Remarks on the Paper “on the Commutant of the Ideal Centre”

Şafak Alpay, Bahri Turan

In memory of Yunus Aran (1976 - 2000)

Abstract

We continue with the work started in [4] and give a new sufficient condition on Riesz spaces having topologically full centres for $Z^-(E)_C = \text{Orth}(E^-)$ to hold.

If E is a Riesz space E^-, the order dual of E will be the Riesz space of all order bounded linear functionals on E. Riesz spaces considered in this note are assumed to have separating order duals. $Z(E)$ will denote the ideal centre, Orth (E), will denote the orthomorphisms of E. If E is a topological Riesz space E' will denote continuous dual of E. When $T : E \to F$ is an order bounded operator between two Riesz spaces, the adjoint of T carries F^- into E^- and it will be denoted by T^\sim. In all undefined terminology concerning Riesz spaces we will adhere to the definitions in [1], [5] and [8].

When the order dual E^- separates the points of the Riesz space E, an order bounded operator $T : E \to E$ is an orthomorphism if and only if its adjoint $T^\sim : E^- \to E^-$ is an orthomorphism. Moreover, the operator $\psi : \text{Orth}(E) \to \text{Orth}(E^-); \psi(T) = T^\sim$ is a one to one Riesz homomorphism [1]. The image under ψ of the centre $Z(E)$ will be denoted by $Z^-(E); Z^-(E)$ is a Riesz subspace of $Z(E^-)$.

Definition A Riesz space E, is said to have topologically full centre if, for each pair x, y in E with $0 \leq y \leq x$, there exists a net (π_α) in $Z(E)$ with $0 \leq \pi_\alpha \leq 1$ for each α, such that $\pi_\alpha x \to y$ in $\sigma(E, E^-)$.

Banach lattices with topologically full centre were initiated in [7]. These spaces were also studied in [2],[3], [4] and [6]. The class of Riesz spaces and the class of Banach spaces have topologically full centres are quite large. σ-Dedekind complete Riesz spaces have topologically full centres. However, not all Riesz spaces have topologically full centres.

Order bounded maps on the Riesz space E will be denoted by $L_b(E); Z(E)_C$ will denote the commutant of $Z(E)$ in $L_b(E)$. That is, $Z(E)_C = \{ T \in L_b(E) : T\pi = \pi T$ for each $\pi \in Z(E)\}$. The Riesz space Orth (E) under composition is an Archimedean f-algebra and therefore it is commutative. Hence Orth $(E) \subset Z(E)_C$.

339
We have studied the commutant $Z(E)_C$ of the ideal centre $Z(E)$ in the order bounded operators $L_b(E)$ [4]. If E is a Riesz space with topologically full centre, we have identified $Z(E)_C$ with $\text{Orth} (E)$.

If E has topologically full centre, it was claimed that $Z^\sim (E)_C = \text{Orth} (E^\sim)$. However, as Arenson has pointed out, part of the proof of this claim contains an error. If $E = C(K)$, then we can embed E' into $E''' = C(K)^{'''}$ in two different ways. One of these embeddings is the usual embedding of a Banach space into its bidual as: $\mu \in E' \rightarrow \hat{\mu} \in E'''$. Let \hat{E}' denote the image of E' in E'''. For $\psi \in E'''$, we consider $\mu = \psi |_{\hat{E}'}$. For each $\psi \in E'''$, $\psi - \hat{\mu} \in E'' \subset E'''$ with $\mu = \psi |_{\hat{E}'}$. Thus, $\psi = (\psi - \hat{\mu}) + \hat{\mu}$ implies that $E''' = \hat{E}' \oplus E''$. The correspondence $\psi \rightarrow \hat{\mu}$ is a positive operator which fails to be a lattice homomorphism.

On the other hand, \hat{E}' can be identified with the space of order continuous linear functionals on $E'' = C(K)''$. Consequently, \hat{E}' is a band in E''' and there exists an order projection $P : E''' \rightarrow \hat{E}'$. P is an orthomorphism and $E''' = \hat{E}' \oplus (I - P)E'''$. However, $E'' \not\cong (I - P)E'''$ and $P \psi \neq \psi |_{E''}$ as it was erroneously claimed in [4].

