Finite-time dynamic surface approach to nonlinear systems with mismatched uncertainties

Guofa SUN1, Yaming XU2,∗

1School of Information and Control Engineering, Qingdao University of Technology, Qingdao, PR China
2School of Astronautics, Harbin Institute of Technology, Harbin, PR China

Received: 13.09.2019 • Accepted/Published Online: 09.03.2020 • Final Version: 29.07.2020

Abstract: This paper develops a finite-time dynamic surface control (DSC) scheme for nonlinear systems with mismatched uncertainties via a high-order sliding mode (HOSM) observer. By designing a second-order terminal sliding surface based on the estimated signals, an observer-based sliding mode control (SMC) is designed to counteract the mismatched uncertainties in each step of backstepping. The proposed DSC scheme exhibits the following two attractive features. One is the application of HOSM observer to deal with mismatched system uncertainty functions. This is very different from the traditional approximator-based adaptive methods in dealing with high-order uncertain nonlinear systems. The other is the finite-time convergence of the provided algorithm, which guarantees the transient performance of tracking signals. Especially, the finite convergence time is explicitly given in the controller design and stability analysis. Simulation results of numerical example illustrates that the proposed approach shows better control performance than traditional approximators-based adaptive methods.

Key words: High-order sliding mode observer, dynamic surface control, extended state observer, finite-time convergence, sliding mode control

1. Introduction

In the past decades, lots of adaptive control schemes have been proposed based on function approximators, such as neural networks (NN) or fuzzy systems (FS), to deal with uncertain nonlinear systems with unknown functions. For instance, Liu et al. \cite{1} developed a NN-based adaptive control strategy of the full state constrained nonlinear systems. Then, Yu et al. \cite{2} extended adaptive neural control to a class of multiple-input multiple-output (MIMO) strict-feedback nonlinear time-delay systems. Alternatively, Qiu et al. \cite{3} considered an adaptive fuzzy control approach for a pure-feedback nonlinear systems with unknown functions and unmeasured states. Similarly, by considering simplified barrier Lyapunov function, Li and Tong \cite{4} addressed the problems of stability and finite-time tracking control for a class of MIMO nonlinear systems with errors constraint and unknown dead zone. The aforementioned results and the references therein solved many nonlinear control problems by employing function approximators to adaptive approximate uncertain system functions. Despite the online estimating of uncertain functions and compensating them, the approximation precision of approximators were not taken into consideration, which definitely affected the closed-loop tracking performance. Fortunately, the reinforcement learning (RL) \cite{5} improved the approximation ability, which resulted in the integral RL from adaptive control in \cite{6}. However, employing the learning ability of approximators to estimate uncertain functions online increased the computation burden and thus the convergence time. In this paper, we will accordingly

∗Correspondence: xuyaming2000@163.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
investigate the finite-time observation and finite-time tracking control of nonlinear systems with uncertain nonlinear functions.

Sliding mode control (SMC) was a powerful tool in dealing with uncertain nonlinear systems with matched disturbances. A brief survey on variable structure control systems with sliding modes was presented in [7]. Shi et al. [8] considered the tuning of second-order sliding mode controller with finite-time convergence in single-input-single-output nonlinear systems with uncertainties functions. Alternatively, in [9], a nonlinear sliding surface included initial condition was proposed to alleviate chattering and ensure a smooth control for a rigid spacecraft with external disturbances, where high accuracy and steady state precision was ensured. Furthermore, to improve the control performance, many modified novel SMC has been reported. For instance, in [10], a adaptive SMC scheme with adaptive super twisting algorithm was proposed for robotic manipulators including actuator dynamics. Alternatively, Qiao and Zhang [11] proposed a second-order fast nonsingular terminal sliding mode manifold for dynamic uncertainties and time-varying external disturbances. Furthermore, Feng et al. [12] proposed a integral-type terminal sliding mode observer for estimating the variable of a LI-ion cell, which was used for the real-time estimation on the state-of-charge and state-of-health of lithium-ion (Li-ion) batteries. Then, based on extended state observer (ESO), Wu et al. [13] proposed a nonsingular terminal sliding mode control for a flexible adsorption system by using Lyapunov synthesis. In this paper, we will incorporate second-order terminal SMC into traditional DSC method to develop finite-time control for nonlinear systems with mismatched uncertain functions.

Finite-time control has also been investigated for decades by lots of researchers. For example, in [14], a class of bounded continuous time-invariant finite-time stabilizing feedback laws is given for the double integrator by Bhat and Bernstein. Then, Abooee and Arefi [15] studied the problem of finite-time stabilization for a connected chain of double-integrator systems. Furthermore, Hou et al. [16] developed continuous finite-time control for servo motor systems with terminal sliding mode. Similarly, Yin et al. [17] presented a new fast finite-time integral terminal sliding-mode for force tracking control problem. Meanwhile, Shao et al. [18] addressed the global finite-time tracking of robot manipulators. Motivated by the aforementioned results, we will investigated the finite-time DSC for a class of uncertain high-order nonlinear systems with mismatched nonlinear functions.

