Estimation of speed, armature temperature, and resistance in brushed DC machines using a CFNN based on BFGS BP

Hacene MELLAH1,2,∗, Kamel Eddine HEMSAS1, Rachid TALEB2, Carlo CECATTI3
1Department of Electrical Engineering, Faculty of Technology, Ferhat Abbas Sétif 1 University, Sétif, Algeria
2Department of Electrical Engineering, LGEER Laboratory, Faculty of Technology, Hassiba Benbouali University, Chlef, Algeria
3Department of Information Engineering, Computer Science, and Mathematics, University of L’Aquila, L’Aquila, Italy

Received: 25.11.2017 • Accepted/Published Online: 20.10.2018 • Final Version: 29.11.2018

Abstract: In this paper, a sensorless speed and armature resistance and temperature estimator for brushed (B) DC machines is proposed, based on a cascade-forward neural network and quasi-Newton BFGS backpropagation. Since we wish to avoid the use of a thermal sensor, a thermal model is needed to estimate the temperature of the BDC machine. Previous studies propose either nonintelligent estimators that depend on the model, such as the extended Kalman filter and Luenberger’s observer, or estimators that do not estimate the speed, temperature, and resistance simultaneously. The proposed method has been verified both by simulation and by comparison with the simulation results available in the literature.

Key words: Cascade-forward neural network, parameter estimation, quasi-Newton BFGS, speed estimation, temperature estimation, resistance estimation

1. Introduction

In the last few years there has been growing interest in thermal aspects of electrical machines and their effects on electrical and mechanical parameters and time constants such as electrical resistance or back EMF [1], since, due to their influence, the motor’s characteristics and hence its performance during operation are not the same as those considered during design [2]. Real-time knowledge of temperature in the various motor parts is also very useful in order to predict incipient failures and to adopt corrective actions, thus obtaining not only better control but also higher reliability of the electrical machine.

The early prediction of thermal aging, which makes insulations vulnerable, as well as of other thermal factors directly influencing motor health and life can avoid dangerous failures [3–5]. The main causes of thermal faults are overloads [6], cyclic mode [7], overvoltage and/or voltage unbalances [8], distortions [4], thermal insulation aging [3], obstructed or impaired cooling [9], poor design and manufacture [3], and skin effect [10].

For several years, great efforts have been devoted to the temperature and speed measurement of electrical machines, and several methods for temperature [11–13] and speed measurements [14] have already been proposed in the literature. While the direct measurement of temperature in electric DC machines is a long-established approach [13–15], some authors obtained the average winding temperature from the resistance measurement [13]. A more modern method can be found in [12,16], but the temperature measurement gave rise to two major

∗Correspondence: h.mellah@univ-chlef.dz

This work is licensed under a Creative Commons Attribution 4.0 International License.
problems: optimum sensor placement and the difficulty of achieving rotor thermal measurements. Likewise, speed measurement can also be difficult [17]. Moreover, information from sensors installed on rotating parts leads to techno-economic difficulties in the measurement chain. Sensorless solutions have therefore been considered by many studies [16,18–20].

One of the first examples of temperature estimation was presented in [21], where a Luenberger observer was applied both to a DC rolling mill motor and a squirrel cage induction motor. Another solution was described in [22], where the authors used a steady-state extended Kalman filter (EKF) associated with its transient version. To estimate the resistance some authors combine the EKF with a smooth variable structure filter [23]. Some research on bi-estimation has been done [24], which describes and implements an algorithm for combined flux-linkage and position estimation for PM motors based on the machine’s characteristic curves. A very interesting approach was proposed in [25], applying and experimentally validating a transient EKF to estimate the speed and armature temperature in a BDC motor. However, the EKF has some limitations, in particular: (i) if the system is incorrectly modeled, the filter may quickly diverge; (ii) the EKF assumes Gaussian noise [26–28]; (iii) if the initial state estimate values are incorrect, the filter may also diverge; (iv) the EKF can be difficult to stabilize due to the sensitivity of the covariance matrices [27,29].

