On Derivations of Prime Gamma Rings

Mehmet Ali Öztürk, Young Bae Jun and Kyung Ho Kim

Abstract

We consider some results in a Γ-ring M with derivation which is related to Q, and the quotient Γ-ring of M.

Key words and phrases: Derivation, gamma ring, prime gamma ring, quotient gamma ring.

1. Introduction

Nobusawa [3] introduced the notion of a Γ-ring, an object more general than a ring. Barnes [1] slightly weakened the conditions in the definition of Γ-ring in the sense of Nobusawa. Öztürk et al. [4, 5] studied extended centroid of prime Γ-rings. In this paper, we consider the main results as follows. (1) Let M be a prime Γ-ring of characteristic 2, U a non-zero ideal of M, and d_1 and d_2 two non-zero derivations of M. If $d_1d_2(U) = (0)$, there exists $\lambda \in C_\Gamma$ such that $d_2 = \lambda d_1$ for all $\alpha \in \Gamma$ where C_Γ is the extended centroid of M. (2) Let M be a prime Γ-ring, U a non-zero right ideal of M and d a non-zero derivation of M. If $d(U)\Gamma a = (0)$ where a is a fixed element of M, then there exists an element q of Q such that $q\gamma a = 0$ and $q\gamma u = 0$ for all $u \in U$ and $\gamma \in \Gamma$. (3) Let M be a prime Γ-ring with $\text{char} M \neq 2$, U a non-zero right ideal of M and d_1 and d_2 two non-zero derivations of M. If $d_1d_2(U) = (0)$, then there exists two elements p, q of Q such that $qU = (0)$ and $pU = (0)$.

2000 Mathematics Subject Classification: 03F55, 06F05, 20M12, 03B52.
2. Preliminaries

Let M and Γ be (additive) abelian groups. If for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ the conditions
\begin{enumerate}
\item $ab \in M$,
\item $(a + b)c = ac + cb$,
\item $(ab)c = a(bc)$.
\end{enumerate}
are satisfied, then we call M a Γ-ring. Let M be a Γ-ring. The subset
$$Z = \{x \in M \mid x\gamma m = m\gamma x \text{ for all } m \in M \text{ and } \gamma \in \Gamma\}$$
is called the center of M. By a right (resp. left) ideal of a Γ-ring M we mean an additive subgroup U of M such that $U\Gamma M \subseteq U$ (resp. $M\Gamma U \subseteq U$). If U is both a right and a left ideal, then we say that U is an ideal of M. For each a of a Γ-ring M the smallest right ideal containing a is called the principal right ideal generated by a and is denoted by $\langle a \rangle_r$. Similarly we define $\langle a \rangle_l$ (resp. $\langle a \rangle$), the principal left (resp. two sided) ideal generated by a. An ideal P of a Γ-ring M is said to be prime if for any ideals U and V of M, $UTV \subseteq P$ implies $U \subseteq P$ or $V \subseteq P$. A Γ-ring M is said to be prime if the zero ideal is prime.

Theorem 2.1 ([2, Theorem 4]). If M is a Γ-ring, the following conditions are equivalent:
\begin{enumerate}
\item[(i)] M is a prime Γ-ring.
\item[(ii)] If $a, b \in M$ and $a\Gamma Mb = (0)$, then $a = 0$ or $b = 0$.
\item[(iii)] If $\langle a \rangle$ and $\langle b \rangle$ are principal ideals of M such that $\langle a \rangle \Gamma \langle b \rangle = (0)$, then $a = 0$ or $b = 0$.
\item[(iv)] If U and V are right ideals of M such that $UTV = (0)$, then $U = (0)$ or $V = (0)$.
\item[(v)] If U and V are left ideals of M such that $UTV = (0)$, then $U = (0)$ or $V = (0)$.
\end{enumerate}
Let M be a prime Γ-ring such that $M\Gamma M \neq M$. Denote
$$\mathcal{M} := \{(U, f) \mid U(\neq 0) \text{ is an ideal of } M \text{ and } f : U \rightarrow M \text{ is a right } M\text{-module homomorphism}\}.$$
Define a relation \sim on \mathcal{M} by

$$(U, f) \sim (V, g) \iff \exists W(\neq 0) \subseteq U \cap V \text{ such that } f = g \text{ on } W.$$

