On Non-Homogeneous Riemann Boundary Value Problem

Kadir Kutlu

Abstract

In this paper we consider non-homogeneous Riemann boundary value problem with unbounded oscillating coefficients on a class of open rectifiable Jordan curve.

Key Words: Curve, Cauchy type integral, singular integral, Riemann problem.

In [1], homogeneous Riemann boundary value problem was studied when curve \(\gamma \) satisfies the condition \(\theta(\delta) \approx \delta \) and \(G \) is an oscillating function at the end points of the curve. In this work we investigate the non-homogeneous Riemann problem in the same case and we will use terminology and notations introduced in [1].

We need the following class of functions for our future references:

\[
H^{a_k}(\mu_k, \nu_k) + H^{a_2}(\mu_2, \nu_2) = \{ g \in C_\gamma : g = g_1 + g_2, g_k \in C_\gamma, \Omega_{\nu_k}^{a_k}(\xi) = O(\xi^{-\nu_k}), \omega^{a_k}_k(\delta, \xi) = O(\delta^{a_k} \xi^{-\mu_k - \nu_k}) \}
\]

where \(k = 1, 2, \mu_k \in (0, 1], \nu_k \in [0, 1), \delta, \xi \in (0, d], \delta \leq \xi, d = \text{diam} \gamma \).

Lemma 1. [3] Suppose that \(\gamma \) satisfies \(\theta(\delta) \approx \delta \), \(G(t) = \exp(2\pi i f(t)) \), \(\Omega^{a_k}_k(\xi) = O(\ln^{1/2} \delta), \omega^{a_k}_k(\delta, \xi) = O(\delta^{1/2}), \delta \leq \xi, k = 1, 2, g \in H^{a_1}(\mu_1, \nu_1) + H^{a_2}(\mu_2, \nu_2) \) and suppose

1991 AMS subject classification: Primary 30E20, 30E25; secondary 45E05
h is holomorphic in $\mathbb{C}\setminus\gamma$, continuously extendable to $\hat{\gamma}$ from both sides, $h(z) \neq 0$ for all $z \in \mathbb{C}\setminus\gamma$, $h^\pm(t) \neq 0$ for all $t \in \hat{\gamma}$, $h^+(t) = G(t)h^-(t)$, $g/h^+ \in L(\gamma)$. Then the function

$$\Phi_0(z) = \frac{h(t)}{2\pi i} \int_\gamma \frac{g(\tau)}{h^+(\tau)(\tau - z)} d\tau, z \not\in \gamma$$

(1)

is holomorphic in $\mathbb{C}\setminus\gamma$, continuously extendable to $\hat{\gamma}$ from both sides and satisfies the homogeneous boundary conditions.

We introduce the quantity

$$\Gamma_G^k = \lim_{z \to a_k} \frac{1}{\ln |z - a_k|} Re \int_\gamma \frac{f(\tau)}{\tau - z} d\tau, z \not\in \gamma$$

(2)

and if Γ_G^k is finite introduce

$$a_{k'} = \begin{cases} \Gamma_G^k, & \text{if } \Gamma_G^k \in \mathbb{Z} \\ [\Gamma_G^k] + 1, & \text{if } \Gamma_G^k \not\in \mathbb{Z} \end{cases}$$

(3)

$k=1,2$.

Lemma 2. Suppose that γ satisfies $\theta(\delta) \approx \delta$, G and g are as in lemma and

$$\chi_0(z) = (z - a_1)^{-a_{1'}}(z - a_2)^{-a_{2'}} \exp \int_\gamma \frac{f(\tau)}{\tau - z} d\tau, z \not\in \gamma.$$

Then g/χ_0^+ is integrable on γ.

Proof. It is obvious that g/χ_0^+ is bounded on a compact subset of $\gamma\setminus\{a_1, a_2\}$ and measurable. Therefore it is integrable on compact subset of γ. Now we estimate g/χ_0^+ on γ_3 (a_1) for small enough δ. Since $g \in H^{a_1}(\mu_1, \nu_1) + H^{a_2}(\mu_2, \nu_2)$ we have

$$|g(t)| \leq \Omega_2^{a_1}(|t - a_1|) + \Omega_2^{a_2}(|t - a_2|) \leq$$

$$\Omega_2^{a_1}(|t - a_1|) + \Omega_2^{a_2}(|a_2 - a_1| - \delta) \leq C \cdot |t - a_1|^{-\nu_1} + C \cdot |t - a_1|^{-\nu_1}.$$

