Concurrent optimal design of TCSC and PSS using symbiotic organisms search algorithm

Muwaffaq ALOMOUNSH
Department of Electrical Power Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan

Received: 12.03.2017 • Accepted/Published Online: 01.06.2017 • Final Version: 05.10.2017

Abstract: The symbiotic organisms search (SOS), which has been recently introduced, is a robust powerful metaheuristic global optimizer. This nature-inspired algorithm imitates the symbiotic interaction strategies in an ecosystem exercised by organisms involved in interrelationships to survive and reproduce. One of the main beneficial features of the SOS in contrast to many other competent metaheuristic algorithms is that the algorithm does not need any specific algorithm parameters or tuning process. This paper applies the SOS algorithm to simultaneously design optimal controllers of a power system equipped with both a power system stabilizer (PSS) and a thyristor-controlled series compensator (TCSC). The algorithm of SOS is utilized to concurrently tune the variables of controllers for both the PSS and TCSC in the nonlinear optimization process. Simulation results reveal that the optimal SOS-based coordinated controllers can significantly stabilize the system and efficiently damp oscillations under severe disturbances. Results will also show that the optimal controllers obtained perform slightly better than the optimal controllers obtained using the two commonly used global optimization solvers, the genetic algorithm (GA) and particle swarm optimization.

Key words: Global optimization, optimal controllers, power system control, power system stabilizer, stability, symbiotic organisms search, thyristor-controlled series compensator

1. Introduction
Several devices and control methods have been introduced to enhance damping in power systems in order to maintain a reliable operation of the system [1–3]. Among the devices are the power system stabilizer (PSS) and thyristor-controlled series compensator (TCSC).

Power system stability, oscillation problems, and PSS design have received increased consideration over the last five decades [2–12]. Parameters of classical PSSs are commonly achieved in the frequency domain using the phase compensation technique, realized using lead-lag compensators whose control parameters are usually obtained depending on linear modeling of the power system [1–3].

Many control practices have been introduced to design PSSs with an enhanced performance. In addition to classical control schemes [1–3], other alternatives include artificial intelligence techniques [4,5], global optimization algorithms [6–9], robust control methods [10], and linear and nonlinear control methods [11]. Hybrid control methods have received more emphasis recently in designing PSSs [12].

The TCSC is effective to enhance power system stability, dampen system oscillations, mitigate the
subsynchronous resonance, control steady-state power flow, and improve the economic value of transmission system [13–18].

Modeling and simulation of a single-machine infinite-bus (SMIB) power system equipped with a TCSC and optimal tuning of the TCSC controller in this system were presented in many research papers in the last two decades [14–18]. To improve overall system performance, some research papers proposed coordinated operations of the PSS and FACTS controllers to boost damping achievements of a power system [19–30]. In this literature, artificial techniques such as the GA, PSO, and simulated annealing (SA) algorithms were used to tune TCSC parameters or to design coordinated controllers of the TCSC and the PSS [17–30]. However, most of the work was based on linearized power system models.

The work in [22] presented modeling and simulation of a SMIB system equipped with PSS and TCSC controllers using MATLAB programming. This work proposed lead-lag and proportional-integral controller structures for the TCSC, which were tested under different loading conditions and a symmetrical three-phase short circuit fault. The work presented in [23] applied the teaching-learning-based optimization algorithm to design a coordinated proportional-integral (PI) controller-based PSS for SMIB power systems equipped with TCSCs, which was tested under various loading conditions. The study presented in [24] investigated the effectiveness of the damping function of TCSC in a SMIB system by applying a two-stage lead-lag PPS, linear optimal control-based power oscillation damping, and a new controller design scheme based on modal optimal control, where the GA is used to design the PSS controller parameter and weighting matrix of the linear and modal optimal controls, and the stability of the system with the proposed controllers was investigated using small load disturbances. In [25], the researchers developed a modified PSO for coordination of a PSS and a TCSC controller to enhance the power system’s small-signal stability. The proposed approach simultaneously used eigenvalue-based and time-domain simulation-based objective functions to improve the optimization convergence rate. The bacterial foraging algorithm was used in [26] to design a PSS and TCSC as a damping controller in a SMIB system for damping low-frequency oscillations under different loading conditions. The problem of robustly PSS- and TCSC-based damping controllers was formulated as an optimization problem according to the eigenvalue-based objective function comprising the damping factor and the damping ratio of the undamped electromechanical modes. The work in [27] presented a design of state-feedback controllers for a PSS and TCSC whose parameters were optimized based on PSO to analyze their effects on the stability of a SMIB system and to damp the low-frequency oscillations. The proposed controllers were explained using eigenvalues analysis and performance indices. In [28] an improved harmony search algorithm was proposed for coordinated design of the PSS and TCSC to effectively damp interarea oscillations. To demonstrate the effectiveness of the proposed technique, the results obtained were compared to the results obtained using other four optimization algorithms.

