Conjugacy Structure Type and Degree Structure Type in Finite p–groups

Yadolah Marefat

Abstract

Let G be a finite p–group, and denote by $k(G)$ number of conjugacy classes in G. The aim of this paper is to introduce the conjugacy structure type and degree structure type for p–groups, and determine these parameters for p–groups of order p^5, and calculate $k(G)$ for them.

Key Words: breadth, conjugacy structure type, degree structure type.

1. Introduction

Let G be a finite p–group, and denote by $k(G)$ number of conjugacy classes of G. We remind the reader that an element g of p–group G is said to have breadth $b_G(g)$ (or $b(g)$ if no ambiguity is possible) if $p^{b_G(g)}$ is the size of conjugacy class of g in G. The breadth $b(G)$ of G will be maximum of breadths of its elements. We have,

$b(G) = 1$ if and only if $|G'| = p$ (see [4]),

$b(G) = 2$ if and only if $|G'| = p^2$ or $|G : Z(G)| = p^3$ and $|G'| = p^3$ (see [7]).

Definition 1. Let s_i be the number of conjugacy classes of size p^i in G. Let m be a non-negative integer such that $s_m \neq 0$, and $s_i = 0$ for $i > m$. Then $|G| = \sum_{i=0}^{m} s_ip^i$, and $k(G) = \sum_{i=0}^{m} s_i$. We define the tuple (s_0, s_1, \ldots, s_m), Conjugacy Structure Type of G, and denote by $T_c(G)$. It is clear that G is abelian if and only if $m = 0$.

321
Definition 2. Let α_i be the number of irreducible characters of G of order p^i. Let h be a non-negative integer such that $\alpha_h \neq 0$, and $\alpha_i = 0$ for $i > h$. Then $|G| = \sum_{i=0}^h \alpha_i p^{2i}$.

We define the tuple $(\alpha_0, \alpha_1, \ldots, \alpha_h)$. Degree Structure Type of G, and denote by $T_d(G)$.

We know that $b(G)$ is the maximum index of i such that s_i is nonzero, that means $b(G) = m$. We denote by $\beta(G)$ the maximum index of i such that α_i is nonzero that is $\beta(G) = h$.

Burnside’s Formula. Let G be a finite p–group and M be a maximal subgroup in G. If s and t are the number respectively of invariant and fused conjugacy classes of M then

\[k(G) = p^s + \frac{t}{p} + \frac{k(M)}{p}. \]

Proof. See [1,p.472].

The main theorem is:

Theorem A. Let G be a nonabelian finite p–group of order p^5. Then one of the following occurs:

(i) $k(G) = p^4 + p^3 - p^2$, $T_d(G) = (p^4, p^3 - p^2)$,

(ii) $k(G) = p^4 + p - 1$, $T_d(G) = (p^4, 0, p - 1)$,

(iii) $k(G) = p^3 + p^2 - 1$, $T_d(G) = (p^2, p^3 - 1)$ or $(p^3, p^2 - p, p - 1)$,

(iv) $k(G) = 2p^3 - p$, $T_d(G) = (p^3, p^3 - p)$,

(v) $k(G) = 2p^2 + p - 2$, $T_d(G) = (p^2, p^2 - 1, p - 1)$.

2. Elementary Lemmas

Throughout this section, G denote a p–group of order p^n. To proof the main theorem we need some lemmas:

Lemma 1.

(i) Let G be a nonabelian finite p–group. If $b(G) \geq k$, then $|G : Z(G)| \geq p^{k+1}$.

(ii) Let G be a nonabelian finite p–group. If $\beta(G) \geq 2$, then $|G : Z(G)| \geq p^4$.

Proof.

(i) Suppose that $g \in G$ such that $|G : C_G(g)| \geq p^k$. Since $Z(G) \subset C_G(g)$ we
have

$$|G : Z(G)| > |G : C_G(g)| \geq p^k$$

Therefore $|G : Z(G)| \geq p^{k+1}$.

(ii) It is clear from the fact that for any irreducible character χ of G,

$$\chi(1)^2 \leq |G : Z(G)|.$$

\[\Box\]

Lemma 2. Let G be a finite p-group with $b(G) = 1$ and $\beta(G) = \beta$. Then

(i) $G/Z(G)$ is an elementary abelian subgroup of order $p^{2\beta}$.

(ii) Every character of G has degree 1 or p.

(iii) $k(G) = p^{n-1} + p^{n-2\beta} - p^{n-2\beta-1}$,

\[T_d(G) = (p^{n-1}, p^{n-2\beta} - p^{n-2\beta-1}), T_c(G) = (p^{n-2\beta}, p^{n-1} - p^{n-2\beta-1}).\]

Proof. We have $|G'| = p$. Hence $G' \subseteq Z(G)$ and $G/Z(G)$ is abelian. We know that exponent of $G/Z(G)$ is p (see [5]). Therefore $G/Z(G)$ is elementary abelian. If χ is a nonlinear irreducible character of G, then

$$\chi(1)^2 = |G : Z(G)|$$

by exercise 2.13 of [3]. Hence $\chi(1) = p^\beta$ for any nonlinear irreducible character χ of G. So by character degrees formula,

$$k(G) = p^{n-1} + p^{n-2\beta} - p^{n-2\beta-1}, T_d(G) = (p^{n-1}, p^{n-2\beta} - p^{n-2\beta-1}).$$

since $p^n = p^s + s_1p$, where $|Z(G)| = p^s$. We have

$$T_c(G) = (p^{n-2\beta}, p^{n-1} - p^{n-2\beta-1}).$$

\[\Box\]
Corollary 1. Let G be a nonabelian p–group of order p^3. Then $k(G) = p^2 + p - 1$ and $T_d(G) = T_c(G) = (p, p^2 - 1)$.