Since \mathcal{M} is a prime Γ-ring, it is possible to find a non-zero W and so "\sim" is an equivalence relation. This gives a chance for us to get a partition of \mathcal{M}. We then denote the equivalence class by $\text{Cl}(U, f) = \hat{f}$, where

$$\hat{f} := \{ g : V \to \mathcal{M} \mid (U, f) \sim (V, g) \},$$

and denote by Q the set of all equivalence classes. Then Q is a Γ-ring, which is called the quotient Γ-ring of \mathcal{M} (see [4]). The set

$$C_{\Gamma} := \{ g \in Q \mid g\gamma f = f\gamma g \text{ for all } f \in Q \text{ and } \gamma \in \Gamma \}$$

is called the extended centroid of \mathcal{M} (See [4]).

Lemma 2.2 ([4, p. 476]). Let \mathcal{M} be a prime Γ-ring such that $\mathcal{M} \Gamma \mathcal{M} \neq \mathcal{M}$ and C_{Γ} the extended centroid of \mathcal{M}. If a_i and b_i are non-zero elements of \mathcal{M} such that $\sum a_i \gamma x_i \beta_i b_i = 0$ for all $x_i \in \mathcal{M}$ and $\gamma_i, \beta_i \in \Gamma$, then the a_i’s (also b_i’s) are linearly dependent over C_{Γ}. Moreover, if $a \gamma x \beta = b \gamma x \beta a$ for all $x \in \mathcal{M}$ and $\gamma, \beta \in \Gamma$ where $a(\neq 0), b \in \mathcal{M}$ are fixed, then there exists $\lambda \in C_{\Gamma}$ such that $b = \lambda a a$ for all $\alpha \in \Gamma$.

Theorem 2.3 ([6, Theorem 3.5]). The Γ-ring Q satisfies the following properties:

(i) For any element $q \in Q$, there exists an ideal $U_q \subseteq F$ such that $q(U_q) \subseteq M$ (or $q\gamma U_q \subseteq M$ for all $\gamma \in \Gamma$).

(ii) If $q \in Q$ and $q(U) = (0)$ for some $U \subseteq F$ (or $q\gamma U_q = (0)$ for some $U \subseteq F$ and for all $\gamma \in \Gamma$), then $q = 0$.

(iii) If $U \subseteq F$ and $\Psi : U \to M$ is a right M-module homomorphism, then there exists an element $q \in Q$ such that $\Psi(u) = q(u)$ for all $u \in U$ (or $\Psi(u) = q\gamma u$ for all $u \in U$ and $\gamma \in \Gamma$).

(iv) Let W be a submodule (an (M, M)-subbimodule) in Q and $\Psi : W \to Q$ a right M-module homomorphism. If W contains the ideal U of the Γ-ring M such that $\Psi(U) \subseteq M$ and $\text{Ann} U = \text{Ann}_r W$, then there is an element $q \in Q$ such that $\Psi(b) = q(b)$ for any $b \in W$ (or $\Psi(b) = q\gamma b$ for any $b \in W$ and $\gamma \in \Gamma$) and $q(a) = 0$ for any $a \in \text{Ann}_r W$ (or $q\gamma a = 0$ for any $a \in \text{Ann}_r W$ and $\gamma \in \Gamma$).
Let M be a Γ-ring. A map $d : M \to M$ is called a derivation if

$$d(x + y) = d(x) + d(y) \text{ and } d(x\gamma y) = d(x)\gamma y + x\gamma d(y)$$

for all $x, y \in M$ and $\gamma \in \Gamma$.

Lemma 2.4 ([8, Lemma 3]). Let M be a prime Γ-ring, U a non-zero ideal of M, and d a derivation of M. If $a\Gamma d(U) = (0)$ ($d(U)\Gamma a = (0)$) for all $a \in M$, then $a = 0$ or $d = 0$.

Lemma 2.5 ([8, Lemma 1]). Let M be a prime Γ-ring and Z the center of M.