SOS is one of the recent heuristic algorithms, which was introduced in 2014 [31]. It imitates the symbiotic interaction strategies implemented by organisms involved in interrelationships in an ecosystem to survive and reproduce. This algorithm is superior to other algorithms in the sense that it does not need any specific algorithm parameters or tuning processes.
In 2016 and 2017, the SOS optimization algorithm was successfully applied to solve power engineering optimization problems and compared with other metaheuristic methods [32–35]. The results presented in these studies showed that the algorithm had good convergence and produced better results than some other metaheuristic optimization methods. In [32] the SOS was used to show the superiority of the algorithm to solve the classical economic dispatch problem, which has either a smooth fuel cost function or nonconvex and discontinuous fuel cost function considering some practical constraints. In [33] the SOS algorithm was proposed to optimize the power generation strategy while satisfying some operational constraints in the short-term hydrothermal generation scheduling problem. The research presented in [34] applied the SOS algorithm to solve the multiobjective economic emission load dispatch problem for thermal generators to minimize both total operating costs and emission levels, while satisfying equality constraints and limits. In the study presented in [35], the SOS algorithm was proposed to solve the dynamic economic dispatch problem with valve-point effects considering some practical constraints and the obtained results were compared with other some metaheuristic methods.

In this paper we use the SOS for concurrent design of optimal controllers of the PSS and TCSC to improve transient and steady-state responses and stability of a nonlinear SMIB system. The achieved SOS-based optimal controllers are investigated on three different typical disturbances. The results are compared with the results attained using two well-recognized and trusty global optimization algorithms, which are the GA and PSO [37,38]. The paper will verify that the SOS algorithm leads to a better global solution of the optimization problem of the system under study with small computational time. The results presented in this paper will reveal that utilizing the coordinated optimal SOS-based controllers of the TCSC and PSS is robust and effective in damping the electromechanical oscillations of the speed deviation, rotational speed, and electromagnetic torque under severe disturbances. Moreover, it will indicate that the SOS-based optimal controllers show better performance than the other two algorithms in treating different perturbations. Results presented in this paper will verify that the computation time associated with the SOS algorithm is much smaller than the computational times of the other two optimization algorithms.

2. Model of the system under study

Figure 1 depicts the SMIB power system under study, which comprises a combination of a generating unit, a transformer, three transmission lines, a TCSC, and the equivalent circuit of a large power system to which the combination is connected. Thevenin’s equivalent impedance (\(Z_{TH}\)) and the voltage (\(V_b\)) of the large power system is employed to represent the system connected to the combination. The TCSC is inserted in the single transmission line (T.L.3) as this line has the largest reactance in the system to guarantee the largest possible flexibility to control the reactance of the line while the net reactance of the line is kept inductive. This location has been chosen based on simulation results obtained from the three possible locations of the TCSC.

![Figure 1. Diagram of SMIB system including TCSC.](image-url)
2.1. TCSC
The circuit shown in Figure 2a represents a TCSC inserted in a line connecting buses i and j, where z_{ij} refers to the series impedance of the transmission line [13–21]. The equivalent reactance of the TCSC is depicted as a function of the firing angle (α) as shown in Figure 2b.

