On the Asymptotics of Fourier Coefficients for the Potential in Hill’s Equation

Haskız Coşkun

Abstract

We consider Hill’s equation \(y'' + (\lambda - q)y = 0 \) where \(q \in L^1[0, \pi] \). We show that if \(l_n \) — the length of the \(n \)-th instability interval — is of order \(O(n^{-k}) \) then the real Fourier coefficients \(a_n, b_n \) of \(q \) are of the same order for \(k = 1, 2, 3 \), which in turn implies that \(q^{(k-2)} \), the \((k-2) \)th derivative of \(q \), is absolutely continuous almost everywhere for \(k = 2, 3 \).

1. Introduction

We consider the differential equation

\[
y''(t) + (\lambda - q(t))y(t) = 0
\]

on \([0, \pi]\) where \(\lambda \) is a real parameter, \(q(t) \) is integrable over the interval \([0, \pi]\) which may be extended to the real line by periodicity. We associate three types of boundary conditions with (1) over \([0, \pi]\):

- periodic boundary conditions

\[
y(0) = y(\pi), \quad y'(0) = y'(\pi),
\]

- semi-periodic boundary conditions

\[
y(0) = -y(\pi), \quad y'(0) = -y'(\pi),
\]

- auxiliary boundary conditions

\[y(\tau) = y(\tau + \pi) = 0, \quad (4) \]

where \(0 \leq \tau < \pi \).

Let \(\lambda_n (n = 1, 2, \ldots) \) denote the periodic eigenvalues of the problem (1) and (2), and \(\mu_n (n = 1, 2, \ldots) \) the semi-periodic eigenvalues of the problem (1) and (3), and \(\Lambda_n (\tau), (n = 1, 2, \ldots) \) the auxiliary eigenvalues of (1) with condition (4). It is well known that, see for example [4],

\[\lambda_0 < \mu_0 \leq \lambda_1 \leq \lambda_2 \leq \mu_2 \leq \mu_3 < \ldots \]

We define the instability intervals of (1) as follows:

\[I_0 = (-\infty, \lambda_0), I_{2m+1} = (\mu_{2m}, \mu_{2m+1}), I_{2m+2} = (\lambda_{2m+1}, \lambda_{2m+2}), \]

and for \(n \geq 1 \) their lengths by \(l_n \). It is shown in [10] that (1) with (4) is equivalent to the Dirichlet problem

\[y''(t) + (\lambda - q(t + \tau))y(t) = 0, \quad (5) \]
\[y(0) = y(\pi) = 0. \quad (6) \]

Some asymptotic estimates for the eigenvalues and instability intervals of (1) are provided in [6],[7], respectively. We suppose without loss of generality that

\[\int_0^\pi q(t)dt = 0 \]

and let \(a_n, b_n \) denote the real Fourier coefficients of \(q \) on \([0, \pi]\), i.e,

\[a_n = \frac{2}{\pi} \int_0^\pi q(t)\cos(2nt)dt, \quad b_n = \frac{2}{\pi} \int_0^\pi q(t)\sin(2nt)dt. \quad (7) \]

As a result of the needs of modern physics, inverse problems became a hot research area. One of the earliest such problems formulated and solved by Ambarzumian[1]. In 1929, he considered the following question:

\[y''(t) + (\lambda - q(t))y(t) = 0 \]
and

\[y'' + \lambda y = 0 \]

subject to the boundary conditions

\[y'(0) = y' (\pi) = 0 \]

with the same eigenvalues. What can be said about \(q(z) \)? Ambarzumian’s answer was that \(q(z) = 0 \).

Borg[4] considered the general problem of what can be said about \(q(z) \) from a knowledge of spectrum. Similar problems have also been investigated by Hochstadt[10] and Ungar[12]. Now, we state a result proven independently by Hochstadt and Ungar.

Theorem 1.1[10] If \(q(z) \) is real and integrable, and if all finite instability intervals vanish then \(q(z) = 0 \) almost everywhere.