To the authors’ knowledge, very few publications deal with the simultaneous estimation of speed and armature temperature of DC machines [25], especially when performed by intelligent techniques [29]. Artificial neural networks (ANNs) have demonstrated their ability in a wide variety of applications such as process control [30], identification [31], diagnostics [32], pattern recognition [33], robot vision [34], flight scheduling [35], finance and economics [36], and medical diagnosis [37].

In this paper, while referring to our previous study [29], in which an estimator based on a multilayer perceptron with Levenberg–Marquardt BP was developed in order to avoid the limitations of the standard ANN, a solution based on a cascade-forward neural network (CFNN) and Bayesian regulation BP (BRBP) is proposed. A highly accurate BRBP-based ANN was proposed in [38,39] but it requires an extremely long convergence time and is in fact known to be among the slowest algorithms to converge. Based on the approach already presented in [29], the purpose of this paper is to propose a novel approach using a learning algorithm that is a compromise between speed and accuracy. The BFGS can respond to these two constraints [39].

The remainder of the paper is organized as follows: Section 2 describes the thermal model of the BDC motor, Section 3 discusses the ANN and CFNN based on quasi-Newton BFGS BP, and Section 4 presents the simulation results and analysis. Finally, some conclusions are discussed in Section 5.

2. Thermal model of BDC machines

Research interest in studying rotating electric machinery from the combined viewpoints of thermal and electrical processes dates back to the 1950s [40,41]. The model used in this paper was proposed by Acarnley and Al-Tayie in [25]. This is a simplified model and is obtained by considering the power dissipation and heat transfer in the BDC machine [25]. The power is dissipated by the armature current flowing through the armature resistance, which varies in proportion to the temperature. The electrical equation of a BDC motor can be written as:

\[V_a = R_{a0} (1 + \alpha_{cu} \theta) i_a + L_a \frac{di_a}{dt} + k_c \omega \]

(1)

where \(V_a \) (V) is the armature voltage, \(R_{a0} \) (Ω) is the armature resistance at ambient temperature, \(\alpha_{cu} \) (\(\alpha_{cu} = 0.004 \, 1/°C \)) is the temperature coefficient of resistance, \(\theta(°C) \) the temperature above ambient, \(i_a \) (A) is the...
armature current, L_a (H) is the armature inductance, k_e (V/rad/s) is the torque constant, and ω (rad/s) is the armature speed.

The mechanical equation of a BDC motor can be written as:

$$J \frac{d\omega}{dt} + b\omega + T_l = k_e i_a,$$

where J (kg \times m2) is total inertia, b (N \times m \times s) is the viscous friction constant, and T_l (N \times m) is the load torque.

The power losses (P_l) include contributions from copper losses and iron losses, which are frequency-dependent; the copper loss is proportional to current squared multiplied by resistance, which depends on temperature, while the iron loss is proportional to speed squared for constant excitation multiplied by the iron loss constant ($k_{ir} = 0.0041 \text{ W/(rad/s)}^2$) [25]:

$$P_l = R_{a0} (1 + \alpha_{a0}\theta) i_a^2 + k_{ir}\omega^2.$$ \hfill (3)

Heat flow from the armature surface of the BDC motor is directly to the cooling air and depends on the thermal transfer coefficients at zero speed ($k_o = 4.33 \text{ W v}^\circ\text{C}$) and at speed ($k_T = 0.0028 \text{ rad/s}$); the thermal power flow from the armature surface to the BDC motor surface is proportional to the temperature difference between the motor and the ambient temperature. The rate of temperature variation depends on the thermal capacity ($H = 18 \text{ KJ}^\circ\text{C}$), and it was simplified by Acarnley and Al-Tayie in [25] as follows:

$$P_l = k_0 (1 + k_T\omega) \theta + H \frac{d\theta}{dt}.$$ \hfill (4)

By arranging the previous equations, we can write the system of equations as follows.

$$\frac{di_a}{dt} = -\frac{R_{a0}(1+\alpha_{a0}\theta)}{L_a} i_a - \frac{k_a}{L_a} \omega + \frac{1}{L_a} v_a$$

$$\frac{d\omega}{dt} = \frac{k_T}{J} - \frac{b}{J} \omega - \frac{F}{J} T_l$$

$$\frac{dT}{dt} = \frac{R_{a0}(1+\alpha_{a0}\theta)}{H} i_a^2 + \frac{k_{ir}}{H} \omega^2 - \frac{k_0(1+k_T\omega)}{H} \theta$$ \hfill (5)