In this paper, HOSM observer is employed to handle mismatched uncertain functions in high-order low-triangular nonlinear systems. As a result, no function approximators are needed and thus the computation burden is significantly reduced. Different from traditional DSC method, second-order sliding mode will be designed to achieve finite-time convergence of tracking errors. Furthermore, the whole closed-loop stability is also proved to be finite-time.

The main contributions of this paper are summarized as follows. 1) The high-order mismatched uncertain functions are viewed as disturbance signals, which are handled by HOSM observer rather than function approximators. The finite-time feature of HOSM observer is attractive and allows finite-time DSC to be defined, which is different from traditional DSC. 2) A novel terminal sliding surface is designed in each step of iteration in DSC design. The developed sliding surface is also finite-time convergence with settling time given explicitly. Thus, the whole closed-loop is proved to be finite-time stable.

The rest of this paper is organized as follows. Section II provides problem formulation and some preliminaries about HOSM observer. Then, finite-time DSC design is given in Section III. In Section IV, stability analysis of the whole closed-loop systems and finite-time convergence of all signals are shown in Lyapunov method. In Section V, the proposed method is validated by two simulation examples with satisfactory results. Finally, Section VI concludes this paper.
2. Problem formulation and preliminaries

This section begins with providing system description and establishing the control objective. Then, some preliminaries about HOSM observer are recalled to facilitate the finite-time control design.

2.1. System description

Consider a strict-feedback low-triangular nonlinear system with single-input and single-output (SISO) in the form of

\[
\begin{aligned}
\dot{x}_i &= f_i(x_i, t) + x_{i+1}, \quad i = 1 \cdots n \\
\dot{x}_n &= f_n(x_n, t) + g_n(x_n)u
\end{aligned}
\]

(1)

where \(x = [x_1, \cdots, x_n]^T\) is the state vector, \(u\) is the control input, \(y\) is the controlled output, \(f_i(x_i), \quad i = 1, \cdots, n\) is the disturbance with at least \(g_i\)th order bounded derivatives, and \(g_n(x_n)\) is smooth function of \(x_n\). Suppose that \(f_i^{(v_i)}\) has a Lipschitz constants \(L_i\).

In order to design second-order sliding surface, (1) is rewritten as

\[
\begin{aligned}
\dot{x}_j &= f_{j1}(\bar{x}_j, t) + x_{j2} \\
\dot{x}_{j2} &= f_{j2}(\bar{x}_{j2}, t) + x_{j3} \\
&\vdots \\
\dot{x}_n &= f_n(x_n, t) + g_n(x_n)u \\
y &= x_1
\end{aligned}
\]

(2)

where \(j = 1, \cdots, m\) with \(m = \text{round}(n/2)\).

For system (1) which can be written as (2), the control objective is to design finite-time DSC to make the output signal \(y\) track a reference signal \(x_d\) despite the existing disturbance caused by mismatched uncertain signals \(f_i\).

2.2. High-order sliding mode observer

To deal with unknown functions \(f_i\) in (1), define a high-order sliding mode (HOSM) differentiator[19, 20] as

\[
\begin{aligned}
\dot{z}_0^i &= v_0^i + x_{i+1}, \\
\dot{z}_1^i &= v_1^i = \cdots = v_{\rho_i-1}^i = z_{\rho_i}^i = v_{\rho_i+1}^i, \\
v_0^i &= -\kappa_{\rho_i}^i L_i^{-1}\rho_i |z_0^i - x_i| L_i^{-1}\rho_i \text{sign}(z_0^i - x_i) + z_1^i, \\
v_1^i &= -\kappa_{\rho_i}^i L_i^{-1}\rho_i |z_1^i - v_0^i| L_i^{-1}\rho_i \text{sign}(z_1^i - v_0^i) + z_2^i, \\
&\vdots \\
v_{\rho_i}^i &= -\kappa_{\rho_i}^i L_i \text{sign}(z_{\rho_i}^i - v_{\rho_i}^i) \\
v_{\rho_i+1}^i &= -\kappa_{\rho_i}^i L_i \text{sign}(z_{\rho_i+1}^i - v_{\rho_i+1}^i) \\
y &= x_1
\end{aligned}
\]

(3)

where \(x_{i+1}\) denotes \(g_n(x_n)u\) for the simplicity of expression, \(\rho_i\) is the order of differentiator, \(\kappa_{\rho_i}^i > 0 (i = 0, 1, \cdots, \rho_i; \ i = 1, \cdots, n)\) are the coefficients of the differentiator to be designed, and \(z_0^i, \cdots, z_{\rho_i}^i\) are the estimates of \(x_i, \ f_i, \ f_{i1}, \cdots, f_{i}^{(v_i)}\), respectively.