![Figure 2. (a) A line equipped with TCSC, (b) equivalent reactance of TCSC.](image)

The TCSC comprises a capacitor bank with a reactance of X_C connected in a shunt thyristor-controlled inductor with a reactance of X_L. The TCSC is seen by the transmission system as an equivalent controllable reactance (x_{TCSC}), which is a function of α. A resonance situation that takes place for the parallel combination of inductance-capacitance at α_r should be bypassed. As presented in Figure 2b, a margin of safety for the resonance situation is maintained by limiting α to be $\alpha \geq \alpha_r + \Delta\alpha$ in the capacitive region and $\alpha \leq \alpha_r - \Delta\alpha$ in the inductive region [13–18].

The operating boundaries of x_{TCSC} are decided based on the limits of α. Consequently, the limits of x_{TCSC} are expressed as:

$$X_{TCSC}^\text{min} \leq x_{TCSC} \leq X_{TCSC}^\text{max}. \quad (1)$$

In the inductive region, limits on α are expressed as:

$$\alpha_L^\text{min} \leq \alpha \leq \alpha_L^\text{max}; \alpha_L^\text{min} = \pi/2. \quad (2)$$

In the capacitive region, limits on α are expressed as:

$$\alpha_C^\text{min} \leq \alpha \leq \alpha_C^\text{max}; \alpha_C^\text{max} = \pi. \quad (3)$$

If $\sigma = \pi - \alpha$, x_{TCSC} as a function of σ is given by [17,18]:

$$x_{TCSC}(\sigma) = -X_C + k_1(2\sigma + \sin(2\sigma)) - k_2(\cos^2 \sigma)(\varpi \tan(\varpi \sigma) - \tan \sigma), \quad (4)$$

Where

$$k_1 = \frac{X_C + X_L C}{\pi}, \quad k_2 = \frac{4X_L^2}{\pi X_L}, \quad X_L C = \frac{X_C X_L}{X_C - X_L}, \quad \varpi = \sqrt{\frac{X_C}{X_L}}. \quad (5)$$

In this paper the commonly used lead-lag structure as a TCSC controller has been utilized. The block diagram representation of the lead-lag controller and the TCSC is illustrated in Figure 3. The TCSC controller can be represented by the following transfer function ($G_{TCSC}(s)$):

3907
Figure 3. Block diagram for TCSC and its controller.

\[G_{TCSC}(s) = \frac{\Delta \sigma(s)}{\Delta \omega(s)} = K_t \frac{s T_{wt}}{1 + s T_{wt}} \left(\frac{1 + s T_1}{1 + s T_2} \right) \left(\frac{1 + s T_3}{1 + s T_4} \right), \]

where \(K_t, T_{wt}, \) and \(T_1 - T_4 \) are the TCSC controller stabilizing gain, washout time constant, and phase lead-lag time constants, respectively. The reactance introduced by the TCSC as a function of \(\sigma \) is given by Eq. (4).

2.2. SMIB system

The system dynamics can be expressed by a group of differential equations in the variables \(\delta(t), S_m(t), E'_q(t), \) and \(E'_d(t) \) as follows [1]:

\[\frac{d}{dt}(\delta(t)) = 2\pi f(S_m - S_{mo}) \]

\[\frac{d}{dt}(S_m(t)) = \frac{1}{2H} (-D(S_m - S_{mo}) + T_m - T_e). \]

\[\frac{d}{dt}(E'_q(t)) = \frac{1}{T_{do}} [-E'_q(t) + E_{fd}(t) + (x_d - x'_d)i_d], \]

\[\frac{d}{dt}(E'_d(t)) = \frac{1}{T_{qo}} [-E'_d(t) + (x_q - x'_q)i_q], \]

\[\frac{d}{dt}(E_{fd}(t)) = \frac{1}{T_A} [K_A(V_{ref} - V_t - u_{PSS}) - E_{fd}(t)], \]

