QR-Submanifolds and Almost Contact 3-Structure

Rifat Günes, Bayram Şahin and Sadık Keleş

Abstract

In this paper, QR-submanifolds of quaternion Kaehlerian manifolds with dim ν⊥ = 1 has been considered. It is shown that each QR-submanifold of quaternion Kaehlerian manifold with dim ν⊥ = 1 is a manifold with an almost contact 3-structure. We apply geometric theory of almost contact 3-structure to the classification of QR-submanifolds (resp. Real hypersurfaces) of quaternion Kaehler manifolds (resp. IR⁴ᵐ, m > 1). Some results on integrability of an invariant distribution of a QR-submanifold and on the immersions of its leaves are also obtained.

Key Words: Quaternion Kaehler Manifold, QR-Submanifold, Almost Contact 3-Structure

1. Introduction

The geometry of QR-submanifolds of a quaternion Kaehlerian manifolds was firstly reported by Bejancu[1]. Among all submanifolds of a quaternion Kaehlerian manifold, QR-submanifolds have been intensively studied from different points of view by many authors [1], [2], [4].

In case of dim ν⊥ = 1, the study of QR-submanifolds has a significant importance. We show that QR-submanifolds of quaternion Kaehler manifolds with dim ν⊥ = 1 admit an almost contact 3-structure.

2. Preliminaries

Let M be a 4n− dimensional manifold and g be a Riemannian metric on M. Then M is said to be quaternion Kaehlerian manifold (see, [1]) if there exists a 3−dimensional vector bundle of tensors of type(1,1) with local basis of almost Hermitian structures

AMS Subject Classification: 53C15, 53C40
J_1, J_2, J_3 satisfying

$$J_1 o J_2 = -J_2 o J_1 = J_3 \quad \text{(II.1)}$$

and

$$\nabla_X J_a = \sum Q_{ab}(X) J_b, a = 1, 2, 3 \quad \text{(II.2)}$$

for all vector fields X tangent to M, where ∇ is the Levi-Civita connection determined by g on M and Q_{ab} are certain 1–forms locally defined on M such that $Q_{ab} + Q_{ba} = 0$.

Let M be $(4m + 3)$–dimensional differentiable manifold and (ϕ_a, ξ_a, η_a) be three almost contact structures on M i.e. We have

$$\phi_a^2(X) = -X + \eta_a(X) \xi_a, \phi_a(\xi_a) = 0$$
$$\eta_a(\xi_a) = 1, \eta_a o \phi_a = 0 \quad \text{(II.3)}$$

where X tangent to M. Suppose that the almost contact structures satisfy the following conditions

$$\eta_a(\xi_b) = 0, a \neq b, \phi_a(\xi_b) = -\phi_b(\xi_a) = \xi_c$$
$$\eta_a o \phi_b = -\eta_b o \phi_a = \eta_c$$
$$(\phi_a o \phi_b)(X) - \xi_a(\eta_b(X)) = (\phi_b o \phi_a)(X) - \xi_b(\eta_a(X)) = \phi_c(X) \quad \text{(II.4)}$$

for any cyclic permutation (a, b, c) of $(1, 2, 3)$. Then, we say that M is endowed with an almost contact 3-structure. If M is a Riemannian manifold, then we can choose a Riemannian metric g on M such that we have

$$(\phi_a X, \phi_a Y) = g(X, Y) - \eta_a(X)\eta_a(Y) \quad \text{(II.5)}$$
$$\eta_a(X) = g(X, \xi_a)$$

for any $X, Y \in \chi(M)$. In this case we say that $(\phi_a, \xi_a, \eta_a), a = 1, 2, 3$ define an almost contact metric structure (See [5]). Taking account of (II.3) and (II.5), we obtain

$$g(\phi_a X, Y) + g(X, \phi_a Y) = 0, a = 1, 2, 3$$

for any X, Y tangent to M.

240
Let M be an m–dimensional Riemannian manifold isometrically immersed in \overline{M}. We denote by TM (resp. TM^\perp) the tangent (resp. normal) bundle to M. Then we say that M is a quaternion-real submanifold (QR-Submanifold) if there exists a vector bundle v of the normal bundle such that we have

$$J_a(v_x) = v_x$$ \hspace{2cm} (II.6)

and

$$J_a(v_x^\perp) \subset T_M(x)$$ \hspace{2cm} (II.7)