From (1) and (3), it is obtained that the estimation errors are governed by

\[
\begin{aligned}
\dot{\eta}_0^i &= -\kappa_{\rho_i}^i L_i^{-1}\rho_i |z_0^i - x_i| L_i^{-1}\rho_i \text{sign}(\eta_0^i) \\
\dot{\eta}_1^i &= -\kappa_{\rho_i}^i L_i^{-1}\rho_i |z_1^i - v_0^i| L_i^{-1}\rho_i \text{sign}(\eta_1^i - \eta_0^i) \\
\dot{\eta}_{\rho_i+1}^i &\in -\kappa_{\rho_i}^i L_i \text{sign}(\eta_{\rho_i+1}^i - \eta_{\rho_i}^i) + [-L_i, L_i]
\end{aligned}
\]

(4)
where the estimation errors are defined as $\eta^i_0 = z^i - x_i$, $\eta^i_1 = z^i - f^i(t)$. It has been proved that the observer error system (4) is finite-time stable [21], which implies that there is a finite time such that $\eta^i_1 = 0$.

3. Controller design
To facilitate the design procedure, we first denote the tracking error signals as

$$e_{j1} = x_{j1} - \vartheta_{j-1},$$
$$e_{j2} = x_{j2} - \vartheta_{j-1},$$

where ϑ_0 denotes $\vartheta_0 = x_d$.

The k^{th} \((1 \leq k \leq m - 1)\) error surface is defined as

$$s_k = e_{k1} + \frac{1}{\lambda_k} (e_{k2} + z_1^{2k-1}) p_k.$$ (6)

where λ_k is a positive design parameter, and $p_k = \frac{q_{k1}}{q_{k2}}$ with $q_{k2} > q_{k1}$ being positive odd integers.

3.1. Step 1:
From (6), define the first error surface as

$$s_1 = e_{11} + \frac{1}{\lambda_1} (e_{12} + z_1^{1}) p_1,$$ (7)

where e_{11}, e_{12} are defined as $e_{11} = x_{11} - x_d$, $e_{12} = x_{12} - \dot{x}_d$. According to (2), (5) and (6), the time derivatives of the tracking error signals e_{11} and e_{12} are

$$\dot{e}_{11} = x_{12} + f_{11} - \dot{x}_d,$$
$$\dot{e}_{12} = f_{12} + x_{21} - \dot{x}_d = f_{12} + e_{21} + \vartheta_1 - \dot{x}_d = f_{12} + s_2 - \frac{1}{\lambda_2} e_{22} + \vartheta_1 - \dot{x}_d,$$ (8)

where $\dot{e}_{22} = e_{22} + z_2^{1}$.

Consider a Lyapunov candidate function as

$$V_1 = \frac{1}{2} s_1^2$$ (9)

with s_1 defined as in (7).

Then, to stabilize dynamics in sliding surface (7), an intermediate virtual control is defined as

$$\vartheta_1 = -\frac{\lambda_1}{p_1} e_{12}^{2-p_1} + z_2^{1} + z_1^{2} + K_{11}s_1 + K_{12} \text{sign}(s_1)|s_1|^{\alpha},$$ (10)

where K_{11}, K_{12}, $0 < \alpha < 1$ are design parameters and α is odd. z_2^{1} and z_1^{2} are estimates of \dot{f}_{11} and f_{12}, respectively.

According to (7), (8) and (10), the time derivatives of s_1 can be computed as

$$\dot{s}_1 = \dot{e}_{11} + \frac{p_1}{\lambda_1} (e_{12} + z_1^{1})^{p_1-1} (\dot{e}_{12} + z_2^{1}) = f_{11} + x_{12} - \dot{x}_d + \frac{p_1}{\lambda_1} e_{12}^{p_1-1} (f_{12} + s_2 - \frac{1}{\lambda_2} e_{22} + \vartheta_1 - \dot{x}_d + z_2^{1})$$
$$- \frac{p_1}{\lambda_1} e_{12}^{p_1-1} [K_{11}s_1 + K_{12} \text{sign}(s_1)|s_1|^{\alpha} - \eta_1^{2} - s_2 + \frac{1}{\lambda_2} e_{22}^{p_2} + \vartheta_1 - \dot{x}_d] - \eta_1^{1}$$ (11)
with $\dot{e}_{12} = e_{12} + z^1_1$.

Then, the derivative of V_1 is calculated as

$$
\dot{V}_1 = s_1 \dot{s}_1 = -\frac{p_1}{\lambda_1} K_{11} \dot{e}_{12}^p s_1 \dot{s}_1 - \frac{p_1}{\lambda_1} K_{12} e_2^p \dot{s}_1 \dot{s}_1 |s_1|^{\alpha_1 - 1} + \frac{p_1}{\lambda_1} \dot{e}_{12}^p s_1 (\eta_1^2 - \frac{1}{\lambda_2} \dot{e}_{22}^p - \ddot{x}_d) - s_1 \eta_1^1 + \frac{p_1}{\lambda_1} \dot{e}_{12}^p \dot{s}_1 \dot{s}_2 ,
$$

where K_{11} and K_{12} should be designed to make \dot{V}_1 negative definite.