where

\[v_q(t) = E'_q(t) - x'_d i_d(t), \quad v_d(t) = E'_d(t) + x'_q i_q(t); \quad V_t = \sqrt{v_d^2 + v_q^2}, \]

\[i_d(t) = \frac{E'_q(t) - V_b \cos(\delta(t))}{x_e + x'_d}, \quad i_q(t) = \frac{V_b \sin(\delta(t)) - E'_q(t)}{x_e + x'_q}, \]

\[T_e(t) = E'_d(t)i_d(t) + E'_q(t)i_q(t) + (x'_q - x'_d)i_d(t)i_q(t)], \]

\[x_e = x_T + x_L - x_{t_csc} + x_{TH}; \quad x_L = \frac{x_{L1} x_{L2}}{x_{L1} + x_{L2}} + x_{L3}, \]

and:

3908
2.3. PSS

The PSS basically controls the generator’s excitation by adding damping to rotor oscillations by using one or more auxiliary stabilizing signals [1–3]. A standard conventional lead-lag PSS encompasses three blocks for phase compensation, signal washout, and gain. As the function of a PSS is to offer a component of damping torque, the speed deviation ($\Delta \omega$) represents a suitable input signal for the PSS. The block diagram of the lead-lag PSS is illustrated in Figure 4, and the corresponding transfer function is given by:

$$G_{PSS}(s) = \frac{u_{PSS}(s)}{\Delta \omega(s)} = K_s \frac{sT_{ws}}{1 + sT_{ws}} \frac{l + sT_{1s}}{1 + sT_{2s}} \frac{l + sT_{3s}}{1 + sT_{4s}}.$$

(16)

In the PSS, K_s, T_{ws}, and $T_{1s} - T_{4s}$ are the PSS stabilizing gain, washout time constant, and phase lead-lag time constants, respectively. The parameters of the lead-lag PSS are required to be tuned optimally to obtain the best achievement of the system [1,2].

2.4. Design of optimal controllers

The parameters associated with the PSS and TCSC to be optimally adjusted are the time constants ($T_{1s} - T_{4s}$ and $T_{1t} - T_{4t}$) and stabilizing gains (K_s and K_t). Washout time constants $T_{ws} = T_{wt} = 10$ are used in this work. The integral of the time-weighted absolute error (ITAE) performance measure that uses speed deviation has been utilized in this paper, which is mathematically expressed as [36]:

$$ITAE = \int_0^{t_s} t|\Delta \omega(t)|dt,$$

(17)

where t_s is the simulation time, which is 10 s in this current paper. The optimal settings of controller gains are attained as the results of the constrained optimization of the ITAE performance measure (the objective
function). The optimization problem can be formulated mathematically as follows:

Minimize

\[ITAE(K_{1s}, T_{1s}, T_{2s}, T_{3s}, K_{1t}, T_{1t}, T_{2t}, T_{3t}, T_{4t}) \]

subject to

\[K_{s\min} \leq K_s \leq K_{s\max}, \quad K_{t\min} \leq K_t \leq K_{t\max}, \quad T_{is\min} \leq T_{is} \leq T_{is\max}, \quad T_{it\min} \leq T_{it} \leq T_{it\max}; \quad i = 1, 2, 3, 4. \]

In this paper, MATLAB and Simulink environments are used to solve the above optimization problem using SOS [31] and both GA [37] and PSO algorithms [38].

3. Symbiotic organisms search

Symbiosis describes any association between unlike organisms (species), which can defined as the interrelationship between two or more different organisms living together in the ecological system with some form of feeding relationship involved. The SOS algorithm imitates the three symbiotic interactions within an interrelationship that involve a pair of organisms seeking the fittest organism. The SOS technique uses in its iterative process a population of hopeful solutions to best regions in the search space in the procedure seeking the global optimal solution [31].