The next example of Arenson’s (private communication) explains the situation even better.

Example: (Arenson) Let K be a compact Hausdorff space with no isolated points and E be $C(K)$. Then $Z(E) = E$ and $E^\sim = Z(E)'$ is the space of measures on K. If Q is the Stone compact space of the Banach lattice $Z(E)'$, we identify $Z(E^\sim)$ with $C(Q)$. Since $Z(E)$ and $Z^\sim (E)$ are isometrically isomorphic, we are able to identify $Z^\sim (E)$ with $C(Q)$.

Let us note that $Z(E^\sim)' = C(Q)$ and $Z^\sim (E)' = C(K)'$. Therefore we have $Z(E^\sim)' = C(Q)' = C(K)^{'''} = Z^\sim (E)^{'''}$. Let j be the natural embedding of $Z^\sim (E)' = C(K)'$ into $C(K)^{'''} = Z(E^\sim)'$ and let $H_1 = j(Z^\sim (E)'_1), H_2 = H_1^d.$ H_1 is a band of $Z(E^\sim)'$ as $Z^\sim (E)'$ is an AL-space. Therefore $Z(E^\sim)' = C(Q)' = H_1 \oplus H_2$. It is well known that H_1 is the class of order continuous functionals on $C(Q)$ and therefore:

1. If $\mu \in H_1$ then the support of μ is a closed and open subset of Q;

2. If the support of $\mu \in C(Q)'$ is nowhere dense then $\mu \in H_2$.

Under this circumstances $\{Z^\sim (E)^0\}^d = \{0\}$ and $P = 0$. To see this, let $S(\mu) = j(\mu \mid_{Z^\sim(E)}) S : H_2 \rightarrow H_1$ be the restriction map. If ϑ is a nonzero measure in H_2 then the measure $\mu = \vartheta - S(\vartheta)$ is in $Z^\sim(E)^0$ and $|\mu| \land |\vartheta| = |\vartheta| \neq 0$. Therefore $P(\vartheta) = 0$. If μ is a non-zero measure in H_1, then by the following lemma, there exists a measure $\vartheta \in H_2$ with $S(\vartheta) = \mu$. The measure $\eta = \vartheta - \mu$ is an element of $Z^\sim(E)^0$ and $|\eta| \land |\mu| = |\mu| \neq 0$.

340
Therefore $P(\mu) = 0$.

Let us note that if Q_1 is a nowhere dense closed subset of Q then $C(Q_1)'$ (considered as the space of measures on Q whose supports are contained in Q_1) is contained in H_2. To complete the proof of $(Z^\sim(E))' = 0$ we only need to prove the following lemma.

Lemma 1. There exists a nowhere dense closed subset Q_1 of Q such that $S(C(Q_1)') = H_1$.

Proof. Let $\varphi : Q \to K$ be the continuous surjection which gives rise the natural embedding $\pi \to \pi \cdot \varphi$ of $C(K)$ into $C(Q)$.

For each $t \in K$, let δ_t be the point evaluation at t, i.e., $\delta_t = \pi \mapsto \pi(t)$ on $C(K)$. Similarly, for each $q \in Q$, let Δ_q be the functional $\pi \mapsto \pi(q)$ on $C(Q)$. If $t = \varphi(q)$, then $\Delta_q |_{C(K)} = \delta_t$.

For each $t \in K$, there is a unique point in Q, say $\psi(t)$, such that $j(\delta_t) = \Delta_{\varphi(t)} \cdot \psi(t)$ is an isolated point of Q and $\psi : K \to Q$ is discontinuous and maps K onto an open subset $V = \psi(K)$ of Q. Let $Q_1 = V \setminus V$. Q_1 is nowhere dense and closed. To prove the lemma, it suffices to show that $\varphi(Q_1) = K$. Let $t \in K$. As there are no isolated points in K, there exists a net $\{t_\alpha\}, t_\alpha \not\to t$ for each α in K with $t = \lim_{\alpha} t_\alpha$. Let q be a cluster point of the net $\{\psi(t_\alpha)\}$. Then $q \in Q_1$ and $\varphi(q) = t$ as $t_\alpha = \varphi(\psi(t_\alpha))$ for each α. \hfill \square

Let us note that the conclusion $Z^\sim(E)_C = Orth(E^\sim)$ remains valid for Arenson’s example. The details are below.