for $x \in M$ and $a = 1, 2, 3$, where v^\perp is the complementary orthogonal bundle to v in TM^\perp. Let M be a QR-submanifold of \overline{M}. For sake of shortness we use D_{ax} for $D_{ax} = J_a(v_x^\perp)$, $a = 1, 2, 3$. We consider $D_{1x} \oplus D_{2x} \oplus D_{3x} = D_x^\perp$ and $3s$–dimensional distribution $D^\perp : x \mapsto D_x^\perp$ globally defined on M. Where $s = \dim v_x^\perp$. Also we have, for each $x \in M$,

$$J_a(D_{ax}) = v_x^\perp, J_a(D_{bx}) = D_{cx},$$ \hspace{2cm} (II.8)

where (a, b, c) is a cyclic permutation of $(1, 2, 3)$. Next, we denote by D the complementary orthogonal distribution to D^\perp in TM, we see that D is invariant with respect to the action of J_a, i.e. we have

$$J_a(D_x) = D_x$$ \hspace{2cm} (II.9)

for any $x \in M$. D is called quaternion distribution. Also note that D_{1x}, D_{2x}, D_{3x} are mutually orthogonal vector spaces of $T_M(x)$ (see [1]).

In [3] D.E.Blair introduced the concept cosymplectic structure as it follows. An almost contact metric structure (ϕ, ξ, η, g) is a cosymplectic structure if and only if

$$(\nabla_X \phi)Y = 0, (\nabla_X \eta)Y = 0,$$

where ∇ is Levi-civita connection on M.

Definition 2.1 An almost 3-contact structure (ϕ_a, ξ_a, η_a) is
a) a 3-cosymplectic structure if

\[(\nabla_X\phi_a)Y = 0, \quad (\nabla_X\eta_a)Y = 0\] \hspace{2cm} (II.10)

b) a 3-Sasakian structure if

\[(\nabla_X\phi_a)Y = \eta_a(Y)X - g(X,Y)\xi_a\] \hspace{2cm} (II.11)

c) a nearly 3-Sasakian structure if

\[(\nabla_X\phi_a)X = \eta_a(X)X - g(X,X)\xi_a\] \hspace{2cm} (II.12)

where \(\nabla\) denotes the Levi-Civita connection and \(X, Y, Z\) are arbitrary vector fields on \(M\).

For \(Y \in \chi(M)\), we decompose as follows

\[J_aY = P_aY + F_aY, \quad a = 1, 2, 3\] \hspace{2cm} (II.13)

where \(P_aY\) and \(F_aY\) the tangential and normal parts of \(J_aY\), respectively.

The formula Gauss and Weingarten are given by

\[\nabla_XY = \nabla_XY + h(X,Y)\] \hspace{2cm} (II.14)

and

\[\nabla_XV = -A_VX + \nabla^\perp_XV\] \hspace{2cm} (II.15)

for any vector fields \(X, Y\) tangent to \(M\) and any vector field \(V\) normal to \(M\). Where \(\nabla\) is the induced Riemann connection in \(M\), \(h\) is the second fundemental form, \(A_V\) is fundamental tensor of Weingarten with respect to the normal section \(V\) and \(\nabla^\perp\) normal connection on \(M\). Moreover we have the relation

\[g(A_VX,Y) = g(h(X,Y),V)\] \hspace{2cm} (II.16)

3. QR-Submanifolds with \(\dim \nu^+ = 1\)

Let \(M\) be a QR-submanifold of a quaternion Kaehlerian manifold \(\mathcal{M}\) such that the dimension \(\nu^+\) is equal to one. In this case \(\nu^+\) is generated by unit vector field, say \(N\).
We shall show in the sequel that N is precisely determined with one of the almost contact 3-structure. Let $-J_a(N) = \xi_a, a = 1, 2, 3$ and hence the distributions D_a are generated by the vector fields ξ_a. It is natural expect that a QR-submanifold of quaternion Kaehlerian manifold with $\dim \nu^\perp = 1$ is almost contact 3-structure, we describe it as follows;

Proposition 3.2 Let \bar{M} be a quaternion Kaehlerian manifold and M be a QR-submanifold of \bar{M}. Then M is a manifold with almost contact 3-structure.

