Compact microstrip lowpass filter with ultrasharp response using a square-loaded modified T-shaped resonator

Ali PIRASTEH, Saeed ROSHANI*, Sobhan ROSHANI
Department of Electrical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Received: 13.01.2018 • Accepted/Published Online: 06.04.2018 • Final Version: 27.07.2018

Abstract: A miniaturized lowpass filter (LPF) with ultrasharp response, good figure of merit (FOM), and simple structure is proposed. The designed structure is fabricated and measured with a 2.9 GHz cut-off frequency. The proposed LPF consists of high impedance lines that are loaded by three similar resonators and two uniform suppressing cells. The filter size is only 0.08 \times 0.23 \text{ g}, which indicates small circuit size. The proposed design exhibits good features, such as an ultrasharp roll-off rate of about 1609 dB/GHz and a good FOM of 162,820. The insertion loss of the proposed LPF is less than 0.14 dB in the passband. With these excellent obtained specifications and flat group delay, this structure can be used in wireless antennae.

Key words: Microstrip, low-pass filters (LPF), sharp roll-off, resonator

1. Introduction
Microstrip low-pass filters (LPFs) are important passive elements for the attenuation of unwanted signals and noise in communication systems [1]. LPFs are widely used to suppress unwanted harmonics in active and passive devices such as power dividers, couplers [2–4], and amplifiers [5,6]. Therefore, several studies have been reported recently to improve LPF parameters, with various structures and methods to move these parameters closer to the ideal values. The ideal parameters for a LPF are zero insertion loss and highly attenuated return loss in the pass band, a sharp roll-off rate in the transition band, compact circuit size, and an ultrawide stopband [7].

In [8,9], two LPFs with an ultrawide stopband were reported. Unfortunately, these filters are large and have complicated structures. In [10–13], small LPFs were designed, but all of these reported works suffer from low sharpness and relatively complex structure. In [14,15], sharp LPFs were reported, but these reported structures are not able to solve the large dimensions problem. In [16–19], compact LPFs with sharp responses were introduced. However, in all of the above-mentioned structures, size reduction and an ultrasharp transition band were not achieved. Therefore, the FOM parameters for the reported structures are not superior.

In this article, a compact LPF with a simple structure is proposed, which has good features, such as ultrasharp roll-off rate, low insertion loss in the passband, very compact size, and high FOM.

2. Design procedure of the proposed LPF
The proposed microstrip LPF consists of three similar resonators and two uniform suppressing cells. A primitive T-shaped resonator is used as the building block of the main resonator. The primitive T-shaped resonator

*Correspondence: s_roshany@yahoo.com
structure is shown in Figure 1a, while Figure 1b shows the LC equivalent circuit of the primitive T-shaped resonator.

![Figure 1](image)

Figure 1. (a) A primitive T-shaped resonator. (b) LC equivalent circuit of primitive T-shaped resonator.

The dimensions of the primitive T-shaped resonator are: $W_1 = 1.6$, $W_2 = W_4 = 0.1$, $W_3 = 0.75$, $L_1 = 3$, $L_2 = 16.56$, $L_3 = 3.15$, and $L_4 = 4.75$ mm.

The values of the inductors and capacitors used in Figure 1b are: $L_1 = 5.64 \text{ nH}$, $L_2 = 5.58 \text{ nH}$, $C_1 = 0.4 \text{ pF}$, and $C_2 = 0.142 \text{ pF}$. The transfer function of the LC equivalent circuit with resistance matching of (R) in a primitive T-shaped resonator can be obtained from the following equation:

$$\frac{V_{out}}{V_{in}} = \frac{2R + MS^2}{2R + AS + BS^2 + CS^3 + DS^4 + ES^5},$$

where

$$M = 2RC_2L_3,$$

$$A = 2L_1 + R^2(C_1 + C_2),$$

$$B = 2R(L_1C_1 + L_1C_2 + L_2C_2),$$

$$C = L_1^2C_1 + L_2^2C_2 + 2L_1L_2C_2 + R^2C_1L_2C_2,$$

$$D = 2RL_1C_1L_2C_2$$ and

$$E = L_1^2C_1L_2C_2.$$

Transmission zero frequency of the primitive T-shaped resonator is

$$f_z = \frac{1}{2\pi\sqrt{L_2C_2}}.$$

The simulation response of the S_{21} parameter, as a function of the L_3 parameter for the primitive T-shaped resonator, is shown in Figure 2a. Figure 2b shows EM and LC equivalent circuit simulation results for primitive T-shaped resonator. As the results show, the primitive T-shaped resonator creates a transmission zero. Adjusting the value of L_3 leads to a change in the location of this transmission zero. Increasing the length of L_3 decreases the obtained frequency of the stopband. The roll-off rate of the primitive T-shaped resonator is 22.38 dB/GHz.