252
From (2) we have

$$-\text{Re} \int_{\gamma} \frac{f(\tau)}{\tau - z} d\tau \leq -(|\Delta_G^1| + \varepsilon) \ln |z - a_1|,$$

where $z \not\in \gamma$ is close enough to a_1. Hence

$$\left| \frac{1}{\chi_0^\pm(t)} \right| = |(t - a_1)^{\alpha_1'}(t - a_2)^{\alpha_2'}| \exp \left(-\text{Re} \int_{\gamma} \frac{f(\tau)}{\tau - z} d\tau \right) \leq$$

$$\leq C |(t - a_1)^{\alpha_1'} \exp \left(-(|\Delta_G^1| + \varepsilon) \ln |z - a_1| \right) = C |t - a_1|^{|\alpha_1'-\Delta_G^1+\varepsilon|}.$$

Therefore

$$\left| \frac{g(t)}{\chi_0^\pm(t)} \right| \leq C |t - a_1|^{-\nu_1+\alpha_1'-\Delta_G^1+\varepsilon}.$$

For small enough ε, we have $q = \nu_1 - \alpha_1' + \Delta_G^1 + \varepsilon > -1$, that is, in the vicinity of a_1

$$\left| \frac{g(t)}{\chi_0^+(t)} \right| \leq C |t - a_1|^{|q|}, q > -1.$$

Analogously, similar estimation exists in the vicinity of a_2. This yields $\frac{g(t)}{\chi_0^-(t)}$ as integrable.

Lemma 3. Suppose γ satisfies $\theta(\delta) \approx \delta$, G satisfies the conditions of lemma 1, $g \in H^{\alpha_1}(\mu_1, \nu_1) + H^{\alpha_2}(\mu_2, \nu_2)$ and

$$\Delta_G^k = \lim_{z \to a_k} \frac{1}{\ln |z - a_k|} \text{Re} \int_{\gamma} \frac{f(\tau)}{\tau - z} d\tau, z \not\in \gamma \tag{4}$$

exists. Then the function in (1) is piecewise holomorphic while $h = \chi$.

Proof. It is obvious that according to condition (4) we may take $\alpha_1 = \alpha_1', \alpha_2 = \alpha_2'$ and $\chi_0 = \chi$. Then for function (1) we only need to estimate in endpoints.

We shall investigate function (1) in the vicinity of a_1 (in the other end we may show the proof analogously). Take $2\eta = |z - a_1|, q = -\alpha_1 + \Delta_G^1$. Since $q \in (-1, 0], \nu_1 \in [0, 1)$.
Choose ε small enough such that $q + \nu_1 + \varepsilon < 1$. Let $\lambda > 0$ such that for $z \in \{\xi \in \mathbb{C} : |\xi - u_1| < \lambda\} \setminus \gamma$,

$$(\Delta_G^1 + \varepsilon) \ln |z - a_1| \leq \text{Re} \int \frac{f(\tau)}{\tau - z} d\tau \leq (\Delta_G^1 - \varepsilon) \ln |z - a_1|.$$ \hspace{1cm} (5)

Let $t_z \in \{y \in \gamma : |z - y| = \text{dist}(z, \gamma\lambda(a_1) \setminus \gamma_\eta(z))\}$. We decompose (1) as follows:

$$\frac{\Phi_0(z)}{\chi(z)} = \frac{1}{2\pi i} \int_\gamma \frac{g(\tau)}{\chi^+(\tau)(\tau - z)} d\tau = \frac{1}{2\pi i} \int_{\gamma \setminus \gamma_\lambda(a_1)} \frac{g(\tau)}{\chi^+(\tau)(\tau - z)} d\tau + \frac{1}{2\pi i} \int_{\gamma_\lambda(a_1) \setminus \gamma_\eta(z)} \frac{g(\tau)}{\chi^+(\tau)(\tau - z)} d\tau + \frac{1}{2\pi i} \int_{\gamma_\eta(z)} \frac{g(\tau) - g(t_z)}{\chi^+(\tau)(\tau - z)} d\tau + \frac{1}{2\pi i} \int_{\gamma_\eta(z)} \frac{g(t_z)}{\chi^+(\tau)(\tau - z)} d\tau$$

$$= A_1 + A_2 + A_3 + A_4.$$

It is obvious that since A_1 does not depend on η it is bounded in the vicinity of a_1.

Let $\tau \in \gamma \lambda(a_1) \setminus \gamma_\eta(z)$ therefore $|\tau - a_1| + \eta \leq |\tau - z| + 3\eta \leq |\tau - z|$. From lemma 2 and [2] we have

$$|A_2| \leq \frac{1}{2\pi} \int_{\gamma \lambda(a_1) \setminus \gamma_\eta(z)} \frac{\Omega_{\eta_1}(|\tau - a_1|) + \Omega_{\eta_2}(|a_2 - a_1| - \lambda)}{|\chi^+(\tau)| |(\tau - a_1| + \eta)} |d\tau|$$

$$\leq C \int_{\gamma \lambda(a_1)} \frac{|\tau - a_1|^{-\nu_1}}{|\tau - a_1|^{\eta + \varepsilon}} d\tau \leq C \int_0^\lambda x^{-\nu_1 - q - \varepsilon} x + \eta d\theta(x)$$

$$\leq C \int_0^\lambda \frac{x^{-\nu_1 - q - \varepsilon}}{x + \eta} dx \leq C \int_0^\lambda \frac{x^{-\nu_1 - q - \varepsilon}}{\eta + \varepsilon} dx$$

$$\leq C \int_0^\lambda \frac{x^{-\nu_1 - q - \varepsilon}}{\eta} dx + \int_\eta^\lambda x^{-\nu_1 - q - \varepsilon - 1} dx \leq C \eta^{-\nu_1 - q - \varepsilon}.$$