We now give a sufficient condition for $Z^\sim(E)_C = Orth(E^\sim)$. We first give a lemma that will be needed.

Lemma 2. Let E be a Riesz space with topologically full centre and satisfying $(E^\sim)^\sim = (E^\sim)_\sim$. Then the bilinear map

$$(f,F) \mapsto \psi_{f,F} \text{ of } E^\sim \times (E^\sim)^\sim \to Z^\sim(E)^\sim \text{ defined by } \psi_{f,F}(\tilde{\pi}) = F(\tilde{\pi}f)$$

is a bi-lattice homomorphism.

Proof. For each $f \in E^\sim_+$, the map $\psi_f : (E^\sim)^\sim \to Z^\sim(E)^\sim$ defined by $F \mapsto \psi_{f,F}$ is positive. Hence we have $\psi_f(F)^+ \leq \psi_f(F^+)$ for each $F \in (E^\sim)^\sim$. Let $\tilde{\pi} \in Z^\sim(E)_+$ be arbitrary, then

$$\psi_f(F^+)(\tilde{\pi}) = \psi_{f,F^+}(\tilde{\pi}) = F^+(\tilde{\pi}f) = \sup\{F(g) : 0 \leq g \leq \tilde{\pi}f\}$$

If $0 \leq g \leq \tilde{\pi}f$, we claim there exists $\{\pi_\alpha\}$ in $Z(E)$ satistying $0 \leq \pi_\alpha \leq I$ for each α and $\pi_\alpha(\tilde{\pi}f) \to g$ in $\sigma(E^\sim,(E^\sim)^\sim)$. As E^\sim is Dedekind complete, we can find $S \in Z(E^\sim)$
with \(0 \leq S \leq I \) and \(S(\pi f) = g \). The Arens homomorphism \(m : Z(E)^{\prime\prime} \rightarrow Z(E^{\sim}) \) is surjective and continuous when the domain is equipped with \(\sigma(Z(E)^{\prime\prime}, Z(E)^{\prime}) \) and the range has the \(\sigma(E^{\sim}, (E^{\sim})^{\sim}_{0}) \) operator topology [6]. Therefore there exists \(F \) in \(Z(E)^{\prime\prime} \) with \(0 \leq F \leq I \) satisfying \(m(F) = S \). Using the fact that \(Z(E) \) is \(\sigma(Z(E)^{\prime\prime}, Z(E)^{\prime}) \) dense in \(Z(E)^{\prime\prime} \), we can find a net \(\{\pi_{\alpha}\} \) in \(Z(E) \) satisfying \(0 \leq \pi_{\alpha} \leq I \) for each \(\alpha \) and \(\pi_{\alpha} \rightarrow F \) in \(\sigma(Z(E)^{\prime\prime}, Z(E)^{\prime}) \). Continuity of the map \(m : Z(E)^{\prime\prime} \rightarrow Z(E^{\sim}) \) imply that \(m(\pi_{\alpha}) = \tilde{\pi}_{\alpha} \rightarrow m(F) = S \) in \(\sigma(E^{\sim}, (E^{\sim})^{\sim}_{0}) \) operator topology. This is to say \(G(\tilde{\pi}_{\alpha}h) \rightarrow G(Sh) \) for each \(h \in E^{\sim} \) and \(G \in (E^{\sim})^{\sim}_{0} \). Thus \(\tilde{\pi}_{\alpha}(\pi f) \rightarrow g \) in \(\sigma(E^{\sim}, (E^{\sim})^{\sim}_{0}) \).