3. ANN estimator

In recent years, CFNNs have become a widely used backpropagation algorithm [42–51] and have proved their capability in several applications [49–57]. CFNNs are similar to feedforward neural networks (FFNNs), but include a weight connection from the input to each layer and from each layer to the successive layers [49–56]. For example, a four-layer network has connections from layer 1 to layer 2, layer 2 to layer 3, layer 3 to layer 4, layer 1 to layer 3, layer 1 to layer 4, and layer 2 to layer 4. In addition, the four-layer network also has connections between input and all layers. FFNNs and CFNNs can potentially learn any input-output relationship, but CFNNs with more layers might learn complex relationships more quickly [50–53], making them the right choice for accelerated learning in ANNs [51]. The results obtained by Filik and Kurban in [52] suggest that CFNN BP can be more effective than FFNN BP in some cases.

In the present study, after solving Eq. (5), a random white Gaussian noise was added to the inputs and outputs of the BDC machine model. The outputs of the model were then used as the CFNN target and its inputs as the CFNN inputs, as shown in Figure 1. This noise makes the training very slow, but the CFNN is well trained and applicable in real time, and it is also used to track the performance and robustness of the
CFNN. Half of the simulation data of the BDC machine was used to create the training set and the other half was shared equally by the test and validation sets. The procedure used to train the NN was the cross-validation error checked over multiple sets of training data.

Inputs
(Va, Ia)

Comparison and plot the results

BDC Machine (Eq. (5))

ω, θ, R : target of CFNN

CFNN-BFGS BP

Figure 1. Estimating system of BDC machine by ANN based on BFGS BP.

The BP algorithm was used to form the neural network such that on all training patterns, the sum squared error \(E \) between the actual network outputs \(y \) and the corresponding desired outputs \(y_d \) was minimized to a supposed value:

\[
E = \sum (y_d - y)^2. \tag{6}
\]

To obtain the optimal network architecture, for each layer the transfer function types must be determined by a trial and error method. On the input (2 units) and three hidden layers (3, 4, and 5 units), a hyperbolic tangent sigmoid transfer function was used, defined as:

\[
f(\text{net}_j) = \frac{2}{1 + e^{-2\text{net}_j}} - 1, \tag{7}
\]

where net is the weighted sum of the input unit \(j \), and \(f(\text{net}) \) is the output units. The output layer has 3 units with a pure linear transfer function, defined as:

\[
f(\text{net}_j) = \text{net}_j. \tag{8}
\]

3.1. Quasi-Newton BFGS BP algorithm

The quasi-Newton BFGS BP training algorithm is a useful method for updating network weights and biases according to the BFGS formulae [58–61]. The algorithm belongs to the quasi-Newton family and was devised by Broyden, Fletcher, Goldfarb, and Shanno in 1970 [62–65] to achieve fast optimization [60,61]. It is an iterative method that approximates Newton’s method without the inverse of Hessian’s matrix [60]. It is a second-order optimization algorithm [60,61]. In this paper, the weight and bias values were updated according to the BFGS quasi-Newton method, and the new weight \(w_{k+1} \) was computed as:

\[
w_{k+1} = \omega_k H^{-1}_k \Psi_k, \tag{9}
\]

where \(H_k \) is the Hessian matrix of the performance index at the current values of the weights and biases. When \(H_k \) is large, \(w_{k+1} \) computation is complex and time-consuming [66–68]. BFGS does not calculate the inverse Hessian but approximates it as follows:

\[
H_{k+1} = H_k + \frac{y_k y_k^T}{y_k^T S_k} H_k S_k S_k^T H_k, \tag{10}
\]

3184
where $\Psi_k = \nabla f(w_{k+1})$, $S_k = w_{k+1} - \omega_k$, and $y_k = \nabla f(w_{k+1}) \nabla f(w_k)$. The new formula can be approximated as:

$$w_{k+1} = \omega_k \left(H_k + \frac{y_k y_k^T}{y_k^T S_k} - \frac{H_k S_k S_k^T H_k}{S_k^T H_k S_k} \right) \Psi_k. \tag{11}$$

This method has several advantages: it has a better convergence rate than using conjugate gradients [58–61], it is stable because the BFGS Hessian update is symmetric and positive definite [60], and BFGS computes an approximation to the inverse Hessian in only $O(n^2)$ operations [60]. However, this method requires a lot of memory to converge, especially on a large scale [66–69], whereas many researchers are interested in how to reduce memory needs [67–71].