It is easy to check that

$$
s_1 (\eta_1^2 - \frac{1}{\lambda_2} \dot{e}_{22}^p - \ddot{x}_d) \leq \frac{3}{2} s_1^2 + \frac{1}{2} (\eta_1^2)^2 + \frac{1}{2} \lambda_2 \dot{e}_{22}^p + \frac{1}{2} \ddot{x}_d^2 , \quad s_1 \eta_1^1 \leq \frac{1}{2} s_1^2 + \frac{1}{2} (\eta_1^1)^2 .
$$

Then, by substituting (13) into (12), one has

$$
\dot{V}_1 \leq -\frac{p_1}{\lambda_1} \dot{e}_{12}^p (K_{11} - \frac{3}{2}) - \frac{1}{2} s_1^2 - \frac{p_1}{\lambda_1} K_{12} e_2^p \dot{s}_1^{\alpha_1 - 1} + \frac{1}{2} (\eta_1^2)^2 + (\eta_1^1)^2 + (\frac{1}{\lambda_2} \dot{e}_{22}^p)^2 + \ddot{x}_d^2 + \frac{p_1}{\lambda_1} \dot{e}_{12}^p \dot{s}_1 \dot{s}_2 .
$$

Furthermore, by choosing $K_{11} > \frac{\lambda_1}{2 p_1} \dot{e}_{12}^{p_1} + \frac{3}{2}$, one obtains

$$
\dot{V}_1 \leq -\rho_{11} s_1^2 - \rho_{12} s_1^{\alpha_1 - 1} + s_1 + \frac{p_1}{\lambda_1} \dot{e}_{12}^{p_1} \dot{s}_1 \dot{s}_2
$$

with

$$
\rho_{11} = \frac{p_1}{\lambda_1} \dot{e}_{12}^{p_1} (K_{11} - \frac{3}{2}) - \frac{1}{2} , \quad \rho_{12} = \frac{p_1}{\lambda_1} K_{12} \dot{e}_{12}^{p_1} , \quad s_1 \leq \frac{1}{2} (\eta_1^2)^2 + (\eta_1^1)^2 + (\frac{1}{\lambda_2} \dot{e}_{22}^p)^2 + \ddot{x}_d^2
$$

which are greater than zero.

From (2) and (5), it is obtained that

$$
\dot{e}_{11} = e_{12} + f_{12} ,
$$

where f_{12} is estimated by HOSM observer (3).

Substituting (17) into (7) obtains

$$
s_1 = e_{11} + \frac{1}{\lambda_1} (\dot{e}_{11} + \eta_1^1)^{p_1} .
$$

Since the disturbance estimation error η_1^1 converge to zero in a finite-time, (18) reduced to

$$
\lambda_1 e_{11} + e_{11}^{p_1} = 0
$$

which represents a sliding motion in the dynamic surface s_1.

It has been shown that the time for terminal attractor $e_{11} = 0$ reaching zero [22] is

$$
t_1 = \frac{p_1 e_{11}^{p_1}}{\lambda_1(1 - p_1)} .
$$
3.2. Step k ($2 \leq k \leq m - 1$):

From (5), one obtains

$$
e_{k1} = x_{k1} - \vartheta_{k-1},
\quad e_{k2} = x_{k2} - \vartheta_{k-1}.
$$ (21)

The kth error surface is defined as

$$
s_k = e_{k1} + \frac{1}{\lambda_k}(e_{k2} + z^{2k-1})p_k,
$$ (22)

where λ_k is a positive constant, $p_k = \frac{q_{k1}}{q_{k2}}$ with $q_{k2} > q_{k1}$ being positive odd integers.

The derivative of s_k along system dynamics is

$$
\dot{s}_k = \dot{e}_{k1} + \frac{p_k}{\lambda_k}(e_{k2} + z^{2k-1})p_k(\dot{e}_{k2} + z^{2k-1}).
$$ (23)

Consider a Lyapunov candidate function as

$$
V_k = \frac{1}{2}s_k^2
$$ (24)

with the derivative being

$$
\dot{V}_k = s_k \dot{s}_k.
$$ (25)

To stabilize dynamics in sliding surface (22), the kth virtual intermediate control signal is given as

$$
\vartheta_k = -[\frac{\lambda_k}{p_k}(e_{k2} + z^{2k-1})\alpha - p_k\vartheta_{k-1}(e_{k2} + z^{2k-1})\alpha + z^{2k-1} + z^{2k-1} + K_{k1}s_k + K_{k2}\text{sign}(s_k)|s_k|^\alpha].
$$ (26)

Similar to Step 1, it is proved that \dot{V}_1 satisfies

$$
\dot{V}_1 \leq -\rho_{k1}s_k^2 - \rho_{k2}s_k^{\alpha+1} + \varsigma_k + \frac{p_k}{\lambda_k}e_{k2}^{p_k-1}s_k^{\alpha+1} - \frac{p_k}{\lambda_k}e_{k2}^{p_k-1}s_k^{\alpha+1} + \rho_{k1}s_k^{\alpha+1} - \rho_{k2}s_k^{\alpha+1} - \varsigma_k.
$$ (27)

with

$$
\rho_{k1} = \frac{p_k}{\lambda_k}e_{k2}^{p_k-1}(K_{k1} - \frac{3}{2}) - \frac{1}{2}, \quad \rho_{k2} = \frac{p_k}{\lambda_k}K_{k2}e_{k2}^{p_k-1}, \quad \varsigma_k = \frac{1}{2}[(\eta_1^{p_k})^2 + (\eta_2^{p_k})^2 + \frac{1}{\lambda_{k+1}}(\bar{e}_{k+2}^{p_k+1})^2]
$$ (28)

which are greater than zero.