If $\gamma_\eta(z) = \emptyset$, then $A_3 = 0$. Otherwise, since $|z - t_z| \leq \eta$ and $\gamma_\eta(z) \subset \gamma\eta(t_z)$ we get

254
\[
| A_3 | \leq \frac{1}{2\pi} \int_{\gamma_n(z)} \frac{\omega_{a_1}^z(\tau - t_z \mid \eta/2, a_2 - a_1 \mid -\lambda)}{\chi^+(\tau) \mid \tau - t_z \mid} \mid d\tau | \\
\leq \frac{1}{2\pi} \int_{\gamma_n(z)} \frac{|\tau - t_z \mid |^{\mu_2} \eta^{-\mu_1 - \nu_1 + |\tau - t_z \mid |^{\mu_2} \eta^{-\mu_1 - \nu_1}}}{\eta^{p+\nu} \mid \tau - t_z \mid} | d\tau |
\]
\[
\leq C \eta^{-q - \varepsilon} (\tau^{-\mu_1 - \nu_1} \int_{\gamma_n(t_z)} |\tau - t_z \mid ^{\mu_1 - 1} | d\tau |)
\]
\[
+ \int_{\gamma_n(t_z)} |\tau - t_z \mid ^{\mu_2 - 1} | d\tau | \leq C \eta^{-q - \varepsilon} (\tau^{-\mu_1 - \nu_1} \int_{0}^{2\eta} \tau^{\mu_1 - 1} d\theta(\tau))
\]
\[
+ \int_{0}^{2\eta} \tau^{\mu_2 - 1} d\theta(\tau)) \leq C \eta^{-q - \varepsilon} (\tau^{-\mu_1 - \nu_1} \int_{0}^{2\eta} \tau^{\mu_1 - 1} d\tau)
\]
\[
+ \int_{0}^{2\eta} \tau^{\mu_2 - 1} d\theta(\tau) \leq C \eta^{-q - \varepsilon} (\tau^{-\nu_1} + C \eta^{\mu_2}) \leq C \eta^{-q - \varepsilon - \nu_1}.
\]

Now we investigate A_4. If $\gamma_n(z) = \emptyset$, then $A_4 = 0$. Otherwise since $|z - t_z| \leq \eta$ and $|\tau_z - a_1| \geq \eta$ then
\[
|g(t_z)| \leq \Omega_{a_1}^{a_2}(|t_z - a_1|) + \Omega_{a_2}^{a_2}(|t_z - a_2|) \leq \Omega_{a_1}^{a_2}(|t_z - a_1|)
\]
\[
+ \Omega_{a_2}^{a_2}(|a_2 - a_1| - \delta) \leq C |t_z - a_1|^{-\nu_1} + C \leq C \eta^{-\nu_2}.
\]

Suppose that $a_2 \notin \gamma_n(z)$ and $\gamma_n(z) = \Lambda \cup (\bigcup_{k=1}^{p} c_k \tilde{d}_k), 1 \leq p \leq \infty, c_k, d_k \in \sum_{\eta}(z) = \{\xi \in \mathbb{C} : |\xi - z| = \eta\}$. Arcs $c_k \tilde{d}_k$ are connected components of $\gamma_n(z)$ and $\Lambda \subset \sum_{\eta}(z)$. The number of $c_k \tilde{d}_k$'s may not be more than countable since arbitrary partition of interval $[0,d], d=\text{diam } \gamma$, is countable.

The points $c_k, d_k, c_k \neq d_k$ divide $\sum_{\eta}(z)$ into two arcs with endpoints c_k, d_k. Denote one of them by Λ_k oriented from c_k to d_k. Let D be the domain bounded by $\Lambda_k \cup c_k \tilde{d}_k$
and zgD. If $\text{meas } \Lambda_k \leq \pi \eta$ then $\text{meas } \Lambda_k \leq |c_k - d_k| \frac{\pi}{2} \leq (\text{meas } c_k d_k) \frac{\pi}{2}$. If $\text{meas } \Lambda_k > \pi \eta$ then $c_k d_k \geq 2 \eta \geq \text{meas } \Lambda_k / \pi$. Therefore $\text{meas } \Lambda_k \leq C(\text{meas } c_k d_k)$, $C=\max\{\pi, 2/\pi\} = \pi$. Meanwhile if $\tau \in \sum_\eta(z)$ we have $|\tau - z| = \eta$. By means of Cauchy theorem we get

