Groups Whose Proper Subgroups are Hypercentral of Length at Most $\leq \omega$

Selami Ercan

Abstract

Groups, all proper subgroups of which are hypercentral of length at most ω and every proper subgroup of which is a B_n-group for a natural number n depending on the subgroup, are studied in this article.

Key Words: hypercentral groups, locally nilpotent groups

1. Introduction

For $n \geq 0$, we denote by B_n the class of groups in which every subnormal subgroup has defect at most n. B_n-groups are considered by many authors, both for special cases and in general. For results related to B_1-groups see [10], [4], [11], for B_2, B_3, B_4-groups see [5], [2] and for the general case see [6], [3]. It was shown in [14] that there exists a group G that is a hypercentral group of length exactly $\omega + 1$ and all of its subgroups are subnormal. The split extension G of a group of type C_2^ω by the inverting automorphism, is hypercentral of length $\omega + 1$ and every proper subgroup of G is nilpotent. A group G is locally graded if every non-trivial finitely generated subgroup of G has a finite non-trivial image. We denote by N_0 class of groups in which every subgroup is subnormal.

The focus of this paper are those locally nilpotent groups whose every proper subgroup is a hypercentral of length at most ω; and where every proper subgroup of these...
hypercentrals are B_n-groups in general, and prove that every such B_n-group is either soluble or a N_0-group.

2. Main Results

Theorem 1 Let G be a periodic hypercentral group and let every proper subgroup H of G be a B_n-group for some natural number n depending on H. If G is hypercentral of length at most ω, then G is nilpotent.

Proof. Suppose that G is not nilpotent. Then G is hypercentral of length ω and $G = \bigcup_{i=0}^{\infty} Z_i(G)$. For all $x \in G$, there exists $i \in N$ such that $x \in Z_i(G)$. Since $Z_i(G)$ is nilpotent for all natural numbers i, for all $x \in G$, $\langle x \rangle$ is a subnormal subgroup of G. Thus G is a Baer group. Since G is hypercentral, $G' < G$ and also G' is nilpotent, by Lemma 6.1 of [6]. Since G/G' is abelian, G is soluble. Every proper subgroup of G is nilpotent, again by Lemma 6.1 of [6]. If G has no maximal subgroup, then every subgroups of G are subnormal by Theorem 3.1.(ii) of [15]. Thus G is nilpotent by Theorem 2.7 of [8]. If G has a maximal subgroup, then there is a maximal subgroup M such that $G = \langle x \rangle M$ for some $x \in G$. Since G is Baer, $\langle x \rangle M$ is nilpotent by Lemma 1 of [7]. \Box

Theorem 2 Let G be a locally graded torsion-free group and let every proper subgroup H of G be a B_n-group for some natural number n depending on H. If every proper subgroup of G is hypercentral of length at most ω, then G is nilpotent.

Proof. Since every proper subgroup of G is hypercentral of length at most ω, $H = \bigcup_{i=0}^{\infty} Z_i(H)$ for all $H < G$; since $Z_i(H)$ is nilpotent, for all $i \geq 0$, $\langle x \rangle$ is subnormal in H, for all $x \in H$. Thus H is a Baer group. By Lemma 6.1 of [6], H is nilpotent. Let F be a finitely generated non-trivial subgroup of G. If $F \neq G$ then F is nilpotent by the above. If $F = G$, then G is a finitely generated locally graded group and so G is nilpotent by Theorem 2 of [16]. Therefore G is locally nilpotent group. Finally, we conclude that G is nilpotent by Theorem 2.1 of [15]. \Box
Theorem 3 Let G be a locally nilpotent group and let every proper subgroup H of G be a B_n-group for some natural number n depending on H. If every proper subgroup of G is hypercentral of length at most $\leq \omega$, then G is soluble.

Proof. Suppose that G is not soluble. Let T be the periodic part of G. T is a subgroup of G by 12.1.1 of [13]. If $T = 1$, then G is nilpotent by Theorem 2. Therefore G is soluble. If $G = T$, then every proper subgroup of G is nilpotent by Theorem 1. By Theorem 3.3.(i),(ii) of [15], G is a Fitting p-group. $G \neq G'$ by Theorem 1.1 of [1]. Therefore G is soluble. If $1 \neq T \neq G$, then T is hypercentral of length at most $\leq \omega$. Therefore T is nilpotent by Theorem 1. Since G/T is torsion-free, G/T is soluble by Theorem 1. Since T and G/T are soluble, G is soluble. This is a contradiction.

Theorem 4 Let G be a locally nilpotent group and let every proper H be a B_n-group for some natural number n depending on H. If G is hypercentral of length at most $\leq \omega$, then G is nilpotent.

Proof. Suppose that G is not nilpotent. G is soluble by Theorem 3. Every proper subgroup of G is nilpotent by the proof of Theorem 3. By hypothesis and Theorem 3.1.(i),(ii) of [15], every subgroup of G is subnormal. By Theorem 2.7 of [8] G is nilpotent. If G has a maximal subgroup, then G is a metabelian Chernikov p-group and G is hypercentral of length at most $\leq \omega + 1$ in [9]. This is a contradiction.

Corollary 5 Let G be a locally nilpotent group and let every proper subgroup H of G be a B_n-group for some natural number n depending on H. If every proper subgroup of G is hypercentral of length at most $\leq \omega$, then either G is hypercentral or G is an N_0-group.

Proof. Suppose that G is not hypercentral. Then G is not nilpotent. G is soluble by Theorem 3 and every proper subgroup of G is nilpotent by the proof of Theorem 3. If G has a maximal subgroup, then G is a metabelian Chernikov p-group and G is hypercentral of length at most $\leq \omega + 1$ in [9]. This is a contradiction.
Theorem 6 Let G be a locally soluble torsion-free group and let every proper subgroup H of G be a B_n-group for some natural number n depending on H. Then either G is locally nilpotent or G is finitely generated.

Proof. Suppose that G is not finitely generated. Let F be a finitely generated subgroup of G. Since $G \neq F$, F is nilpotent by Corollary 2 of Theorem 10.57 of [12]. Thus G is finitely generated. \square

References

Selami ERCAN Received 15.10.2002
Gazi Üniversitesi
Gazi Eğitim Fakültesi Matematik
06500 Teknikokullar, Ankara-TURKEY
e-mail: ercans@gazi.edu.tr