The SOS starts with a starting ecosystem. In this ecosystem, a set of organisms is created randomly in the search space. Each organism among them serves as one possible solution to the optimization problem. In the ecosystem, each organism is accompanied by a specific fitness value, which indicates the degree of closeness to the desired objective. The SOS algorithm applies a sequence of operations in each iteration to current solutions to create revised solutions for the following iteration. The new solution in SOS is generated by simulating the coaction between two organisms in the biological ecosystem [31].

The procedures in the SOS involve three phases that mimic the interaction model of a real biological ecosystem, which are described in the following subsections.

3.1. Mutualism phase

In the SOS, \(X_i \) is an organism corresponding to the \(i \)th member of the ecosystem. Another organism, \(X_j \), is then randomly picked from the ecosystem to interact with \(X_i \). The two organisms interact in a mutualistic relationship aiming at increasing the mutual survival level in the ecosystem. New possible solutions for \(X_i \) and \(X_j \) are evaluated depending on the mutualistic symbiosis between organisms \(X_i \) and \(X_j \), which are modeled by [31]:

\[
X_i^{new} = X_i + r(0,1) \left(X_{best} - V_m BF_1 \right); \quad V_m = (X_i + X_j)/2, \tag{19}
\]

\[
X_j^{new} = X_j + r(0,1) \left(X_{best} - V_m BF_2 \right); \quad V_m = (X_i + X_j)/2, \tag{20}
\]

where \(r(0,1) \) is a random-number vector and \(V_m \) is the mutual vector that represents the relationship characteristics between organisms \(X_i \) and \(X_j \). The benefit factors \(BF_1 \) and \(BF_2 \) in Eqs. \(19 \) and \(20 \) express the level of benefit of every organism, which indicate if an organism partly or fully benefits from the engaged interaction, which are determined randomly as either 1 or 2 [31]. The \((X_{best} - V_m BF_1) \) and \((X_{best} - V_m BF_2) \) parts in Eqs. \(20 \) and \(21 \) indicate the mutualistic effort to accomplish their target in improving their survival advantage [31]. The best organism \((X_{best}) \) represents the maximum degree of adaptation. The SOS uses
\(X_{\text{best}}\) (global solution) to simulate the maximum degree of adaptation as the destination point for the fitness increase of the two organisms. Lastly, organisms are revised only if their recent fitness is greater than their fitness before interaction \[31\].

3.1.1. Commensalism phase

In this second phase, organism \(X_j\) is randomly picked from the ecosystem to engage in interaction with another organism, \(X_i\), that seeks advantage from the interaction, while the other counterpart organism \(X_j\) neither suffers nor benefits. The new candidate solution of \(X_i\) (or \(X_{i}^{\text{new}}\)) is evaluated based on the following commensal symbiotic interrelation between organisms \(X_i\) and \(X_j\) \[31\]:

\[
X_i^{\text{new}} = X_i + r(-1, 1)(X_{\text{best}} - X_j).
\]

After this step, evaluation of the fitness value of the recent organism takes place, and organism \(X_i\) is revised only if its new fitness value is found better than its fitness before interaction. Note that \((X_{\text{best}} - X_j)\) in Eq. (21) indicates the beneficial advantage provided by organism \(X_j\) to help organism \(X_i\) increase its survival advantage in the ecosystem to the maximum degree for the present organism (represented by \(X_{\text{best}}\)) \[31\].

3.1.2. Parasitism phase

In the SOS, organism \(X_i\) is given the task of creating a factitious parasite called ‘parasite vector’ \((V_p)\) from itself, which is generated in the search space by replicating organism \(X_i\) and then adjusting the randomly chosen dimensions utilizing a random number. Organism \(X_j\) is randomly picked from the ecosystem and plays as a host to \(V_p\). The vector \(V_p\) attempts to replace \(X_j\) as follows: the two organisms are estimated to measure their fitness values. If \(V_p\) has a better fitness value, it eliminates organism \(X_j\) and takes its location in the ecosystem. On the contrary, if the fitness value of \(X_j\) is better than the fitness value of \(V_p\), \(X_j\) is protected against the parasite and \(V_p\) will disappear from that ecosystem \[31\].