(i) If $a, b, c \in M$ and $\beta, \gamma \in \Gamma$, then

$$[a\gamma b, c]_{\beta} = a\gamma [b, c]_{\beta} + [a, c]_{\beta}\gamma b + a\gamma (c\beta b) - a\beta (c\gamma b)$$

where $[a, b]_{\gamma}$ is $a\gamma b - b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

(ii) If $a \in Z$, then $[a\gamma b, c]_{\beta} = a\gamma [b, c]_{\beta}$ where $[a, b]_{\gamma}$ is $a\gamma b - b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Lemma 2.6 ([8, Lemma 2]). Let M be a prime Γ-ring, U a non-zero right (resp. left) ideal of M and $a \in M$. If $U\Gamma a = (0)$ (resp. $a\Gamma U = (0)$), then $a = 0$.

3. Main results

In what follows, let M denote a prime Γ-ring such that $M\Gamma M \neq M$, Z is the center of M, C_{Γ} is the extended centroid of M and $[a, b]_{\gamma} = a\gamma b - b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Lemma 3.1. Let M be a prime Γ-ring of characteristic 2. Let d_1 and d_2 two non-zero derivations of M and right M-module homomorphisms. If

$$d_1 d_2(x) = 0 \text{ for all } x \in M,$$

then there exists $\lambda \in C_{\Gamma}$ such that $d_2(x) = \lambda a d_1(x)$ for all $\alpha \in \Gamma$ and $x \in M$.

Proof. Let $x, y \in M$ and $\alpha \in \Gamma$. Replacing x by $x\gamma y$ in (3.1), it follows from $\text{char} M = 2$ that for all $x, y \in M$ and $\gamma \in \Gamma$

$$d_1(x) \gamma d_2(y) = d_2(x) \gamma d_1(y).$$
Replacing x by $x\beta z$ in (3.2), we get

$$d_1(x)\beta z \gamma d_2(y) = d_2(x)\beta z \gamma d_1(y)$$ (3.3)

for all $x, y \in M$ and $\gamma \in \Gamma$. Now, if we replace y by x in (3.3), then we obtain

$$d_1(x)\beta z \gamma d_2(x) = d_2(x)\beta z \gamma d_1(x)$$ (3.4)

for all $x \in M$ and $\gamma, \beta \in \Gamma$. If $d_1(x) \neq 0$, then there exists $\lambda(x) \in C_\Gamma$ such that $d_2(x) = \lambda(x)\alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$ by Lemma 2.2. Thus, if $d_1(x) \neq 0 \neq d_1(y)$, then (3.3) implies that

$$(\lambda(y) - \lambda(x))\alpha d_1(x)\beta z \gamma d_2(x) = 0.$$ (3.5)

Since M is a prime Γ-ring, we conclude by using Lemma 2.4 that $\lambda(y) = \lambda(x)$ for all $x, y \in M$. Hence we proved that there exists $\lambda \in C_\Gamma$ such that $d_2(x) = \lambda(x)\alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$ with $d_1(x) \neq 0$. On the other hand, if $d_1(x) = 0$, then $d_2(x) = 0$ as well. Therefore, $d_2(x) = \lambda(x)\alpha d_1(x)$ for all $x \in M$ and $\alpha \in \Gamma$. This completes the proof. □

Proposition 3.2. Let M be a prime Γ-ring of characteristic 2 and d a non-zero derivation of M. If

$$d(x) \in \mathbb{Z} \text{ for all } x \in M,$$ (3.6)

then there exists $\lambda(m) \in C_\Gamma$ such that $d(m) = \lambda(m)\alpha d(z)$ for all $m, z \in M$ and $\alpha \in \Gamma$ or M is commutative.

Proof. From (3.6), we have

$$[d(x), y]_\beta = 0 \text{ for all } x, y \in M \text{ and } \beta \in \Gamma.$$ (3.7)

Replacing x by $x\gamma z$ in (3.7), it follows from Lemma 2.5 that

$$d(x)\gamma[z, y]_\beta + d(z)\gamma[x, y]_\beta = 0$$ (3.8)

for all $x, y, z \in M$ and $\gamma, \beta \in \Gamma$. Replacing z by $d(z)$ in (3.8), we obtain