From (2) and (21), it is calculated that

$$
\dot{e}_{k1} = e_{k2} + f_{k1}.
$$ (29)

Substituting (29) into (23) yields

$$
s_k = e_{k1} + \frac{1}{\lambda_k}(\dot{e}_{k1} + \eta_{k1}^{\alpha})p_k.
$$ (30)
Since the disturbance estimation error $\eta_1^{2^k-1}$ converge to zero in a finite-time, (30) will reduce to
\[
\lambda_k e_{k1} + \dot{e}_{k1} = 0
\] (31)
which represents the motion of the kth sliding surface s_k.

It follows that
\[
t_k = \frac{p_k e_{k1}^p (0)}{\lambda_k (1 - p_k)}.
\] (32)

3.3. Step m:
This is the last step of the controller design procedure. It is divided into two cases according to the system order n. If system n is even, the last sliding mode is defined as
\[
s_m = e_{m1} + \frac{1}{\lambda_m} (e_{m2} + z_1^{2^{m-1}})^{p_m},
\] (33)
where λ_m is positive constant, $p_m = \frac{q_m}{q_m-2}$ with q_m and q_m-2 being positive odd integers.

Differentiating (33) along (1) and (3) obtains
\[
\dot{s}_m = \dot{e}_{m1} + \frac{p_m}{\lambda_m} (e_{m2} + z_1^{2^{m-1}})^{p_m-1} (\dot{e}_{m1} + z_2^{2^{m-1}}).
\] (34)

Then, the actual control signal is given as
\[
u = -g^{-1}(\bar{x}_n) \left[\frac{\lambda_m}{p_m} (\dot{e}_{m2})^{1-p_m} (\dot{e}_{m2} + \frac{\lambda_m-1}{p_m-1} e_{m1}^{p_m-1} s_{m-1}) + z_1^{2m} + z_2^{2m-1} + K_k s_k + K_m \text{sign}(s_k)|s_k|^{\alpha} \right],
\] (35)
with K_{m1}, K_m are positive control gains, $\dot{e}_{m2} = e_{m2} + z_1^{2m-1}$.

The last Lyapunov candidate function is $V_m = \frac{1}{2} s_m^2$ with derivative as
\[
\dot{V}_m = s_m \dot{s}_m
\] (36)
satisfying
\[
\dot{V}_m \leq -\rho_m s_m^2 - \rho_m s_m^{a+1} + \frac{p_m-1}{\lambda_m-1} e_{m1}^{p_m-1} s_{m-1} s_m
\] (37)
with
\[
\rho_m = \frac{p_m}{\lambda_m} e_{m2}^{p_m-1} (K_{m1} - \frac{3}{2}) - \frac{1}{2}, \quad \rho_m = \frac{p_m}{\lambda_m} K_{m2} e_{m2}^{p_m-1}, \quad s_m = \frac{1}{2} (\eta_1^p)^2 + (\eta_1^{2m-1})^2,
\] (38)
which are greater than zero.

From (1), we have
\[
\dot{e}_{m1} = e_{m2} + f_{m1}.
\] (39)
Substituting (39) into (33) yields
\[
s_m = e_{m1} + \frac{1}{\lambda_m} (\dot{e}_{m1} + \eta_1^{m1})^{p_m}.
\] (40)

2010
Since the disturbance estimation error η_{m1}^n converge to zero in a finite-time, (40) will induce to
\[\lambda_m e_{m1} + \dot{e}_{m1}^{p_m} = 0 \] (41)
which means terminal attractor $e_{m1} = 0$ reaches to zeros in
\[t_m = \frac{p_m e_{m1}^{p_m}}{\lambda_m (1 - p_m)}, \] (42)

For the case when system order n is odd, the last error surface is defined as
\[s_m = e_m = x_n - \vartheta_m. \] (43)
Differentiate (43) along (1) yields
\[\dot{s}_m = f_n(\bar{x}_n, t) + g_n(\bar{x}_n)u - \dot{\vartheta}_m. \] (44)
The actual control law is given as
\[u = -g_n^{-1}(\bar{x}_n)[K_n e_n + z_1^n + K_n 2 \text{sign}(e_n)|e_n|^\alpha - \frac{\lambda_{m-1}}{p_{m-1}} e_{m-1}^{p_{m-1}} s_{m-1} - \dot{\vartheta}_m] \] (45)
where K_{n1} and K_{n2} are positive design parameters.