In this paper we assume that all finite instability intervals are \(O(n^{-k}) \) and show that \(a_n, b_n = O(n^{-k}) \), from which we deduce that \(q^{(k-2)} \) is absolutely continuous a.e.\((k = 2, 3)\).

Central to our analysis is the following theorem of Hochstadt[10] which involves the auxiliary eigenvalues of (1) considered on the interval \([0; \pi] \)

\[y(\tau) = y(\tau + \pi) = 0. \]

Theorem 1.2[10] The ranges of \(\Lambda_{2m}(\tau) \) and \(\Lambda_{2m+1}(\tau) \), as functions of \(\tau \) are \([\mu_{2m}, \mu_{2m+1}] \) and \([\lambda_{2m+1}, \lambda_{2m+2}] \) respectively.

Remark: We make use of the Theorem 1.2 in the sense that if all finite instability intervals are \(O(n^{-k}) \) then \(\Lambda_n(\tau_2) - \Lambda_n(\tau_1) = O(n^{-k}) \) for any \(\tau_1, \tau_2 \in [0, \pi] \).

We also state a sequence of Lemmas which will be used in proving our results. Let

\[c_n = \frac{1}{\pi} \int_0^\pi q(z)e^{-2inz}dz \tag{8} \]
be the Fourier coefficient of \(q(z) \) over \([0, \pi]\).

Lemma 1.1 [10] Let \(q(z) \) be periodic with period \(\pi \), integrable over \([0, \pi]\) and such that

\[
c_n = O\left(\frac{1}{n^2}\right)
\]

as \(n \to \infty \). Then \(q(z) \) is absolutely continuous almost everywhere.

Lemma 1.2 Let \(q(z) \) be periodic with period \(\pi \), integrable over \([0, \pi]\) and such that

\[
c_n = O\left(\frac{1}{n^3}\right)
\]

as \(n \to \infty \). Then \(q'(z) \) is absolutely continuous almost everywhere.

Proof. The proof of Lemma 1.1 goes through.

Lemma 1.3 [9] For \(k = 1, 2, 3, \ldots, \tau \leq t \leq \tau + \pi \)

\[
\Theta(t, \tau) - \Theta_k(t, \tau) = o(\Lambda^{-k/2})
\]

as \(\Lambda \to \infty \).

Lemma 1.4 [2] For \(q \) integrable and for any \(x_1, x_2 \) such that \(\tau \leq x_1 < x_2 \leq \tau + \pi \)

\[
\int_{x_1}^{x_2} q(t) \sin(2\Lambda^{1/2}t)dt = o(1)
\]

as \(\Lambda \to \infty \).

Now, we introduce the function \(\Theta(t, \Lambda, \tau) \), the so-called modified Prüfer transformation of [2], which is defined for any given solution of (1) as

\[
tan\Theta(t, \Lambda, \tau) = \frac{\Lambda^{1/2}y(t, \tau)}{y'(t, \tau)},
\]
for $\tau \leq t \leq \tau + \pi$. This fixes Θ to within additive multiples of π. For definiteness we assume that $0 \leq \Theta(t, \tau) \leq \pi$ and observe that the boundary conditions (4) correspond to

$$\Theta(t, \tau) = 0, \quad \Theta(t, \tau + \pi) = (n + 1)\pi,$$ \hspace{1cm} (9)

similarly the boundary conditions (6) correspond to

$$\Theta(t, 0) = 0, \quad \Theta(t, \pi) = (n + 1)\pi.$$ \hspace{1cm} (10)