$$\left| \int_{\gamma_\eta(z)} \frac{d\tau}{\tau - z} \right| = \left| (\int + \sum_{k=1}^p \int_{c_k d_k} \frac{d\tau}{\tau - z}) \right| \leq \left| (\int - \sum_{k=1}^p \int_{c_k d_k} \frac{d\tau}{\tau - z}) \right|$$

$$\leq \frac{1}{\eta} (\text{meas } \Lambda + \sum_{k=1}^p (\text{meas } \Lambda_k))$$

$$\leq \frac{\pi}{\eta} (\text{meas } \Lambda + \sum_{k=1}^p \text{meas } c_k d_k) = \frac{\pi}{\eta} (\text{meas } \Lambda + \text{meas } \bigcup_{k=1}^p c_k d_k) = \frac{\pi}{\eta} \text{meas } \gamma_\eta(z)$$

$$\leq \frac{\pi}{\eta} \text{meas } \gamma_\eta(t_z) = \frac{\pi}{\eta} \theta_\eta(2\eta) \leq \frac{\pi}{\eta} \theta(2\eta) \leq \frac{\pi}{\eta} C \eta = \pi C.$$

Therefore $|A_4| \leq \frac{C \eta^{-\nu_1}}{2\pi i} \eta^{-\varepsilon} C \pi = C \eta^{-q-\nu_1-\varepsilon}$. If we round up the result obtained we have $|\Phi_0(z)| \leq \left| \frac{\chi(z)}{2\pi i} \int \frac{g(\tau)}{\chi^+(\tau)(\tau - z)} d\tau \right| \leq C \eta^{-q-\nu_1 - \varepsilon} |\chi(z)|$. From (5) $|\chi(z)| \leq C \eta^q - \varepsilon$, therefore $|\Phi_0(z)| \leq C \eta^{-q-\nu_1 - \varepsilon} |\chi(z)| \leq C \eta^{-\nu_1 - 2\varepsilon}$. Since ε is small enough we may assume that $\nu_1 + 2\varepsilon < 1$. This proves the lemma.

In [1] the solution of the homogeneous boundary value problem was given as $\chi(z)P_{\alpha-1}(z)$ where $P_{\alpha-1}(z)$ is a polynomial whose degree is not greater than $\alpha - 1$. If $\alpha = 0$ $P_{\alpha-1}(z) \equiv 0$. For $\alpha < 0$ the coefficients of $z^{-1}, z^{-2}, \ldots z^{-\alpha}$ in the expansion

$$\frac{1}{2\pi i} \int \frac{g(\tau)}{\chi^+(\tau)(\tau - z)} d\tau = -z^{-1} \frac{1}{2\pi i} \int \frac{g(\tau)}{\chi^+(\tau)} d\tau - z^{-2} \frac{1}{2\pi i} \int \frac{g(\tau)}{\chi^+(\tau)} d\tau - z^{-3} \frac{1}{2\pi i} \int \frac{g(\tau)}{\chi^+(\tau)} d\tau - \ldots$$

must be zero. Thus the following theorem is obtained.

Theorem. Suppose the conditions of lemma 1 are satisfied and limit in (4) exists.
KUTLU

i) If \(\alpha \geq 0 \), the Riemann boundary value problem is solvable in \(K(\gamma) \) unconditionally, the solution is given by

\[
\Phi(z) = \frac{\chi(z)}{2\pi i} \int_{\gamma} \frac{g(t)}{\chi^+(t)(t-z)} \, dt + \chi(z) \, P_{\alpha-1}(z),
\]

where \(P_{\alpha-1}(z) \) is arbitrary polynomial of degree not greater than \(\alpha - 1 \) (\(P_{\alpha-1}(z) \equiv 0 \) for \(\alpha = 0 \)).

ii) If \(\alpha < 0 \), then the Riemann boundary value problem is solvable in \(K(\gamma) \) if and only if the conditions

\[
\int_{\gamma} \frac{g(t)}{\chi^+(t)} \, dt = 0, \quad j = 0, 1, \ldots, -\alpha - 1
\]

are satisfied. Under these conditions the solution is unique and is given by

\[
\Phi(z) = \frac{\chi(z)}{2\pi i} \int_{\gamma} \frac{g(t)}{\chi^+(t)(t-z)} \, dt.
\]

Acknowledgement

The author would like to thank professor R. K. Seifullaev for his valuable comments.

References

Kadir KUTLU

Yüzüncü Yıl Üniversitesi,
Fen-Edebiyat Fakültesi,
65080 Van-TURKEY

Received 04.02.1999

257