As seen in Figure 2a, the insertion loss parameter of the primitive T-shaped resonator is undesirable. The modified T-shaped resonator (MTR) is introduced in order to reduce the insertion loss and improve sharpness of the primitive resonator, as shown in Figure 3a. Figure 3b shows the LC equivalent circuit of the MTR.
Figure 2. (a) Simulation results of \(S_{21} \) for primitive T-shaped resonator. (b) EM and LC equivalent circuit simulation results for primitive T-shaped resonator.

Figure 3. (a) Modified T-shaped resonator (MTR). (b) LC equivalent circuit of MTR.

The dimensions of the MTR cell are: \(W_5 = 0.5 \), \(W_6 = 1.25 \), \(L_5 = 2.25 \) mm. The values of the LC equivalent circuit elements in Figure 3b are as follows: \(L_1 = 4.6 \) nH, \(L_2 = 2.8 \) nH, \(L_3 = 0.44 \) nH, \(C_1 = 0.35 \) pF, \(C_2 = 0.3 \) pF, and \(C_3 = 0.126 \) pF.

As shown in Figure 4a, the MTR performance is better than the primitive resonator and the insertion loss is partly improved. The MTR cell has a sharper transition band than the primitive T-shaped resonator, and the location of the transmission zero is moved to the lower frequencies. Figure 4b shows EM and LC equivalent circuit simulations for the MTR. The roll-off rate for the MTR cell is 36.7 dB/GHz, which shows that its transition band is sharper than the primitive T-shaped resonator. In the next step, a square-loaded modified T-shaped resonator (SLMTR) is proposed, as shown in Figure 5a, to increase sharpness and improve the insertion loss parameter. The dimensions of the SLMTR are: \(W_7 = L_7 = 1 \), \(L_6 = 1.4 \), and \(W_8 = 0.1 \) mm. Figure 5b shows the LC equivalent circuit for the SLMTR. The values of SLMTR elements are as follows: \(L_1 = 5.41 \) nH, \(L_2 = 2.15 \) nH, \(L_3 = 0.53 \) nH, \(L_4 = 0.25 \) nH, \(C_1 = 0.07 \) pF, \(C_4 = C_{gap} = C_3 = 0.125 \) pF, and \(C_2 = 0.29 \) pF. As shown in Figure 6a, the SLMTR cell has a better performance than the other two resonators. Figure 6b shows EM and LC equivalent circuit simulations for the SLMTR. The SLMTR structure improved sharpness in the transition band and moved the location of the transmission zero to the lower frequencies.

The main resonator is constructed by cascading three SLMTRs as shown in Figure 7. In the main resonator, the gap between each section is equal to \(L_8 = 0.2 \) mm. The main resonator shows an ultrasharp response, as shown in Figure 8. The roll-off rate of the main resonator is 711.53 dB/GHz, which shows a
674.83 dB/GHz sharper transition band than the MTR cell. Unfortunately, despite the sharp response of the main resonator, the insertion loss parameter is not so good. In order to have a better performance and to reduce the insertion loss in the passband, two suppressing cells are adopted, as depicted in Figure 9a. The suppressing cells dimensions are as follows: $L_9 = W_10 = W_{11} = W_{12} = W_{13} = W_{14} = W_{17} = W_{18} = W_{19} = W_{20} = 0.1$, $L_{27} = L_{28} = 1.52$, $L_{21} = L_{22} = 4.75$, $L_9 = L_{11} = L_{13} = 2$, $L_{10} = L_{12} = L_{14} = 3$, $L_{17} = L_{20} = 2.25$, $L_{18} = L_{19} = 2.65$, $L_{15} = 3.5$, $L_{29} = L_{30} = 3.15$, $W_{15} = W_{16} = 0.75$, $L_{24} = L_{25} = 0.3$, and $L_{23} = L_{26} = 0.2$ mm. Figure 9b shows the LC equivalent circuit for the suppressing cells of the proposed LPF. The elements values for LC equivalent circuit of the suppressing cells are as follows: $L_1 = 0.15$ nH, $L_2 = 1.89$ nH, $L_3 = 0.243$ nH, $L_4 = 0.25$ nH, $L_5 = 0.992$ nH, $L_6 = 0.25$ nH, $L_7 = 3.35$ nH, $C_1 = 0.18$ pF, $C_2 = C_4 = 0.1$ pF, $C_3 = 0.112$ pF, $C_5 = 0.162$ pF, $C_6 = 0.122$ pF, $C_{gp1} = 0.15$ pF, and $C_{gp2} = 1.25$ pF. The frequency response of suppressing cells is depicted and in Figure 10a. Figure 10b shows EM and LC equivalent circuit simulations for suppressing cells.
The proposed LPF is constructed by combining the main resonator and suppressing cells. The layout structure and fabricated photo of the proposed LPF are depicted in Figures 11 and 12, respectively. The proposed microstrip LPF is fabricated on reinforced Teflon (RT)/Duroid 5880 substrate ($\varepsilon_r = 2.2$, $h = 0.508$ mm, and loss tangent of 0.0009) (DuPont, Wilmington, DE, USA). The overall size of the proposed LPF is 16.56×5.6 mm2 ($0.08 \times 0.23 \lambda_g$, where, λ_g is the guided wavelength at 2.9 GHz).
Figure 9. (a) Suppressing cells of the proposed LPF. (b) LC equivalent circuit for the suppressing cells of the proposed LPF.