Figure 5 shows the flowchart of the SOS algorithm. The flowcharts of the GA and PSO and the associated details are given in \[18,21,39\].

4. Simulation results

This section discloses simulation results of the SMIB system using the SOS-based coordinated optimal adjusting of PSS and TCSC controllers. System data used in this paper are given in Table 1. Lower and upper limits of the PSS and TCSC controller parameters are presented in Table 2.

<table>
<thead>
<tr>
<th>Machine</th>
<th>(x_d = 1.790, x_q = 1.66, \ x_d' = 0.355, \ T_{do} = 7.9, \ T_{qo} = 0.410, \ D = 2, \ H = 3.77)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission line</td>
<td>(x_{L1} = 0.2, \ x_{L2} = 0.2, \ x_{L3} = 0.5)</td>
</tr>
<tr>
<td>Transformer</td>
<td>(x_T = 0.1)</td>
</tr>
<tr>
<td>Thevenin’s equivalent</td>
<td>(x_{TH} = 0.10, \ V_b = 1)</td>
</tr>
<tr>
<td>Exciter</td>
<td>(K_A = 400, \ T_A = 0.025, \ -1 \leq E_{ld} \leq 1)</td>
</tr>
<tr>
<td>TCSC</td>
<td>(X_C = 0.30, \ X_P = 0.25X_C, \ k = 2, \ T_{csc} = 0.015, \ K_{csc} = 0.5)</td>
</tr>
</tbody>
</table>

To indicate the effectiveness of the SOS to optimally adjust TCSC and PSS control parameters, the results will be compared with the results obtained using the GA \[37\] and PSO \[38\]. The GA and PSO are selected
Figure 5. Flowchart of SOS algorithm.
Table 2. Lower and upper limits of controller parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Minimum limit</th>
<th>Maximum limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_s, K_t</td>
<td>0.10</td>
<td>100</td>
</tr>
<tr>
<td>$T_{1s}, T_{2s}, T_{3s}, T_{4s}$</td>
<td>0.01</td>
<td>2.0</td>
</tr>
<tr>
<td>$T_{1t}, T_{2t}, T_{3t}, T_{4t}$</td>
<td>0.01</td>
<td>2.0</td>
</tr>
</tbody>
</table>

in this paper for comparisons as they have become very common for solving optimization problems to find near-optimal global solutions. The user-provided parameters for the three optimization algorithms employed in this paper are given in Table 3.

Table 3. User parameters of optimization algorithms.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOS</td>
<td>Ecosystem/population size</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Maximum number of function evaluations</td>
<td>5000</td>
</tr>
<tr>
<td>GA</td>
<td>Population size</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Number of generations</td>
<td>250</td>
</tr>
<tr>
<td>PSO</td>
<td>Maximum number of iterations</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Acceleration coefficients (C_1, C_2)</td>
<td>1.02, 0.12</td>
</tr>
<tr>
<td></td>
<td>Inertia weight (W)</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

In the simulations, three types of perturbations are used to examine the system, which are:

1. A three-phase 5-cycle short-circuit fault at the terminals of generator at $t = 2$ s.
2. A sudden increase of 10% in the input mechanical power ($\Delta T_m = 0.2$) at $t = 2$ s.
3. A permanent outage of one of the two parallel transmission lines at $t = 2$ s.

For each type of disturbance, we consider the following four typical scenarios:

(a) NOC: System with no PSS and TCSC,

(b) SOS: System equipped with both PSS and TCSC controllers whose optimal parameters are determined using SOS,

(c) GAC: System equipped with both PSS and TCSC controllers whose optimal parameters are determined using GA, and

(d) PSO: System equipped with both PSS and TCSC controllers whose optimal parameters are determined using PSO.