$$d^2(z)\gamma[x, y]_\beta = 0 \text{ for all } x, y, z \in M \text{ and } \gamma, \beta \in \Gamma.$$ (3.9)
Now, substituting zm for z in (3.9), it follows from $\text{char} M = 2$ that
\begin{equation}
 d^2(z)\alpha m \gamma [x,y]_\beta = 0 \tag{3.10}
\end{equation}
for all $x,y,z,m \in M$ and $\gamma, \beta, \alpha \in \Gamma$. Since M is a prime Γ-ring, we obtain
\begin{equation}
 d^2(z) = 0 \quad \forall z \in M \quad \text{or} \quad [x,y]_\beta = 0 \quad \forall x,y \in M \quad \text{and} \quad \forall \beta \in \Gamma. \tag{3.11}
\end{equation}
From (3.11), if $d^2(z) = 0$ for all $z \in M$, then replacing z by $z\gamma m$ in this last relation, it follows from $d(x) \in Z$ that
\begin{equation}
 d(z)\gamma d(m) = d(m)\gamma d(z) \quad \text{for all} \quad z,m \in M \quad \text{and} \quad \gamma \in \Gamma. \tag{3.12}
\end{equation}
Replacing z by $za\eta$ in (3.12), it follows from (3.6) that for all $z,m,n \in M$ and $\gamma, \alpha \in \Gamma$
\begin{equation}
 d(z)\alpha n \gamma d(m) = d(m)\alpha n \gamma d(z). \tag{3.13}
\end{equation}
If $d(z) \neq 0$, then there exists $\lambda(m) \in C_\Gamma$ such that $d(m) = \lambda(m)\alpha d(z)$ for all $z,m \in M$ and $\alpha \in \Gamma$ by Lemma 2.2. On the other hand, it follows from (3.11) that if $[x,y]_\beta = 0$ for all $x,y \in M$ and $\beta \in \Gamma$, then M is commutative. This completes the proof.

Theorem 3.3. Let M be a prime Γ-ring of characteristic 2, d_1 and d_2 two non-zero derivations of M and U a non-zero ideal of M. If
\begin{equation}
 d_1 d_2(u) = 0 \quad \text{for all} \quad u \in U \tag{3.14}
\end{equation}
then there exists $\lambda \in C_\Gamma$ such that $d_2(x) = \lambda \alpha d_1(x)$ for all $\alpha \in \Gamma$ and $x \in M$.

Proof. Let $u,v \in U$ and $\gamma \in \Gamma$. Replacing u by $d_2(u)\gamma v$ in (3.14), we get
\begin{equation}
 d_2^2(u)\gamma d_1(v) = 0 \quad \text{for all} \quad u,v \in U \quad \text{and} \quad \gamma \in \Gamma. \tag{3.15}
\end{equation}
Since $d_1 \neq 0$, it follows from Lemma 2.4 that $d_2^2(u) = 0$ for all $u \in U$, so from $\text{char} M = 2$ that $d_2^2 = 0$. Now, substituting $u\gamma d_2(x)$ for u in (3.14), we get
\begin{equation}
 d_2(u)\gamma d_1(d_2(x)) = 0 \quad \text{for all} \quad u \in U, \quad x \in M \quad \text{and} \quad \gamma \in \Gamma. \tag{3.16}
\end{equation}
Since \(d_2 \neq 0 \), we get \(d_1(d_2(x)) = 0 \) for all \(x \in M \) by Lemma 2.4. Hence there exists \(\lambda \in C_\Gamma \) such that \(d_2 = \lambda x d_1 \) for all \(\alpha \in \Gamma \) by Lemma 3.1.

Theorem 3.4. Let \(M \) be a prime \(\Gamma \)-ring, \(U \) a non-zero right ideal of \(M \) and \(d \) a non-zero derivation of \(M \). If

\[
d(u)\gamma a = 0 \quad \text{for all} \quad u \in U \quad \text{and} \quad \gamma \in \Gamma
\]

where \(a \) is a fixed element of \(M \), then there exists an element \(q \) of \(Q \) such that \(q\gamma a = 0 \) and \(q\gamma u = 0 \) for all \(u \in U \) and \(\gamma \in \Gamma \).

Proof. Let \(u \in U \), \(x \in M \) and \(\beta \in \Gamma \). Since \(U \) is a right ideal of \(M \), we have \(u\beta x \in U \).