From now on, we suppress the dependence of Θ on Λ and write $\Theta(t, \tau)$ instead of $\Theta(t, \Lambda, \tau)$. Under the Prüfer transformation the differential equation corresponding to (1) can be written as

$$\Theta'(t, \tau) = \Lambda^{1/2} - \frac{1}{2} \Lambda^{-1/2} q(t) + \frac{1}{2} \Lambda^{-1/2} q(t) \cos(2\Theta(t, \tau)),$$ \hspace{1cm} (11)

and from (11)

$$\Theta(t, \tau) = (\Lambda^{1/2})(t - \tau) - \frac{1}{2} \Lambda^{-1/2} \int_{\tau}^{t} q(s) ds + \frac{1}{2} \Lambda^{-1/2} q(t) \int_{\tau}^{t} q(s) \cos(2\Theta(s, \tau)) ds.$$ \hspace{1cm} (12)

We define a sequence of approximating functions for (12) as follows:

$$\Theta_1(t, \tau) := (\Lambda^{1/2})(t - \tau) - \frac{1}{2} \Lambda^{-1/2} \int_{\tau}^{t} q(s) ds,$$

$$\Theta_{k+1}(t, \tau) := \Theta_1(t, \tau) + \frac{1}{2} \Lambda^{-1/2} \int_{\tau}^{t} q(s) \cos(2\Theta_k(s, \tau)) ds$$ \hspace{1cm} (13)

for $k = 1, 2, \ldots$, and $\tau \leq t \leq \tau + \pi$.

2. The Results

Theorem 2.1 For any integer k, the auxiliary eigenvalues of (1), as functions of τ, satisfy

$$(n + 1)\pi = \Lambda_n^{1/2}(\tau)\pi + \frac{1}{2} \Lambda_n^{-1/2} \int_{0}^{\tau} q(t + \tau) \cos(2\Theta_k(t, \tau)) dt + O(n^{-(k+1)})$$ \hspace{1cm} (14)

as $n \to \infty.$
Proof. We consider the differential equation (5) with the boundary conditions (6). From (11) we get

\[\Theta'(t, \tau) = \Lambda^{1/2} - \frac{1}{2} \Lambda^{-1/2} q(t + \tau) + \frac{1}{2} \Lambda^{-1/2} q(t + \tau) \cos(2\Theta(t, \tau)). \]

(15)

We also know from Lemma 1.3 that

\[\Theta(t, \tau) - \Theta_k(t, \tau) = o(\Lambda^{-k/2}), \]

(16)

so that

\[\cos(2\Theta(t, \tau)) = \cos(2\Theta_k(t, \tau)) + O(\Lambda^{-k/2}). \]

(17)

Substituting (17) into (15) we obtain

\[\Theta'(t, \tau) = \Lambda^{1/2} - \frac{1}{2} \Lambda^{-1/2} q(t + \tau) + \frac{1}{2} \Lambda^{-1/2} q(t + \tau) \cos(2\Theta_k(t, \tau)) + O(\Lambda^{-k+1/2}). \]

(18)

Integrating (18) with respect to \(\tau \) on \([0, \pi]\) and using (10) we complete the proof.

Corollary 2.1 As \(n \to \infty \) the auxiliary eigenvalues of (1), as functions of \(\tau \), satisfy

\[\Lambda_n^{1/2}(\tau) = (n + 1) + \frac{1}{(n + 1)} F_1(n, \tau) + O(n^{-2}) \]

(19)

where

\[F_1(n, \tau) = -\frac{1}{2\pi} \int_0^\pi q(t + \tau) \cos(2(n + 1)t) dt. \]

(20)

Proof. From (13), we see that

\[\cos(2\hat{\eta}_1(t, \tau)) = \cos(2\Lambda^{1/2}t) + O(\Lambda^{-1/2}). \]

(21)

Substituting (21) into (14) and using reversion we complete the proof.