Proof. For any $X \in \Gamma(TM)$, put

$$\phi_a X = P_a X, F_a(X) = \eta_a(X) N.$$ \hspace{1cm} (III.1)

Then $g(F_a X, N) = \eta_a(X)$ and

$$\eta_a(X) = g(X, \xi_a).$$ \hspace{1cm} (III.2)

Moreover $g(P_a X, P_a Y) = g(J_a X, J_a Y) - g(F_a X, F_a Y)$ implies

$$g(\phi_a X, \phi_a Y) = g(X, Y) - \eta_a(X) \eta_a(Y)$$ \hspace{1cm} (III.3)

and

$$J_a^2 X = J_a P_a X + J_a F_a X$$

or

$$-X = P_a^2 X + \eta_a(X) J_a N.$$

Hence

$$\phi_a^2 X = -X + \eta_a(X) \xi_a.$$ \hspace{1cm} (III.4)

On the other hand, from (III.2) and (III.4) we obtain $\phi_a(\xi_a) = 0$ and $\eta_a(\xi_a) = 1$, respectively. Moreover

$$(\eta_a \circ \phi_a) X = \eta_a(\phi_a X) = g(\phi_a X, \xi_a) = 0$$

243
for any $X \in \Gamma(TM)$. From (III.1) and (III.2)

$$\eta_a(\xi_b) = 0$$

and

$$\phi_a(\xi_b) = J_a(\xi_b) - F_a(\xi_b)$$
$$= -Ja(J_bN)$$
$$= -J_cN = \xi_c.$$

By using (II.13) and (III.4), we obtain

$$\eta_a(\phi_b) = \eta_a(\phi_bX)$$
$$= g(\phi_bX, \xi_a)$$
$$= \eta_c(X)$$

and

$$(\phi_a \circ \phi_b)(X) - \xi_a(\eta_b(X)) = (\phi_b \circ \phi_a)(X) - \xi_b(\eta_a(X))$$
$$= (\phi_a(\phi_b(X)) - \xi_b(\eta_a(X)))$$
$$= \phi_c(X).$$

This shows that on a QR-submanifold of a quaternion Kaehlerian manifold $\dim v^1 = 1$ there exists a natural almost contact 3-structure. i.e. tensor field ϕ_a of type (1,1), 1-form η_a and unit vector field ξ_a satisfy (II.3),(II.4) and (II.5).

From now on will denote by M a QR-submanifold with $\dim v^1 = 1$.

Theorem 3.3 Let M be a QR-submanifold of a quaternion Kaehlerian manifold. If for any $X, Y \in \Gamma(TM)$, $h(X, Y)$ has no component in $\Gamma(v^1)$ and $D_a, a = 1, 2, 3$ are parallel in M, then M is a manifold with cosymplectic 3-structure.

Proof. For any $X, Y \in \Gamma(TM)$, from (II.2) we have

$$\nabla_X J_a Y = Q_{ab}(X)J_b Y + Q_{ac}(X)J_c Y + J_a \nabla_X Y.$$
Taking account of (II.13),(II.14),(II.15) and (III.1) we obtain

\[(\nabla_X \phi_a) Y + (\nabla_X \eta_a(Y)) N + h(X, \phi_a Y)\]
\[-\eta_a(Y) A_N X + \eta_a(Y) \nabla_X^N N = Q_{ab}(X) \phi_b Y + Q_{ac}(X) \eta_c(Y) N\]
\[+ Q_{ac}(X) \phi_c Y + Q_{ac}(X) \eta_c(Y) N\]
\[+ \eta_a(Y) A_N X + h(X, \phi_a Y) + C_a h(X, Y).\]

Comparing the tangential and normal parts both of sides of this equation, we have

\[(\nabla_X \phi_a) Y = \eta_a(Y) A_N X + Q_{ab}(X) \phi_b Y + Q_{ac}(X) \phi_c Y + B_a h(X, Y)\] \hspace{1cm} \text{(III.5)}

and

\[(\nabla_X \eta_a(Y)) N = -h(X, \phi_a Y) + \eta_a(Y) \nabla_X^N N\]
\[+ Q_{ab}(X) \eta_b(Y) N + Q_{ac}(X) \eta_c(Y) N\]
\[+ C_a h(X, Y).\] \hspace{1cm} \text{(III.6)}

Now, we decompose \(h(X, Y)\) into components \(h^1(X, Y)\) and \(h^2(X, Y)\) in \(v^+\) and \(v\) respectively as

\[h(X, Y) = h^1(X, Y) + h^2(X, Y)\]

where we can put \(h^1(X, Y) = \alpha(X, Y) N\) for some scalar valued bilinear function \(\alpha\). Thus (III.5) and (III.6) gives

\[(\nabla_X \phi_a) Y = \eta_a(Y) A_N X + Q_{ab}(X) \phi_b Y + Q_{ac}(X) \phi_c Y - \alpha(X, Y) \xi_a\] \hspace{1cm} \text{(III.7)}

and

\[(\nabla_X \eta_a)(Y) = -\alpha(X, \phi_a Y) + Q_{ab}(X) \eta_b(Y) + Q_{ac}(X) \eta_c(Y).\] \hspace{1cm} \text{(III.8)}

