplus R$ then N has a prime decomposition but the R-module M/N contains an infinite number of minimal prime submodules by Theorem 3.10.

To find a commutative domain S and an ideal A with the above properties we proceed as follows. Let T be any commutative von Neumann regular ring which is not Artinian. Then every prime ideal of T is maximal and T contains an infinite number of (minimal) prime ideals. Let $S = \mathbb{Z}[X]$ denote the polynomial ring in the set $X = \{x_t : t \in T\}$ of indeterminates. Then S is a commutative domain and there exists a ring epimorphism $\phi : S \to T$ such that $\phi(x_t) = t$ ($t \in T$). Let A denote the kernel of ϕ. Then A is an ideal of S such that $S/A \cong T$.

References

P. F. SMITH
Department of Mathematics
University of Glasgow
Glasgow, G12 8QW, Scotland, UK
e-mail: dept@maths.gla.ac.uk

Received 01.04.2003