Then, the last Lyapunov candidate function is chosen as
\[V_m = \frac{1}{2} s_m^2 \] (46)
with the derivative as
\[\dot{V}_m = -K_{m1} s_m^2 - K_{m2} |s_m|^{\alpha+1} - \eta_{1}^m s_m - \eta_{m-1} s_m - \lambda_{m-1} e_{m-1}^{p_{m-1}} s_{m-1} - \dot{\vartheta}_m \] (47)
satisfying
\[\dot{V}_m \leq -\rho_{m1} s_m^2 - K_{m2} s_m^{\alpha+1} + \varsigma_m - \frac{p_{m-1}}{\lambda_{m-1}} e_{m-1}^{p_{m-1}} s_{m-1} s_m \] (48)
with
\[\rho_{m1} = K_{m1} - \frac{1}{2}, \quad \rho_{m2} = K_{m2}, \quad \varsigma_m = \frac{(\eta_{m1}^n)^2}{2}, \] (49)
which are greater than zero.

In the coming section, we will prove that, by properly choosing the design parameters $K_{k1}, K_{k2}, k = 1, \ldots, m, n$, the whole closed-loop system is finite-time convergence.

4. Stability analysis
We have the following theorem to summarize the main results of our proposed finite-time control scheme for uncertain nonlinear systems.
Theorem 1 For system (1) with mismatched uncertain functions f_i, if the virtual control signals are designed as (10), (26), and actual control signal is provided as (35), the whole closed-loop system is finite-time stable and all signals are SGUUB. Furthermore, the tracking errors converge to zero in finite-time.

Proof By virtue of (9), (24) and (36), we choose the Lyapunov candidate function

$$ V = \sum_{j=1}^{m} V_j. $$

(50)

From (15), (27) and (37), it is obtained that the derivative of (50) satisfies

$$ \dot{V} \leq -\rho_1 V - \rho_2 V^{\frac{\alpha+1}{2}} + \varsigma, $$

(51)

where K_1, K_2 and ς are defined as

$$ \rho_1 = \min_{1 \leq j \leq m} \{\rho_{j1}\}, \quad \rho_2 = \min_{1 \leq j \leq m} \{\rho_{j2}\}, \quad \varsigma = \sum_{j=1}^{m} \varsigma_j. $$

(52)

Since the disturbance estimation errors η^i, $i = 1, \cdots, n$ converge to zero in a finite-time, (51) then reduces to

$$ \dot{V} + \rho_1 V + \rho_2 V^\beta \leq 0 $$

(53)

with $\beta = \frac{\alpha+1}{2}$. Since $V^\beta(t) > 0$, (53) can be rewritten as

$$ V^{-\beta} \dot{V} + \rho_1 V^{1-\beta}(t) + \rho_2 \leq 0, \quad \forall \ t \geq t_0. $$

(54)

Setting $\xi = V^{1-\beta}(t)$ obtains

$$ \dot{\xi} = -(1 - \beta) V^{-\beta}(t) \dot{V}(t). $$

(55)

Multiplying $1 - \beta$ on both side of (54) and substituting (55) into (54), one obtains

$$ \dot{\xi} \leq -(1 - \beta)(\rho_1 \xi + \rho_2). $$

(56)

Integrating both side of (56) from t_0 to t yields

$$ \ln\left(\frac{\rho_1 \xi(t) + \rho_2}{\rho_1 \xi(t_0) + \rho_2}\right) \leq -\rho_1 (1 - \beta)(t - t_0) $$

(57)

which can be written as

$$ \xi(t) \leq (\xi(t_0) + \frac{\rho_2}{\rho_1}) e^{-\rho_1 (1 - \beta)(t - t_0)} - \frac{\rho_2}{\rho_1}. $$

(58)

Then, substituting $\xi(t) = V^{1-\beta}(t)$ and $\xi(t_0) = V^{1-\beta}(t_0)$ into (58) obtains

$$ V^{1-\beta}(t) \leq (V^{1-\beta}(t_0) + \rho) e^{-\rho_1 (1 - \beta)(t - t_0)} - \rho $$

(59)

with $\rho = \frac{\rho_2}{\rho_1}$.