On the other hand, since \(\xi_a = -J_a N\) we have
\[\nabla_X \xi_a = -(\nabla_X J_a)N - J_a \nabla_X N \]

for any \(X \in \Gamma(TM) \). Thus by using (II.2),(II.8),(II.15) and taking tangential parts we obtain

\[\nabla_X \xi_a = Q_{ab}(X)\xi_b + Q_{ac}(X)\xi_c + \phi_a A_N X \]

for any \(X \in \Gamma(TM) \). Thus we have

\[g(\nabla_X \xi_a, \xi_b) = Q_{ab}(X) + g(\phi_a A_N X, \xi_b). \]

From (II.4) and (II.16) we derive

\[\eta_b(\nabla_X \xi_a) + \alpha(X, \xi_c) = Q_{ab}(X) \quad (III.9) \]

Similarly, we get

\[\eta_c(\nabla_X \xi_a) - \alpha(X, \xi_b) = Q_{ac}(X) \quad (III.10) \]

Combining (III.7) and (III.8) with (III.9) and (III.10) we have

\[(\nabla_X \phi_a)(Y) = \eta_a(Y)A_N X + (\eta_b(\nabla_X \xi_a) + \alpha(X, \xi_c)) \phi_b Y \]
\[+ (\eta_c(\nabla_X \xi_a) - \alpha(X, \xi_b)) \phi_c Y - \alpha(X, Y) \xi_a \]

and

\[(\nabla_X \eta_a)(Y) = -\alpha(X, \phi_a Y) + (\eta_b(\nabla_X \xi_a) + \alpha(X, \xi_c)) \eta_b(Y) + \]
\[(\eta_c(\nabla_X \xi_a) - \alpha(X, \xi_b)) \eta_c(Y) \]

for any \(X, Y \in \Gamma(TM) \). From (II.16) and (III.11) we get

\[g((\nabla_X \phi_a)(Y), Z) = \eta_a(Y)\alpha(X, Z) + \eta_b(\nabla_X \xi_a)g(\phi_b Y, Z) \]
\[+ \alpha(X, \xi_c) g(\phi_c Y, Z) + (\eta_c(\nabla_X \xi_a) - \alpha(X, \xi_b)) g(\phi_c Y, Z) \]
\[- \alpha(X, Y) \eta_a(Z). \]
Thus if $h(X,Y)$ has no components in $\Gamma (v^+) \text{ and } D_a, a = 1, 2, 3 \text{ are parallel in } M$, then from (III.12) and (III.13), we get $(\nabla_X \phi_a) Y = 0$ and $(\nabla_X \eta_a) (Y) = 0$ that is M is a manifold with cosymplectic 3-structure.

As immediate consequence of theorem we have the following:

Corollary 3.4 Let M be real hypersurface of quaternion Kaehler manifold \mathcal{M}. If M is totally geodesic and ξ_a are parallel in M then M is a manifold with cosymplectic 3-structure.

Corollary 3.5 Let M be real hypersurface in $\mathbb{IR}^{4m}(m > 1)$. Then M is totally geodesic if and only if M is a manifold with cosymplectic 3-structure.

Proof. Since $\mathcal{M} = \mathbb{IR}^{4m}(m > 1)$ we have $\nabla_X J_a = 0$. Thus from (III.13) we get

$$g((\nabla_X \phi_a) Y, Z) = \eta_a(Y) \alpha (X, Z) - \alpha (X, Y) \eta_a(Z)$$

(III.14)

for any $X, Y, Z \in \Gamma (TM)$. Let M be a totally geodesic real hypersurface of $\mathbb{IR}^{4m}(m > 1)$ then from (III.14) we have

$$g((\nabla_X \phi_a) Y, Z) = 0$$

and from (III.8) we obtain

$$(\nabla_X \eta_a) (Y) = 0$$

for any $X, Y \in \Gamma (TM)$. Thus M is a manifold with cosymplectic 3-structure.

Conversely, if M is a manifold with cosymplectic 3-structure, from (III.14) we get

$$\eta_a(Y) A_N X = \alpha (X, Y) \xi_a$$

or

$$\eta_1(Y) A_N X = \alpha (X, Y) \xi_1$$
$$\eta_2(Y) A_N X = \alpha (X, Y) \xi_2$$
$$\eta_3(Y) A_N X = \alpha (X, Y) \xi_3$$

since ξ_1, ξ_2, ξ_3 are linearly independent we get $\alpha (X, Y) = 0$. Thus proof is complete. From (III.14) we have the following corollary.
Corollary 3.6 Let M be real hypersurface in $\mathbb{IR}^{4m}(m > 1)$. Then M is a manifold with Sasakian 3-structure if and only if $\alpha(X,Y) = g(X,Y)$ for any $X,Y \in \Gamma(TM)$.