Theorem 2.2 Let \(q(t) \) be real-valued integrable function on \([0, \pi]\). If \(l_n = O(n^{-1}) \), then \(a_n, b_n = O(n^{-1}) \) as \(n \to \infty \).
Proof. It is easily seen that

\[
F_1(n, \tau) = -\frac{1}{4} \{\cos(2(n+1)\tau)a_{n+1} + \sin(2(n+1)\tau)b_{n+1}\},
\]

(22)

where \(a_{n+1}\) and \(b_{n+1}\) are defined in (7), and \(F_1(n, \tau)\) is given by (20). From Corollary 2.1, for any \(\tau_1, \tau_2 \in [0, \pi]\)

\[
\Lambda_n^{1/2}(\tau_2) - \Lambda_n^{1/2}(\tau_1) = \frac{1}{4(n+1)} \{[\cos(2(n+1)\tau_1) - \cos(2(n+1)\tau_2)] a_{n+1}
+ [\sin(2(n+1)\tau_1) - \sin(2(n+1)\tau_2)] b_{n+1}\} + O(n^{-2})
= \frac{1}{2(n+1)} \{\sin((n+1)(\tau_1 + \tau_2)) \sin((n+1)(\tau_2 - \tau_1)) a_{n+1}
+ \cos((n+1)(\tau_1 + \tau_2))\sin((n+1)(\tau_1 - \tau_2)) b_{n+1}\} + O(n^{-2})
= \frac{1}{2(n+1)} \sin((n+1)(\tau_2 - \tau_1)) \{\sin((n+1)(\tau_1 + \tau_2)) a_{n+1}
- \cos((n+1)(\tau_1 + \tau_2)) b_{n+1}\} + O(n^{-2}).
\]

(23)

On the other hand, from the assumption that \(l_n = O(n^{-1})\) and Lemma 1.4.

\[
\Lambda_n(\tau_2) - \Lambda_n(\tau_1) = O(n^{-1})
\]

and hence of

\[
\Lambda_n^{1/2}(\tau_2) - \Lambda_n^{1/2}(\tau_1) = \frac{\Lambda_n(\tau_2) - \Lambda_n(\tau_1)}{\Lambda_n^{1/2}(\tau_2) + \Lambda_n^{1/2}(\tau_1)} = O(n^{-2}).
\]

(24)

The result follows from (23) and (24).

Corollary 2.2 As \(n \to \infty\) the auxiliary eigenvalues of (1), as functions of \(\tau\), satisfy

\[
\Lambda_n^{1/2}(\tau) = (n+1) + \frac{1}{(n+1)} F_1(n, \tau) + \frac{1}{(n+1)^2} F_2(n, \tau) + O(n^{-3}),
\]

(25)

where \(F_1(n, \tau)\) is given by (20) and

\[
F_2(n, \tau) = -\frac{1}{2\pi} \int_0^\pi q(t + \tau) \left(\int_0^t q(s + \tau) ds \right) \sin(2(n+1)t) dt.
\]

21
\[+ \frac{1}{2\pi} \int_0^\pi q(t + \tau) \left(\int_0^t q(s + \tau) \cos(2(n + 1)s) ds \right) \sin(2(n + 1)t) dt. \] (26)

Proof. From (13) we observe that for \(k = 1 \)

\[\cos(2\Theta_2(t, \tau)) = \cos(2\Lambda^{1/2}t) + \Lambda^{-1/2} \sin(2\Lambda^{1/2}t) \left(\int_0^t q(s + \tau) ds \right) \]

\[- \Lambda^{-1/2} \sin(2\Lambda^{1/2}t) \left(\int_0^t q(s + \tau) \cos(2\Lambda^{1/2}s) ds \right) + O(\Lambda^{-1}). \] (27)

Substituting (27) into (14) and using reversion we complete the proof.

Theorem 2.3 Let \(q(t) \) be real-valued integrable function on \([0, \pi] \). If \(l_n = O(n^{-2}) \) then \(a_n, b_n = O(n^{-2}) \) as \(n \to \infty \).