Finally, it can be concluded that $V(t) \equiv 0, \ \forall > t_s$ with t_s defined as

$$ t_s = t_0 + \frac{1}{\rho_1 (1 - \beta)} \ln \frac{V^{1-\beta}(t_0) + \rho}{\rho}. $$

(60)

This completes the proof.
5. Simulation studies

To illustrate our proposed finite-time control scheme, consider a third-order low-triangular nonlinear system in the form of

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, x_2) + x_2 \\
\dot{x}_2 &= f_2(x_1, x_2, x_3) + x_3 \\
\dot{x}_3 &= f_3(x_1, x_2, x_3) + g_3 u
\end{align*}
\]

(61)

where \(f_1, f_2, f_3\) are unknown smooth functions with mismatched conditions and \(g_3 = 1\). The control objective is to design a feedback law \(u\) to achieve that the output of the closed-loop system asymptotically tracks a reference signal \(x_d = \sin(t)\) in finite time. In this paper, it is assumed that

\[
\begin{align*}
f_1(x_1, x_2) &= 2x_1 \sin(x_1) + x_1^2 x_2,
\end{align*}
\]

\[
\begin{align*}
f_2(x_1, x_2, x_3) &= x_1^2 + x_1 x_2 + x_2 \cos(x_1) + \frac{x_2}{1 + x_3^2},
\end{align*}
\]

\[
\begin{align*}
f_3(x_1, x_2, x_3) &= x_1 x_3 + \frac{1}{1 + x_2^2} + x_3 \sin(x_2).
\end{align*}
\]

(62)

To handle the mismatched unknown functions, a third-order HOSM is defined as

\[
\begin{align*}
\dot{z}_0^1 &= v_0^1 + x_2, \quad \dot{z}_1^1 = v_1^1, \quad \dot{z}_2^1 = v_2^1, \\
v_0^1 &= -\kappa_1 L_1^z |z_0^1 - x_1|^2 \text{sign}(z_0^1 - x_1) + z_1^1, \\
v_1^1 &= -\kappa_1 L_1^z |z_1^1 - v_1^0|^2 \text{sign}(z_1^1 - v_1^0) + z_2^1, \\
v_2^1 &= -\kappa_1 L_1^z \text{sign}(z_2^1 - v_2^1)
\end{align*}
\]

(63)

\[
\begin{align*}
\dot{z}_0^2 &= v_0^2 + x_3, \quad \dot{z}_1^2 = v_1^2, \quad \dot{z}_2^2 = v_2^2, \\
v_0^2 &= -\kappa_2 L_2^z |z_0^2 - x_2|^2 \text{sign}(z_0^2 - x_2) + z_1^2, \\
v_1^2 &= -\kappa_2 L_2^z |z_1^2 - v_1^1|^2 \text{sign}(z_1^2 - v_1^1)
\end{align*}
\]

(64)

\[
\begin{align*}
\dot{z}_0^3 &= v_0^3 + g_3 u, \quad \dot{z}_1^3 = v_1^3, \quad \dot{z}_2^3 = v_2^3, \\
v_0^3 &= -\kappa_3 L_3^z |z_0^3 - x_3|^2 \text{sign}(z_0^3 - x_3) + z_3^1, \\
v_1^3 &= -\kappa_3 L_3^z \text{sign}(z_1^3 - v_1^2)
\end{align*}
\]

(65)

with \(z_0^3 = \hat{x}_3\) and \(z_1^3 = \hat{f}_3\) denote the estimates of \(x_3\) and \(\hat{f}_3\), respectively.

Then, define the sliding surface as

\[
s_1 = e_{11} + (e_{12} + z_1^1)^{p_1}
\]

(66)

with \(e_{11} = x_{11} - x_d\) and \(e_{12} = x_{12} - \hat{x}_d\). As detailed in Step 1 of the controller design procedure, an intermediate virtual control signal is given as

\[
\vartheta_1 = -\frac{\lambda_1}{p_1} e_{12}^{2-p_1} + z_2^1 + z_1^2 + K_{11} s_1 + K_{12} \text{sign}(s_1) |s_1|^\alpha
\]

(67)
with \(\hat{e}_{12} = e_{12} + x_1 \). Moreover, the actual control signal is provided as

\[
u = -g_{21}^{-1}[K_{21}e_{21} + z_1^3 + K_{22}\text{sign}|e_3|^\alpha - \dot{\vartheta}_1]
\]

with \(e_{21} = x_{21} - \vartheta_1 \).

The values of design parameters used in simulation are listed as in Table 1.

<table>
<thead>
<tr>
<th>Table 1. Designed parameters of finite-time DSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSM observer 1</td>
</tr>
<tr>
<td>HOSM observer 2</td>
</tr>
<tr>
<td>HOSM observer 3</td>
</tr>
<tr>
<td>(\vartheta_1)</td>
</tr>
<tr>
<td>(\vartheta_2)</td>
</tr>
<tr>
<td>(u)</td>
</tr>
</tbody>
</table>

The simulation results are depicted in Figures 1–3. Figure 1 depicts the control performance under control law with two different types of disturbances. The HOSM performance of estimating unknown system status and uncertain functions are shown in Figure 2. The corresponding estimate errors are given in Figure 3, which are all finite-time convergence. To summarize, the proposed scheme combining the modified DSC and HOSM observer successfully achieves finite-time feedback control problem of (61) with satisfactory results.