\[
0 \leq \tilde{\pi}_{\alpha}(\pi f) \leq \tilde{\pi}(f) \quad \text{for each } \alpha, \text{ so that } F(\tilde{\pi}_{\alpha}(\pi f)) \leq \psi_{f}(F)^{+}(\tilde{\pi})
\]

which yields

\[
F(g) \leq \psi_{f}(F)^{+} \text{ for each } g \text{ with } 0 \leq g \leq \tilde{\pi}f. \text{ Hence } \psi_{f}(F^{+}) \leq \psi_{f}(F)^{+}.
\]

We now show that \(\psi_{F} : E^{\sim} \rightarrow Z^{\sim}(E)^{\sim} \) is a lattice homomorphism for an arbitrary \(F \in (E^{\sim})^{\sim}_{0} \). Let \(f \land g = 0 \) in \(E^{\sim} \). As \(I \) is a strong order unit in \(Z^{\sim}(E) \), it suffices to show \([\psi_{f}(f) \land \psi_{F}(g)](I) = 0\).

\[
[\psi_{f}(f) \land \psi_{F}(g)](I) = (\psi_{f,F} \land \psi_{g,F})(I)
\]

\[
= \inf\{\psi_{f,F}(\pi_{1}) + \psi_{g,F}(\pi_{2}) : \pi_{1}, \pi_{2} \in Z^{\sim}(E)_{+}; \pi_{1} + \pi_{2} = I\}
\]

\[
= \inf\{F(\pi_{1}f) + F(\pi_{2}g) : \pi_{1}, \pi_{2} \in Z^{\sim}(E)_{+}; \pi_{1} + \pi_{2} = I\}
\]

As \(E^{\sim} \) is Dedekind complete, the principal band generated by \(f, B_{f} \) is a projection band and let \(P_{f} : E^{\sim} \rightarrow B_{f} \) be this projection. \(P_{f} \in Z(E^{\sim}), P_{f}(g) = 0, (I - P_{f})(f) = 0 \) and \((I - P_{f}) + P_{f} = I\). Arguing as above, we can find a net \((\pi_{\alpha}) \) in \(Z(E), 0 \leq \pi_{\alpha} \leq I \) and \(\tilde{\pi}_{\alpha} \rightarrow P_{f} \) in \(\sigma(E^{\sim}, (E^{\sim})^{\sim}_{0}) \) operator topology.

Thus,

\[
[\psi_{f}(f) \land \psi_{F}(g)](I) \leq F(I - \tilde{\pi}_{\alpha})f + F(\tilde{\pi}_{\alpha}g) \quad \text{for each } \alpha
\]

\[
\leq F(I - P_{f})f + F(P_{f}g) = 0.
\]

Proposition. Let \(E \) be a Riesz space with \((E^{\sim})^{\sim} = (E^{\sim})^{\sim}_{0} \) and having topologically full centre. Then \(Z^{\sim}(E)_{C} = \text{Orth}(E^{\sim}) \).

Proof. Let \(T \in Z^{\sim}(E)_{C} \) be arbitrary; let \(f, g \in E^{\sim} \) satisfying \(f \perp g \). For each \(F, G \) in \((E^{\sim})^{\sim} \), we have \(\psi_{F,F} \perp \psi_{g,G} [3] \).

Thus for \(f \in E^{\sim} \) and \(F \in (E^{\sim})^{\sim} \),

\[
\psi_{T,f,F}(\tilde{\pi}) = F(\tilde{T}(Tf)) = F(T(\tilde{\pi}f)) = \tilde{T}(F)(\tilde{\pi}f) = \psi_{f,T}(\tilde{\pi}f)
\]

which yields \([\psi_{T,F}(f) \land \psi_{g,F}] = \psi_{T,f,g,F} \land \psi_{g,F} = 0 \). Therefore \(F([Tf] \land [g]) = 0 \) for each \(F \in (E^{\sim})^{\sim} \) which gives \(Tf \perp g \) and \(T \) is an orthomorphism.
ALPAY, TURAN

The authors would like to thank to professors M. Orhon and E.L. Arenson for their interest and remarks in this work and [4].

References

Şafak ALPAY
Department of Mathematics
Middle East Technical University
Ankara-TURKEY

Bahri TURAN
Department of Mathematics,
Faculty of Sciences,
Gazi University, Beşevler-ANKARA

Received 12.12.2000