Proof. Since \(l_n = O(n^{-2}) \) by assumption, it is \(O(n^{-1}) \) as well. Hence \(a_n, b_n = O(n^{-1}) \) by Theorem 2.2. From this and Lemma 1.4 we observe that

\[F_2(n, \tau) = O(n^{-1}). \]

Therefore, (25) reduces to

\[\Lambda_n^{1/2}(\tau) = (n + 1) + \frac{1}{(n + 1)} F_1(n, \tau) + O(n^{-3}). \]

By a similar argument in Theorem 2.2, we complete the proof.

Corollary 2.3 Let \(q(t) \) be a real-valued integrable function on \([0, \pi] \). If \(l_n = O(n^{-2}) \) as \(n \to \infty \) then \(q(t) \) is absolutely continuous almost everywhere.

Proof. It follows from Theorem 2.3 and Lemma 1.1

Corollary 2.4 As \(n \to \infty \) the auxiliary eigenvalues of (1), as functions of \(\tau \), satisfy

\[\Lambda_n^{1/2}(\tau) = (n + 1) + \frac{1}{(n + 1)} F_1(n, \tau) + \frac{1}{(n + 1)^2} F_2(n, \tau) + \frac{1}{(n + 1)^3} F_3(n, \tau) + O(n^{-4}), \] (28)

where \(F_1(n, \tau) \) is given by (20), \(F_2(n, \tau) \) is given by (26) and
\[
F_3(n, \tau) = -\frac{1}{4(n+1)^3\pi} \int_0^\pi q(t+\tau)\left[\int_0^t q(s+\tau)ds - \int_0^t q(s+\tau)\cos(2(n+1)s)ds\right]^2 \\
\times \cos(2(n+1)t)dt \\
+ \frac{1}{2(n+1)^3\pi} \int_0^\pi q(t+\tau)\left[\int_0^t q(s+\tau)\left(\int_0^s q(l+\tau)dl\right)\sin(2(n+1)s)\right] \\
\times \sin(2(n+1)t)dt. \tag{29}
\]

Proof. From (13) for \(k=2\) we have
\[
\cos(2\Theta_3(t, \tau)) = \cos(2\Lambda^{1/2}t) + \Lambda^{-1/2}\sin(2\Lambda^{1/2}t)\left(\int_0^t q(s+\tau)ds\right) \\
- \Lambda^{-1/2}\sin(2\Lambda^{1/2}t)\left(\int_0^t q(s+\tau)\cos(2\Lambda^{1/2}s)ds\right) \\
- \frac{1}{2}\Lambda^{-1}\left(\int_0^t q(s+\tau)ds - \int_0^t q(s+\tau)\cos(2\Lambda^{1/2}s)ds\right)^2 \cos(2\Lambda^{1/2}t) \\
- \Lambda^{-1}\left(\int_0^t q(s+\tau)\left(\int_0^s q(l+\tau)dl\right)\sin(2\Lambda^{1/2}s)\right)\sin(2\Lambda^{1/2}t) \\
+ O(\Lambda^{-3/2}). \tag{30}
\]
Substituting (30) into (14), and using reversion we complete the proof.

Theorem 2.4 Let \(q(t)\) be a real-valued integrable function on \([0, \pi]\). If \(l_n = \Theta(n^{-3})\) then \(a_n, b_n = \Theta(n^{-3})\) as \(n \to \infty\).

Proof. Since \(l_n = \Theta(n^{-3})\) by assumption, it is \(O(n^{-2})\) as well. Hence \(a_n, b_n = O(n^{-2})\) by Theorem 2.3. Therefore, the terms involving \(F_2(n, \tau)\) and \(F_3(n, \tau)\) in (28) are included in the error term by Lemma 1.4. By a similar argument in Theorem 2.2 we complete the proof.

Corollary 2.5 Let \(q(t)\) be a real-valued function on \([0, \pi]\). If \(l_n = \Theta(n^{-3})\) then \(q'(t)\) is absolutely continuous almost everywhere.

Proof. It follows from Theorem 2.4 and Lemma 1.2.

Acknowledgement

The author is grateful to Professor Bernard J. Harris for introducing her to the field.
References