- \(e_1 = x_1 - x_d \), \(e_2 = x_2 - \vartheta_1 \), \(e_3 = x_3 - \vartheta_2 \), NN input vectors are

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Output signal (dashed line) tracks reference signal (solid line) in the upper subfigure with convergence error in the lower subfigure.}
\end{figure}

From comparison, the NN-based control method proposed in is also employed to control (61). The adaptive NN controller used in simulation is in the form of

\[
\dot{\vartheta}_1 = -c_1e_1 - \hat{W}_1^T \phi(Z_1) + \dot{x}_d, \quad \dot{\vartheta}_2 = -c_2e_2 - \hat{W}_2^T \phi(Z_2) + \dot{\vartheta}_1, \quad u_N = -c_3e_3 - \hat{W}_3^T \phi(Z_3) + \dot{\vartheta}_2
\]

where tracking errors are defined as \(e_1 = x_1 - x_d \), \(e_2 = x_2 - \vartheta_1 \), \(e_3 = x_3 - \vartheta_2 \), NN input vectors are
defined as $Z_1 = [x_1, x_2]$, $Z_2 = [x_1, x_2, x_3]$, $Z_3 = [x_1, x_2, x_3]$, and the adaptive laws are

$$
\dot{\hat{W}}_i = \Gamma_i^{-1}(e_i\phi(Z_i) - \sigma_i\hat{W}_i), \quad i = 1, 2, 3,
$$

with $\phi(Z_i)$ being the Gaussian functions. The parameters used in simulation are given as in Table 2.

Table 2. Designed parameters of adaptive NN controller

<table>
<thead>
<tr>
<th>NN</th>
<th>Γ_i</th>
<th>σ_i</th>
<th>N_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN 1</td>
<td>$\Gamma_1 = 15$</td>
<td>$\sigma_1 = 0.02$</td>
<td>$N_1 = 25$</td>
</tr>
<tr>
<td>NN 2</td>
<td>$\Gamma_2 = 11$</td>
<td>$\sigma_2 = 0.02$</td>
<td>$N_2 = 35$</td>
</tr>
<tr>
<td>NN 3</td>
<td>$\Gamma_3 = 3$</td>
<td>$\sigma_3 = 0.5$</td>
<td>$N_3 = 35$</td>
</tr>
<tr>
<td>Gains</td>
<td>$c_1 = 13$</td>
<td>$c_2 = 15$</td>
<td>$c_3 = 12$</td>
</tr>
</tbody>
</table>
The simulation results are depicted in Figures 4–6. From Figure 4, it is observed that the tracking performance is also acceptable. However, from Figure 5, we see that the estimate performance of NNs is not so satisfying. By comparing Figure 2 and Figure 5, we see that the designed HOSM observer is superior to NN in online estimating mismatched uncertain nonlinear functions in system (1). In addition, norms of NN weights are depicted in Figure 6 which are also bounded.

Figure 4. Tracking performance using adaptive NN controller with solid line being the reference signal and dashed line being system output in the upper subfigure.

Figure 5. (a) The estimate performance of NNs with solid line being the real unknown functions and dashed line being their estimation. (b) The estimate errors of NN approximators.
To evaluate the control performance quantitatively, four indices are adopted as:

\[
\begin{align*}
\text{IAE} &= \int |e_1(t)| dt, \\
\text{ITAE} &= \int t|e_1(t)| dt, \\
\text{ISE} &= \int e_1^2(t) dt, \\
\text{ITDE} &= \int te_1^2(t) dt.
\end{align*}
\] (71)

and the results of estimate performance of \(e_1\), \(e_1^1\), \(e_1^2\) and \(e_1^3\) are shown in Table 3.

<table>
<thead>
<tr>
<th></th>
<th>IAE</th>
<th>ITAE</th>
<th>ISE</th>
<th>ITDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_1)</td>
<td>36.23</td>
<td>18.44</td>
<td>100.54</td>
<td>30.85</td>
</tr>
<tr>
<td>(e_1^1)</td>
<td>124.17</td>
<td>12.70</td>
<td>466.58</td>
<td>43.31</td>
</tr>
<tr>
<td>(e_1^2)</td>
<td>327.67</td>
<td>74.03</td>
<td>1.13 \times 10^3</td>
<td>165.97</td>
</tr>
<tr>
<td>(e_1^3)</td>
<td>2.49 \times 10^3</td>
<td>1.87 \times 10^3</td>
<td>8.37 \times 10^3</td>
<td>5.16 \times 10^3</td>
</tr>
</tbody>
</table>

It can be found from these results that the modified DSC via HOSM observer method is robustness for time-varying signals with good tracking performance.

6. Conclusion

In this paper, we reported a novel finite DSC method for tracking control of uncertain nonlinear systems with mismatched unknown functions. By designing HOSM observer, the unknown functions and its derivatives were finite-time online obtained. Subsequently, second-order sliding surfaces with finite-time convergence were developed to allow finite-time controller design. Furthermore, finite-time DSC scheme of the whole-closed loop was provided in detail with stability analysis by Lyapunov method. The proposed approach do not need function approximators with fast convergence. Simulation results illustrated that, compared with the approximators-based adaptive methods, the proposed algorithm in this paper was more effective and applicable.
Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant 61703224, 61620304 and 21606141.

References

2018