Replacing \(u \) by \(u\beta x \) in (3.17), we get

\[
d(u)\beta x\gamma a + u\beta d(x)\gamma a = 0 \tag{3.18}
\]

for all \(u \in U \), \(x \in M \) and \(\gamma, \beta \in \Gamma \). Hence \(d(u)\beta x\gamma a a_m + u\beta d(x)\gamma a a_m = 0 \) for any \(m \in M \) and \(\alpha \in \Gamma \), and so \(d(u)\beta (\sum x\gamma a a_m) = -(u\beta (\sum d(x)\gamma a a_m)) \). Therefore, for any \(v \in V = M\Gamma a\Gamma M \) which is a non-zero ideal of \(M \), we have

\[
d(u)\beta v = u\beta f(v) \tag{3.19}
\]

for all \(u \in U \). \(f(v) \) is independent of \(u \) but it is dependent on \(v \). Since \(M \) is a prime \(\Gamma \)-ring, \(f(v) \) is well-defined and unique for all \(v \in V \). Note that \(v\alpha y \in V \) for any \(y \in M \), \(v \in V \) and \(\alpha \in \Gamma \). Replacing \(v \) by \(v\alpha y \) in (3.19) we get

\[
d(u)\beta (v\alpha y) = u\beta f(v\alpha y) \quad \text{for all} \quad y \in M, \tag{3.20}
\]

and so by using (3.19) and (3.20), we have

\[
(d(u)\beta v)\alpha y = u\beta f(v\alpha y) \quad \Rightarrow \quad (u\beta f(v))\alpha y = u\beta f(v\alpha y)
\]

\[
\Rightarrow \quad u\beta f(v)\alpha y = u\beta f(v\alpha y)
\]

\[
\Rightarrow \quad u\beta (f(v)\alpha y - f(v\alpha y)) = 0,
\]

which implies from Lemma 2.6 that

\[
f(v\alpha y) = f(v)\alpha y \tag{3.21}
\]
for all \(y \in M, v \in V \) and \(\alpha \in \Gamma \). It follows from (3.21) that \(f : V \to M \) is a right \(M \)-module homomorphism. In this case, \(q = Cl(V, f) \in Q \). Moreover, \(f(v) = q \beta v \) for all \(v \in V \) and \(\alpha \in \Gamma \) by Theorem 2.3. Let \(x \in M, v \in V, u \in U \) and \(\gamma, \beta \in \Gamma \). Replacing \(v \) by \(x\gamma v \) in (3.19), we get

\[
d(u)\beta(x\gamma v) = u\beta f(x\gamma v) = u\beta (q \beta x \gamma v). \tag{3.22}
\]

Also, replacing \(u \) by \(u \gamma x \) in (3.19), we get

\[
d(u)\gamma x \beta v = u\gamma x \beta q \beta v - u \gamma d(x) \beta v. \tag{3.23}
\]

Now, replacing \(\beta \) by \(\gamma \) and replacing \(\gamma \) by \(\beta \) in (3.23), we get

\[
d(u)\beta x \gamma v = u\beta x \gamma q \gamma v - u \beta d(x) \gamma v. \tag{3.24}
\]

Thus, from (3.22) and (3.24) we obtain

\[
u \beta(q \beta x - x \gamma q + d(x)) \gamma v = 0 \tag{3.25}
\]

for all \(x \in M, v \in V, u \in U \) and \(\gamma, \beta \in \Gamma \). Hence \(d(x) = x \gamma q - q \beta x \) for all \(x \in M \) and \(\gamma, \beta \in \Gamma \) by Lemma 2.6. Now, we shall prove that \(q \) can be chosen in \(Q \) such that \(q \gamma a = 0 \) and \(q \gamma u = 0 \) for all \(u \in U \) and \(\gamma \in \Gamma \). Let \(u \in U \) and \(x \in M, d(u) = q\alpha u - u \beta q \) and \(d(x) = q \beta x - x \alpha q \). Then we have \(0 = d(u \beta x) \gamma a = (q\alpha (u \beta x) - (u \beta x) \alpha \gamma) \gamma a \). Thus, \(q\alpha u \beta x \gamma a = u \beta x \alpha q \gamma a \). If \(q \gamma a = 0 \), then \(q\alpha u \beta x \gamma a = 0 \), and so since \(M \) is prime \(\Gamma \)-ring, we get \(q\Gamma U = (0) \). On the other hand, if \(q \gamma a \neq 0 \), then \(q \gamma u \neq 0 \). In fact, if \(q \gamma u = 0 \), then \(q \gamma a = 0 \) since \(q\alpha u \beta x \gamma a = u \beta x \alpha q \gamma a \). Thus, we may suppose that \(q \gamma a \neq 0 \) and \(q \gamma u \neq 0 \) for all \(u \in U \) and \(\gamma \in \Gamma \). In this case, we get