Figure 10. (a) Frequency response of the suppressing cells. (b) EM and LC equivalent circuit simulations for suppressing cells.

Figure 11. Layout of the proposed LPF.
3. Measured and simulated results

The proposed LPF was measured with HP8720B network analyzer (Agilent, Santa Clara, CA, USA). The measurement workbench is shown in Figure 13. Advanced Design System (Agilent) was used for simulation, and the HP8720B network analyzer was used for S-parameters measurements.

![Fabricated photo of the proposed LPF.](image1)

![The measurement workbench with an HP8720B network analyzer.](image2)

The simulated and measured frequency responses of the fabricated LPF are shown in Figure 14. As seen in Figure 14, the measured and simulated results of the LPF are in good agreement. The results show an ultrasharp transition band with low insertion loss in the passband.

![Frequency responses of the proposed LPF.](image3)

![Insertion loss of the proposed LPF in the passband.](image4)

The measured S-parameters of the proposed LPF with HP8720B network analyzer are shown in Figure 16. The simulated group delay of presented LPF in passband is shown in Figure 17. The group delay of
Figure 16. The measured S-parameters of the proposed LPF with an HP8720B network analyzer. (a) S11 and (b) S21.

Presented LPF is very flat because the maximum mutability in the proposed LPF at 55% passband is only 0.04 ns.

Figure 17. Group delay in the passband of the proposed LPF.

Comparisons between the designed LPF performance and similar reported structures [14–27] are shown in the Table. In this table, the sharpness of transition band is calculated as follows [13]:

$$\xi = \frac{\alpha_{\text{max}} - \alpha_{\text{min}}}{f_s - f_c} (dB/GHz),$$

where f_s is −40 dB stop-band frequency and f_c is the −3 dB cut-off frequency. The α_{max} and α_{min} parameters are −40 dB and −3 dB attenuation points, respectively. In the proposed design, the corresponding frequencies of f_S and f_C are 2.932 GHz and 2.912 GHz, which results in a sharpness of 1608.69. The proposed LPF shows the sharpest transition band compared to the other related works.

The relative stopband bandwidth parameter in Table is calculated as follows:

$$RSB = \frac{\text{stop band } (-25dB)}{\text{stopband center frequency}}$$

(4)
The normalized circuit size parameter in the Table is defined as follows:

\[NCS = \frac{\text{physical filter size (length } \times \text{ width)}}{\lambda_g^2}, \]

where \(\lambda_g \) is defined as the guided wavelength at \(f_c \) (–3 dB cut-off frequency). As the results show, the proposed filter demonstrates the smallest size compared to the other reported works in this comparison.

The suppression factor in the Table is

\[SF = \frac{\text{rejection level in stopband}}{10} \]

The architecture factor parameter in the Table is considered 1. When the structure is in two dimensions, this parameter should be considered 2, and when the structure is in three dimensions, this parameter should be assumed 3.

The FOM in the Table is

\[FOM = \frac{\zeta \times RSB \times SF}{NCS \times AF} \]

In this comparison, the designed LPF has the highest FOM among the other reported works.

4. Conclusion

A novel, ultrasharp, and very compact LPF with a simple structure is proposed in this paper. The proposed filter is composed of three similar resonators and two suppressing cells. The proposed LPF was designed, fabricated, and measured. With these good features, such as an ultrasharp response of 1608.69, compact circuit size of 0.08 \(\times \) 0.23 \(\lambda_g \), and very high FOM of about 162,820, the designed LPF can be used in modern communication and microwave circuits.
References

[18] Li JL, SW Qu, Quan X. Compact microstrip low pass filter with sharp roll-off and wide stop band. Electron Lett 2009; 45: 110-111.