4. Simulation results

Figures 2–5 show the simulation results of the simultaneous estimation of speed, armature temperature, and resistance by CFNN based on BFGS BP for continuous running duty or abbreviated by duty type S1. Duty type S1 is characterized by operation at a constant load maintained for a sufficient time to allow the machine to reach thermal equilibrium [72]. The ANN outputs are in good agreement with the model outputs as can be seen below, proving the ability of the proposed approach. The BDC motor parameters used during simulations are as follows:

- Rated voltage $V_a = 240$ V
- Rated power $P = 3$ kW
- Rated torque $T_l = 11$ Nm
- Armature resistance $R_{a0} = 3.5$ Ω
- Armature inductance $L_a = 34$ mH

The estimated speed and the corresponding errors are shown in Figure 2. The results obtained by Acarnley and Al-Tayie in [25] suggest that the speed estimation error from the EKF is approximately 2%.
Moreover, it is not suitable for high-performance servo drives [25]. However, in the results obtained here, the error is less than 0.4 rad/s and represents only 0.18% of the final value, as shown in Figure 5. The estimated temperature and the corresponding errors are shown in Figure 3, where it reaches 79.5 °C, while the model output is 80 °C and the steady state estimated error is less than 0.5 °C. This is insignificant and represents only 0.625%, as can be seen from Figures 3 and 5. This can be contrasted with the results in [25], which suggested that the temperature estimation error was 3 °C, i.e. approximately 3.75%, while Nestler and Sattler in [21]
found that the estimated winding temperature error was high. Even though Pantonial et al. in [22] reported an improvement, estimating that the error did not exceed 1 °C, the results presented in this paper are the best. Figure 4 depicts the resistance estimated by CFNN based on BFGS BP and the model response. It can be seen from this figure that the resistance has the same curvature as the armature temperature, where the steady state estimated resistance is 4.59 Ω, i.e. less than 6×10^{-3} of the simulated resistance. Practically, this difference is a negligible quantity and represents only 0.13% of the final value. The results obtained are more precise than those presented in [23]. Figure 5 shows the estimation errors of speed, temperature, and resistance and their percentages in relation to their rated values. Figure 5 and the Table show more clearly the good agreement between the model outputs and the outputs of our intelligent sensor. The simulation results can be summarized by the Table.

<table>
<thead>
<tr>
<th></th>
<th>$\bar{X}{\text{model}} - \bar{X}{\text{Estimate}}$</th>
<th>$(\bar{X}{\text{model}} - \bar{X}{\text{Estimate}})/\bar{X}_{\text{model}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>0.4 rad/s</td>
<td>0.18%</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.5 °C</td>
<td>0.625%</td>
</tr>
<tr>
<td>Resistance</td>
<td>0.006 Ω</td>
<td>0.13%</td>
</tr>
</tbody>
</table>

5. Conclusion

A sensorless simultaneous estimator for BDC machines based on a CFNN trained by BFGS BP has been proposed and verified through simulation and by comparison with earlier studies. The estimator includes sensorless speed estimation, average armature temperature, and resistance estimations based only on the voltage and the current measurements. Estimated speed and temperature eliminate the need for speed measurements and the need for a thermal sensor. In addition, estimated temperature solves the problem of obtaining thermal information from the rotating armature. Furthermore, the estimated temperature can be used for a new thermal monitoring method, motor protection, and other duty types since the model includes the load effect in the copper loss and the frequency effect in the iron loss. The estimated resistance can be used to improve the accuracy of the control algorithms that are affected by an increase in resistance as a function of temperature. Consequently, a sensorless simultaneous estimation of speed, temperature, and resistance could be a promising research field for future research. The good agreement between model and intelligent estimator results demonstrates the efficiency of the proposed approach.
References

3191