\[
q\alpha u \beta x \gamma a = u \beta x \alpha q \gamma a \tag{3.26}
\]

for all \(x \in M, u \in U \) and \(\gamma, \beta, \alpha \in \Gamma \). It follows from Lemma 2.2 that there exists \(\lambda \in C_{\Gamma} \) such that \(q \gamma a = \lambda \delta a \) and \(q \gamma u = \lambda \delta u \) for all \(u \in U \) and \(\gamma, \delta, \alpha \in \Gamma \). Hence, if \(q' = q - \lambda \), then \(q' \Gamma a = 0 \) and \(q' \Gamma U = (0) \). This completes the proof.

Theorem 3.5. Let \(M \) be a prime \(\Gamma \)-ring with \(\text{char} M \neq 2 \), \(U \) a non-zero right ideal of \(M \) and \(d \) a non-zero derivation of \(M \). Then the subring of \(M \) generated by \(d(U) \) contains no non-zero right ideals of \(M \) if and only if \(d(U) \Gamma U = (0) \).
Proof. Let \(A \) be the subring generated by \(d(U) \). Let \(S = A \cap U, u \in U, s \in S \) and \(\gamma \in \Gamma \). Then \(d(s\gamma u) = d(s)\gamma u + s\gamma d(u) \in A \), and so we have \(d(s)\gamma u \in S \). Thus \(d(S)\Gamma U \) is a right ideal of \(M \). In this case, \(d(S)\Gamma U = (0) \) by hypothesis. \(d(u\gamma a) = d(u)\gamma a + u\gamma d(a) \in S \) and \(d(u)\gamma a \in S \) where \(u \in U, a \in A \). Thus, we have \(u\gamma d(a) \in S \). Therefore, \(0 = d(u\gamma d(a))\beta a = (u\gamma d^2(a) + d(u)\gamma d(a))\beta a \). Since \(M \) is a prime \(\Gamma \)-ring, it follows from Lemma 2.6 that

\[
u\gamma d^2(a) + d(u)\gamma d(a) = 0 \tag{3.27}
\]

for all \(u \in U; \gamma \in \Gamma \) and \(a \in A \). Replacing \(u \) by \(u\beta v \) where \(v \in U, \beta \in \Gamma \) in (3.27), we get, for all \(u, v \in U, \beta, \gamma \in \Gamma \) and \(a \in A \)

\[
d(u)\beta v\gamma d(a) = 0. \tag{3.28}
\]

Since \(M \) is a prime \(\Gamma \)-ring, we get \(d(U)\Gamma U = (0) \) or \(d(A)\Gamma U = (0) \). If \(d(A)\Gamma U = (0) \), then \(d^2(U)\Gamma U = (0) \). Let \(u, v \in U \) and \(\beta \in \Gamma \). Then \(0 = d(d(u\beta v)) = u\beta d^2(v) + d(u)\beta d(v) + d(v)\beta d(u) + d^2(u)\beta v \), and so we have \(d(u)\beta d(v) = 0 \) for all \(u, v \in U \) and \(\beta \in \Gamma \) by \(\text{char} M \neq 2 \). Replacing \(u \) by \(u\gamma w \) where \(w \in U, \gamma \in \Gamma \) in last relation, we have \(d(u)\gamma w\beta d(v) = 0 \) which yields \(d(u)\gamma v = 0 \) for all \(u, v \in U \) and \(\gamma \in \Gamma \).

Conversely assume that \(d(U)\Gamma U = (0) \). Then \(AU = (0) \). Since \(M \) is a prime \(\Gamma \)-ring, \(A \) contains no non-zero right ideals. \(\square \)

Theorem 3.6. Let \(M \) be a prime \(\Gamma \)-ring with \(\text{char} M \neq 2 \), \(U \) a non-zero right ideal of \(M \) and \(d_1 \) and \(d_2 \) two non-zero derivations of \(M \). If \(d_1d_2(U) = (0) \), then there exists two elements \(p, q \) of \(Q \) such that \(q\Gamma U = (0) \) and \(p\Gamma U = (0) \).