Corollary 3.7 Let M be totally umbilical real hypersurface in $\mathbb{IR}^{4m}(m > 1)$. Then M is a manifold with nearly Sasakian 3-structure.

Proof. For any $X,Y \in \Gamma(TM)$, from (III.7) we get

$$g(\nabla_X \phi_a) X, Y) = \eta_a(X)g(h(X,Y), N) - \alpha(X,X) \eta_a(Y)$$

$$= \eta_a(X)g(X,Y) - g(X,X)g((Y, \xi_a).$$

Thus M is a manifold with nearly Sasakian 3-structure.

Theorem 3.8 Let M be a QR-submanifold of quaternion Kaehler manifold such that $(\nabla_X \phi_a)Y = 0, X, Y \in \Gamma(D)$. Then the quaternion distribution is involutive.

Proof. By using (III.6), we obtain

$$g([X,Y], \xi_a) = g(\nabla_X Y, \xi_a) - g(\nabla_Y X, \xi_a)$$

$$= Xg(Y, \xi_a) - g(Y, \nabla_X \xi_a) - Yg(X, \xi_a) + g(X, \nabla_Y \xi_a)$$

$$= g(X, \nabla_Y \xi_a) - g(Y, \nabla_X \xi_a)$$

$$= -2g(Y, \nabla_X \xi_a)$$

$$= 2g(\nabla_X Y, \xi_a)$$

for any $X, Y \in \Gamma(D)$ and $\xi_a \in \Gamma(D^1)$. Since D is invariant under ϕ_a there exists nonzero vector field $Z \in \Gamma(D)$ such that $Y = \phi_a Z$. Thus we have

$$g([X,Y], \xi_a) = 2g(\nabla_X \phi_a Z, \xi_a)$$

$$= 2g((\nabla_X \phi_a)Z + \phi_a(\nabla_X Z), \xi_a)$$

$$= 2g(\phi_a(\nabla_X Z), \xi_a)$$

here, by using (II.3) we obtain $g([X,Y], \xi_a) = 0$ i.e. $[X,Y] \in \Gamma(D)$.

Corollary 3.9 Let M be a QR-submanifold of quaternion Kaehler manifold. If D is involutive, then each leaf of D is totally geodesic in M.

Proof. The proof is obvious from proof of the Theorem 3.7.
Theorem 3.10 Let M be a QR-submanifold of quaternion Kaehler manifold. Then we have

$$PA_N X = -X \iff P \nabla_X \xi_a = -\phi_a X$$

for any $X \in \Gamma(D)$. Where P is the projection morphism of TM to the quaternion distribution D.

Proof. From (II.2) we have

$$-\nabla_X J_a N - h(X, J_a N) = \nabla_X \xi_a$$

$$(\nabla_X J_a) N - J_a (\nabla_X N) - h(X, J_a N) = \nabla_X \xi_a.$$

By using (II.2) and (II.15) we obtain

$$-Q_{ab}(X) J_b N - Q_{ac}(X) J_c N - J_a (A_N X + \nabla^X \xi N) - h(X, \xi_a) = \nabla_X \xi_a.$$

Here (II.1) and [1] we have

$$-Q_{ab}(X) J_b N - Q_{ac}(X) J_c N + J_a PA_N X$$

$$+ \eta_b (A_N X) \xi_c - \eta_c (A_N X) \xi_b - \eta_a (A_N X) N$$

$$-B_a \nabla^X \xi_a N - C_a \nabla^X \xi_a N$$

$$-h(X, \xi_a) = P \nabla_X \xi_a + \eta_a (\nabla_X \xi_a) \xi_a$$

$$+ \eta_b (\nabla_X \xi_a) \xi_b + \eta_c (\nabla_X \xi_a) \xi_c$$

thus we obtain $J_a PA_N X = P \nabla_X \xi_a$. Hence we get assertion of theorem.

Acknowledgement

We are thankful to the referee for his/her valuable comments on the paper.

References

Rafat GÜNEŞ, Bayram ŞAHİN and Sadik KELEŞ
Department of Mathematics, Faculty of Science and Arts, Inonu University, 44100 Malatya-TURKEY
e-mail: bsahin@inonu.edu.tr