Proof. It is clear by $\beta(G) = 1$. □

Lemma 3. Let G be a finite p–group and $b(G) \geq 2$. If $|G : G'| = p^k$, then $2 \leq k \leq n - 2$.

Proof. By lemma. 1(ii) of [2], $|G'| \geq p^2$ and by character degrees formula proof is trivial. □

Corollary 2. Let G be a nonabelian p–group of order p^4. Then one of the following occurs:

(i) $k(G) = p^3 + p^2 - p$, $T_c(G) = (p^2, p^3 - p)$, and $T_d(G) = (p^3, p^2 - p)$,

(ii) $k(G) = 2p^2 - 1$, $T_c(G) = (p, p^2 - 1, p^2 - p)$, and $T_d(G) = (p^2, p^2 - 1)$.

Proof. It is clear by lemmas 2 and 3. □

Example 1. Let $G = E(p^3) = \langle x, y | x^p = y^p = [x, y]^p = 1, [x, y] \in Z(G) \rangle$. We know that all of conjugacy classes of order 1 are in $Z(G)$, and has form $\{[x, y]^i\}$ for some $i = 1, 2, \ldots, p$.

Other classes of G are:

- Classes of the form $\{x^i[x, y]^j | 0 \leq j \leq p - 1\}$ where $i = 1, 2, \ldots, p - 1$.

- Classes of the form $\{y^i[x, y]^j | 0 \leq j \leq p - 1\}$ where $i = 1, 2, \ldots, p - 1$.

- Classes of the form $\{x^iy^j[x, y]^k | 0 \leq k \leq p - 1\}$ where $i, j = 1, 2, \ldots, p - 1$.

Hence $T_c(E(p^3)) = (p, p^2 - 1)$. 324
Lemma 4. \(\text{Let } G \text{ be a finite } p\text{-group and } M \text{ be an abelian maximal subgroup of } G. \) Then \(k(G) = p^{n-2} + p^{z+1} + p^{z-1}, \text{ where } |Z(G)| = p^z. \)

Proof. We know that \(Z(G) \subseteq M, \) otherwise \(M' = G', \) which is a contradiction. Then the Burnside’s formula completes the proof. \(\square \)

3. **Proof of Theorem A**

In this section we proof theorem A and present some other information about conjugacy structure type:

Proof. We consider three possible cases:

Case 1. Let \(b(G) = 1. \) Then \(|G'| = p. \) By lemma 2, for \(|G : Z(G)| = p^2 \) or \(p^4 \) we have,

\[
k(G) = p^4 + p^3 - p^2, \quad T_d(G) = (p^4, p^3 - p^2), \text{ and } T_c(G) = (p^3, p^4 - p^2), \text{ or}
\]
\[
k(G) = p^4 + p - 1, \quad T_d(G) = (p^4, 0, p - 1), \text{ and } T_c(G) = (p, p^4 - 1).
\]

Case 2. Let \(b(G) = 2. \) Then \(|G'| = p^2 \) or \(|G'| = p^3 \) and \(|G : Z(G)| = p^3. \)

First suppose \(|G : Z(G)| = p^3, \) then by lemma 1(i). For \(|G'| = p^2 \) or \(p^3, \) we have

\[
k(G) = 2p^3 - p, \quad T_d(G) = (p^3, p^3 - p), \text{ and } T_c(G) = (p^2, P^3 - p, p^3 - p^2), \text{ or}
\]
\[
k(G) = p^3 + p^2 - 1, \quad \text{or } T_d(G) = (p^2, p^3 - 1), \text{ and } T_c(G) = (p^2, 0, p^3 - 1).
\]

Now suppose \(|G : Z(G)| = p^4. \) Then \(|G'| = p^2 \) and \(k = 3. \) Since \(\alpha_3p^{2i} \) is divided by \((p - 1)p^k \) (see corollary 11 of [6]), then by character degrees formula,

\[
p^5 = p^3 + p(p - 1)t_1p^2 + (p - 1)t_2p^4
\]
for some non-negative integer \(t_1 \) and \(t_2. \) Hence \(t_1 = t_2 = 1\) and

\[
k(G) = p^3 + p^2 - 1, \quad T_d(G) = (p^3, p^2 - p, p - 1), \quad T_c(G) = (p, p^2 - 1, p^3 - p).
\]

Case 3. Let \(b(G) = 3. \) Then \(|G : Z(G)| = p^4 \) and \(|G'| = p^3, \) by lemma 1. If \(G \) has an abelian maximal subgroup then \(k(G) = p^3 + p^2 - 1\) (by lemma 4), and \(T_d(G) = (p^2, p^3 - 1). \)

If \(\beta(G) = 2, \) then By character degrees formula,

\[
p^5 = p^2 + \alpha_1p^2 + \alpha_2p^4, \text{ which implies that } 1 + \alpha_1 = hp^2 \text{ for some non-negative integer}
\]
h. Hence $\alpha_2 = p - h$. Since α_2 is nonzero and divided by $p - 1$ (by corollary 11 of [6]), $h = 1$. Therefore $k(G) = 2p^2 + p - 2$ and $T_d(G) = (p^2, p^2 - 1, p - 1)$.

Acknowledgement

This work is a part of author’s M.Sc. dissertation under supervision of professor M.A. Shahabi at the University of Tabriz.

References

Yadolah MAREFAT

Department of Computer Sciences,
Shabestar Azad University,
Shabestar-IRAN

e-mail: yadmaref@mail.com

Received 07.08.2000