As the three-phase 5-cycle short-circuit fault has the most severe impact on system behavior, the controllers are designed based on this disturbance.
4.1. Three-phase fault

By solving the optimization problem under the short-circuit fault at the generator terminals using the SOS, GA, and PSO, the optimal controller parameters for the system under study and computational time are obtained and summarized in Table 4. As can be noticed from the results presented in Table 4, the values of ITAE associated with the SOS-based optimal controllers are slightly smaller (better) than those obtained using the GA-based and PSO-based optimal controllers. This fact will be reflected in the following response figures. This table also shows that the computational time of the SOS algorithm is the smallest, which is considerably smaller than the computational burden of the other two optimization algorithms.

Table 4. Optimal TCSC and PSS controller parameters and computational time.

<table>
<thead>
<tr>
<th>Optimization algorithm</th>
<th>ITAE</th>
<th>Computational time (s)</th>
<th>K_t</th>
<th>T_{1t}</th>
<th>T_{2t}</th>
<th>T_{3t}</th>
<th>T_{4t}</th>
<th>K_s</th>
<th>T_{1s}</th>
<th>T_{2s}</th>
<th>T_{3s}</th>
<th>T_{4s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>6.6×10^{-4}</td>
<td>144.699737</td>
<td>96.19019</td>
<td>1.31065</td>
<td>0.85705</td>
<td>1.89912</td>
<td>0.72567</td>
<td>7.90551</td>
<td>0.75339</td>
<td>1.43138</td>
<td>0.28843</td>
<td>1.21053</td>
</tr>
<tr>
<td>PSO</td>
<td>6.7×10^{-4}</td>
<td>538.863344</td>
<td>77.38869</td>
<td>0.58956</td>
<td>0.24485</td>
<td>1.90459</td>
<td>0.52470</td>
<td>38.44753</td>
<td>1.97184</td>
<td>1.52590</td>
<td>0.01211</td>
<td>0.77755</td>
</tr>
<tr>
<td>SOS</td>
<td>6.3×10^{-4}</td>
<td>68.871554</td>
<td>97.06685</td>
<td>2.00000</td>
<td>1.27100</td>
<td>1.85122</td>
<td>0.58240</td>
<td>45.16601</td>
<td>0.01000</td>
<td>1.41250</td>
<td>2.00000</td>
<td>0.52526</td>
</tr>
</tbody>
</table>

The responses of electrical torque (T_e), slip (S_m), reactance of the TCSC (x_{tcsc}), and rotor angle (δ) of the SMIB system following the three-phase fault for the four scenarios are shown in Figures 6–9. As the responses in these figures depict, the SMIB system without controllers witnesses unsatisfactory long-persisting oscillations with considerable settling time and large overshoots, but the SMIB system with optimal controllers exhibits satisfactorily stabilized oscillations with greatly reduced settling time and overshoots. The results also reveal that optimal SOS-based TCSC and PSS controllers give slightly better results compared to those of the GA-based and PSO-based optimal controllers. This was clear from the optimal values of the objective function given in Table 4.

4.2. Transmission line outage

The responses of the SMIB system variables following the outage of the line are shown in Figures 10-12, which present the responses of the electrical torque, the slip, and the rotor angle, respectively. Even though the impact of the line outage on the SMIB is less severe than the short-circuit fault discussed previously, the responses under the current disturbance still reveal undesired poorly stabilized performance of the SMIB system.

As the responses in these figures show, the SMIB system with coordinated optimal controllers also exhibits satisfactorily stabilized oscillations with greatly reduced settling time and overshoots. The results again demonstrate that optimal SOS-based controllers give slightly better results compared to the GA-based and PSO-based optimal controllers.

3914
4.3. Mechanical torque disturbance

Figures 13-15 show, respectively, changes in the system variables T_e, S_m, and δ following a sudden increase of 10% in T_m. It is clear from these figures that the impact of the mechanical torque disturbance has less severity than the short-circuit fault and nearly the same severity as the line outage. The current disturbance still reveals the undesired poorly stabilized performance of SMIB system. The same conclusions are drawn for this disturbance as in the case of the previous two disturbances. Again, as the responses in these figures show, the SMIB system with coordinated optimal controllers also exhibits satisfactorily stabilized oscillations with
greatly reduced settling time and overshoots. The results again demonstrate that optimal SOS-based controllers give slightly better results compared to the GA-based and PSO-based optimal controllers.