Proof. If \(d_1d_2(U) = (0) \), then \(d_1(A) = (0) \) where \(A \) is a subring generated by \(d_2(U) \). Since \(d \neq 0 \), \(A \) contains no non-zero right ideals of \(M \). Thus, from Theorem 3.5, we have \(d_2(u)\gamma v = 0 \) for all \(u, v \in U \) and \(\gamma \in \Gamma \). Also, there exists \(q \in Q \) such that \(q\Gamma U = (0) \) by Theorem 3.4. Therefore \(d_2(u\gamma v) = u\gamma d_2(v) \) for all \(u, v \in U \) and \(\gamma \in \Gamma \). In this case, \(0 = d_1d_2(u\gamma v) = d_1(u\gamma d_2(v)) = d_1(u)\gamma d_2(v) \), and since \(M \) is a prime \(\Gamma \)-ring, we get \(d_2(u)\gamma v = 0 \) for all \(u, v \in U \) and \(\gamma \in \Gamma \). Again, by Theorem 3.4, there exists \(p \in Q \) such that \(p\Gamma U = (0) \). This completes the proof. \(\square \)
Remark 3.7. (a) Consider the following example. Let R be a ring. A derivation $d : R \to R$ is called an inner derivation if there exists $a \in R$ such that $d(x) = [a, x] = ax - xa$ for all $x \in R$. Let S be the 2×2 matrix ring over Galois field $\{0, 1, w, w^2\}$, with inner derivations d_1 and d_2 defined by

$$d_1(x) := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad d_2(x) := \begin{pmatrix} 0 & w \\ 0 & 0 \end{pmatrix}, \quad x$$

for all $x \in S$. Then the characteristic of S is 2 and we have $d_1 \neq 0$, $d_2 \neq 0$, $d_1d_2 = 0$ and $d_2^2 = 0$. Also, if we take

$$M := M_{1\times 2}(S) = \{(a, b) | a, b \in S\} \text{ and } \Gamma := \left\{ \begin{pmatrix} n \\ 0 \end{pmatrix} | n \text{ is an integer} \right\},$$

then M is a prime Γ-ring of characteristic 2. Define an additive map $D_1 : M \to M$ by $D_1(x, y) = (d_1(x), d_1(y))$. Since $(x, y) \begin{pmatrix} n \\ 0 \end{pmatrix} (a, b) = (nxa, nxb)$, therefore D_1 is a derivation on M. Similarly $D_2 : M \to M$ given by $D_2(x, y) = (d_2(x), d_2(y))$ is a derivation. In this case, we have $D_1 \neq 0$, $D_2 \neq 0$, $D_1D_2 = 0$ and $D_2^2 = 0$ (see [7]). Thus we know that there exist two derivations D_1, D_2 of M such that $D_1D_2(M) = (0)$ but $D_1(M)\Gamma M \neq (0)$ and $D_2(M)\Gamma M \neq (0)$. Therefore the condition of $\text{char}M \neq 2$ in Theorems 3.5 and 3.6 is necessary.

(b) In Theorems 3.4 and 3.6, if $a\gamma(c\beta b) = a\beta(c\gamma b)$ for all $a, b, c \in M$ and $\gamma, \beta \in \Gamma$, then $d(x) = [q, x]_\gamma = q\gamma x - x\gamma q$ for all $x \in M$, $\gamma \in \Gamma$ and for some $q \in Q$ is inner derivation and also $d_1(x) = [q, x]_\gamma$ and $d_2(x) = [q, x]_\beta$ for all $x \in M$, $\gamma, \beta \in \Gamma$ and for some elements $q, p \in Q$ are inner derivations by Lemma 2.5(i).

References

M. Ali ÖZTÜRK
Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58140 Sivas-TURKEY

Young Bae JUN
Department of Mathematics Education,
Gyeongsang National University,
Chinju 660-701-KOREA
e-mail: ybjun@nongae.gsnu.ac.kr

Kyung Ho KIM
Department of Mathematics,
Chungju National University,
Chungju 380-702-KOREA
e-mail: ghkim@gukwon.chungju.ac.kr

Received 17.01.2002