Figure 12. Rotor angle following the outage of line 3.

Figure 13. Electrical torque following a sudden increase of 10\% in T_m.

Figure 14. Slip following a sudden increase of 10\% in T_m.

Figure 15. Rotor angle following a sudden increase of 10\% in T_m.

The results presented in this section show that TCSC is a powerful device to improve both steady-state and transient responses of the SMIB system under different types of system disturbances. Measured by the ITAE optimal values, the results also show that tuning the TCSC and PSS using the SOS algorithm gives slightly better results compared to tuning using both the GA and PSO.

5. Discussion of results

Based on the results, figures, and comparisons carried out in the previous section, the following observations are made:

(1) Under all types of disturbances, the power system without controllers witnesses poor sustained oscillations with large settling time and large overshoots.

(2) The most severe disturbance is the short-circuit fault. Even though the impact of the line outage and change in mechanical power on the SMIB are less severe than the short-circuit fault, the same conclusions are drawn for the last two disturbances as in the case of the first disturbance, where the responses under the last two disturbances without controllers still reveal the undesired poorly stabilized performance of SMIB system.
Utilizing the coordinated optimal SOS-based controllers of the TCSC and PSS offers the power system acceptably stabilized oscillations with greatly reduced settling time and overshoots. The optimal controllers are very effective in damping the electromechanical oscillations of the speed deviation, rotational speed, electromagnetic torque, and certainly the rest of variables presented in Eqs. (7) – (15).

All of the previous results in the last section show that the TCSC, whose controllers are tuned using the SOS, is a powerful device to improve both transient and steady-state behavior of the SMIB system under different types of system disturbances. The improvement associated with the SOS are due to the fact that the algorithm of the SOS leads to a better global or near-global solution of the optimization problem.

The results of comparisons in the last section show that tuning the parameters of the TCSC and PSS using the SOS algorithm gives better results compared to the results obtained using the GA and PSO. This is also made obvious by comparing the values of the objective functions associated with the SOS, GA, and PSO algorithms at the optimal solution (see first row in Table 4).

The SOS-based optimally tuned parameters of the TCSC and PSS under severe disturbances are robust and effective, and they have enhanced different responses of the system and show better performance than the other two algorithms in treating different perturbations.

As the second row in Table 4 shows, the computational time associated with the SOS algorithm to reach a better near-global solution is much smaller than the computational times of the other two optimization algorithms.

6. Conclusions

The work in this paper presented the coordinated optimal design of the PSS and TCSC in a SMIB system based on the SOS algorithm, which is capable of attaining a competitive and better near-global optimal solution under different disturbance conditions. To indicate the effectiveness of the SOS to adjust the control parameters of the TCSC and PSS, the results were compared with the results obtained using the two traditionally used global optimization algorithms, the GA and PSO. Simulation results have shown that the optimal coordinated design of the PSS and TCSCS obtained using the SOS has significantly improved the stability and damping of the system and provides better results compared to both the GA and PSO. Utilizing the coordinated optimal SOS-based controllers of the TCSC and PSS offered the power system acceptably stabilized oscillations with reduced settling time and overshoots. The optimal controllers were very effective in damping the electromechanical oscillations of the speed deviation, rotational speed, and electromagnetic torque. The SOS-based optimally tuned parameters of the TCSC and PSS under severe disturbances were robust and effective, and they enhanced different responses of the system and showed better performance than the other two algorithms in treating different perturbations. The improvement associated with the SOS-based PSS is due to the fact that the SOS algorithm leads to a better near-global solution of the optimization problem under study. The results presented in this paper demonstrated that the computation time associated with the SOS algorithm to reach a better near-global solution was much smaller than the computational times of the other two optimization algorithms.

References

